Generative AI and the scientific landscape: a bibliometric exploration of its global impact
DOI:
https://doi.org/10.61467/2007.1558.2026.v17i2.1281Keywords:
Generative Artificial Intelligence, Artificial IntelligenceAbstract
The present comparative bibliometric study (2020-2025) of the Scopus and WoS databases on Generative Artificial Intelligence (GenAI) reveals accelerated growth, concentrating more than 95% of the production and reaching its peak impact in 2025. Thematically, the intersection of communication and technology/education dominates. Geographically, the United States leads production, but Asia-Pacific institutions (Hong Kong) are key. The field of GenAI is a massive trend driven by concentrated collaboration between North America and Asia.
Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.1281
Dimensions.
Open Alex.
References
Ding, L., Lawson, C., & Shapira, P. (2025). Rise of generative artificial intelligence in science. Scientometrics, 130(9), 5093–5114. https://doi.org/10.1007/s11192-025-05413-z
Doshi, R., & Kaleel, A. (2025). Bibliometric analysis of generative AI and large language models in the Scopus database: Trends, insights, and research landscape. Applied Data Science and Analysis, 2025, 7–18. https://doi.org/10.58496/ADSA/2025/003
Dwivedi, R., & Elluri, L. (2024). Exploring Generative Artificial Intelligence Research: A Bibliometric Analysis Approach. IEEE Access, 12,119884-119902. https://doi.org/10.1109/ACCESS.2024.3450629
Eke, D. O. (2023). ChatGPT and the rise of generative AI: Threat to academic integrity? Journal of Responsible Technology, 13, 100060. https://doi.org/10.1016/j.jrt.2023.100060
Ganjavi, C., Eppler, M. B., Pekcan, A., Biedermann, B., Abreu, A., Collins, G. S., … & Cacciamani, G. E. (2024). Publishers’ and journals’ instructions to authors on use of generative artificial intelligence in academic and scientific publishing: Bibliometric analysis. BMJ, 384, e077192. http://dx.doi.org/10.1136/bmj-2023-077192
Khan, N., Khan, Z., Koubaa, A., Khan, M. K., & Salleh, R. B. (2024). Global insights and the impact of generative AI-ChatGPT on multidisciplinary: A systematic review and bibliometric analysis. Connection Science, 36(1), 2353630. https://doi.org/10.1080/09540091.2024.2353630
Orchard, T., & Tasiemski, L. (2023). The rise of Generative AI and possible effects on the economy. Economics and Business Review, 9(2), 9–26. https://doi.org/10.18559/ebr.2023.2.732
Wallach, H., Desai, M., Cooper, A. F., Wang, A., Atalla, C., Barocas, S., Blodgett, S. L., Chouldechova, A., Corvi, E., Dow, P. A., Garcia-Gathright, J., Olteanu, A., Pangakis, N. J., Reed, S., Sheng, E., Vann, D., Vaughan, J. W., Vogel, M., Washington, H., & Jacobs, A. Z. (2025). Position: Evaluating Generative AI Systems Is a Social Science Measurement Challenge. En A. Singh, M. Fazel, D. Hsu, S. Lacoste-Julien, F. Berkenkamp, T. Maharaj, K. Wagstaff & J. Zhu (Eds.), Proceedings of the 42nd International Conference on Machine Learning (pp. 82232–82251). Proceedings of Machine Learning Research. https://proceedings.mlr.press/v267/wallach25a.html
Wang, N., Li, S., Wang, C., & Zhao, L. (2024). Current status and emerging trends of generative artificial intelligence technology: A bibliometric analysis. Journal of Internet Technology, 25(3), 477–485.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 International Journal of Combinatorial Optimization Problems and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.