Generative AI and the scientific landscape: a bibliometric exploration of its global impact

Authors

  • Edgar Gonzalo Cossio Franco Instituto de Información Estadística y Geográfica de Jalisco https://orcid.org/0000-0001-6324-9960
  • Juan Humberto Sossa Azuela Instituto Politécnico Nacional, Centro de Investigación en Computación https://orcid.org/0000-0002-0521-4898
  • Víctor Manuel Larios Rosillo Universidad de Guadalajara, CUGDL
  • Rocio Maciel Arellano Universidad de Guadalajara, CUCEA
  • María Esmeralda Arreola Marín Tecnológico Nacional de México, Instituto Tecnológico Superior de Ciudad Hidalgo
  • Mariela Chávez Marcial Tecnológico Nacional de México, Instituto Tecnológico Superior de Ciudad Hidalgo
  • José Iraic Alcántar Alcántar Tecnológico Nacional de México, Instituto Tecnológico Superior de Ciudad Hidalgo
  • Samuel Efrén Viñas Álvarez Tecnológico Nacional de México, Instituto Tecnológico de Zitácuaro https://orcid.org/0000-0001-5891-2801
  • Ramón Alejandro Briseño Martínez Universidad Panamericana. Facultad de Ingeniería https://orcid.org/0009-0009-6561-0807
  • Carolina Del Valle Soto Universidad Panamericana. Facultad de Ingeniería https://orcid.org/0000-0002-0272-3275

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i2.1281

Keywords:

Generative Artificial Intelligence, Artificial Intelligence

Abstract

The present comparative bibliometric study (2020-2025) of the Scopus and WoS databases on Generative Artificial Intelligence (GenAI) reveals accelerated growth, concentrating more than 95% of the production and reaching its peak impact in 2025. Thematically, the intersection of communication and technology/education dominates. Geographically, the United States leads production, but Asia-Pacific institutions (Hong Kong) are key. The field of GenAI is a massive trend driven by concentrated collaboration between North America and Asia.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.1281
Dimensions.
Open Alex.

References

Ding, L., Lawson, C., & Shapira, P. (2025). Rise of generative artificial intelligence in science. Scientometrics, 130(9), 5093–5114. https://doi.org/10.1007/s11192-025-05413-z

Doshi, R., & Kaleel, A. (2025). Bibliometric analysis of generative AI and large language models in the Scopus database: Trends, insights, and research landscape. Applied Data Science and Analysis, 2025, 7–18. https://doi.org/10.58496/ADSA/2025/003

Dwivedi, R., & Elluri, L. (2024). Exploring Generative Artificial Intelligence Research: A Bibliometric Analysis Approach. IEEE Access, 12,119884-119902. https://doi.org/10.1109/ACCESS.2024.3450629

Eke, D. O. (2023). ChatGPT and the rise of generative AI: Threat to academic integrity? Journal of Responsible Technology, 13, 100060. https://doi.org/10.1016/j.jrt.2023.100060

Ganjavi, C., Eppler, M. B., Pekcan, A., Biedermann, B., Abreu, A., Collins, G. S., … & Cacciamani, G. E. (2024). Publishers’ and journals’ instructions to authors on use of generative artificial intelligence in academic and scientific publishing: Bibliometric analysis. BMJ, 384, e077192. http://dx.doi.org/10.1136/bmj-2023-077192

Khan, N., Khan, Z., Koubaa, A., Khan, M. K., & Salleh, R. B. (2024). Global insights and the impact of generative AI-ChatGPT on multidisciplinary: A systematic review and bibliometric analysis. Connection Science, 36(1), 2353630. https://doi.org/10.1080/09540091.2024.2353630

Orchard, T., & Tasiemski, L. (2023). The rise of Generative AI and possible effects on the economy. Economics and Business Review, 9(2), 9–26. https://doi.org/10.18559/ebr.2023.2.732

Wallach, H., Desai, M., Cooper, A. F., Wang, A., Atalla, C., Barocas, S., Blodgett, S. L., Chouldechova, A., Corvi, E., Dow, P. A., Garcia-Gathright, J., Olteanu, A., Pangakis, N. J., Reed, S., Sheng, E., Vann, D., Vaughan, J. W., Vogel, M., Washington, H., & Jacobs, A. Z. (2025). Position: Evaluating Generative AI Systems Is a Social Science Measurement Challenge. En A. Singh, M. Fazel, D. Hsu, S. Lacoste-Julien, F. Berkenkamp, T. Maharaj, K. Wagstaff & J. Zhu (Eds.), Proceedings of the 42nd International Conference on Machine Learning (pp. 82232–82251). Proceedings of Machine Learning Research. https://proceedings.mlr.press/v267/wallach25a.html

Wang, N., Li, S., Wang, C., & Zhao, L. (2024). Current status and emerging trends of generative artificial intelligence technology: A bibliometric analysis. Journal of Internet Technology, 25(3), 477–485.

Downloads

Published

2026-02-16

How to Cite

Cossio Franco, E. G., Sossa Azuela, J. H., Larios Rosillo, V. M., Maciel Arellano, R., Arreola Marín, M. E., Chávez Marcial, M., Alcántar Alcántar, J. I., Viñas Álvarez, S. E., Briseño Martínez, R. A., & Del Valle Soto, C. (2026). Generative AI and the scientific landscape: a bibliometric exploration of its global impact. International Journal of Combinatorial Optimization Problems and Informatics, 17(2), 1–13. https://doi.org/10.61467/2007.1558.2026.v17i2.1281

Issue

Section

CINIAI

Most read articles by the same author(s)

<< < 1 2