Innovation in Biometric Security and Digital Transformation: Redesigning Security Models in Society
DOI:
https://doi.org/10.61467/2007.1558.2026.v17i1.1270Keywords:
biometrics, facial recognition, CNNAbstract
This research aimed to generate applied knowledge to support the design, development, and implementation of an intelligent biometric system based on facial recognition, oriented towards strengthening security models in both public and private institutions. A technological solution was developed that integrates hardware, software, and artificial intelligence algorithms to provide access that is precise, rapid, secure, and hygienic, without requiring physical contact or the use of passwords or identification cards. The system supports multiple concurrent functions, including body temperature measurement and real-time logging of entries and exits, which may contribute to reducing risks associated with fraud and human intervention. The system was implemented at the Instituto Tecnológico Superior de Ciudad Hidalgo, where it was used to automate campus access for administrative personnel, academic staff, and students, in accordance with the principles associated with Society 5.0 and the development of intelligent and sustainable environments. Facial recognition is described as offering high levels of accuracy and adaptability, maintaining functionality under varying conditions such as mask usage and changes in lighting. The study adopted a qualitative research approach and employed an evolutionary prototyping development model, using TensorFlow and Python as the primary implementation tools. As a result, an access management system was developed that can be regarded as an innovative contribution to institutional security, while also supporting the integration of disruptive technologies within educational settings. In this context, automation and advanced authentication mechanisms are positioned as relevant components of contemporary infrastructural development.
Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i1.1270
References
Li, J., Shun, C., Duan, J., Gao, P., & Hou, Y. (2015). A Novel Remote Monitoring and Control System Based on GSM for Home Security. International Journal of Online and Biomedical Engineering (Ijoe), 11(4), 34. https://doi.org/10.3991/ijoe.v11i4.4647
Alexandre, Luis, (2010). Tecnología NFC, Ecuador, Monografía.
Analog Devices. (2014). MP36 data sheet. https://www.analog.com
Andrejevic, M., & Selwyn, N. (2020). Facial recognition technology in schools: Critical questions and concerns. Learning, Media and Technology, 45(2), 115–128. https://doi.org/10.1080/17439884.2020.1686014
Banzi, M. (2009). Getting started with Arduino (1st ed.). Make Books.
Cabinet Office of Japan. (2016). Society 5.0: A people-centric super-smart society. Gobierno del Japón. https://www8.cao.go.jp/cstp/english/society5_0/index.html
Villamar, F. and Rivera, K. (2024). Gestión organizacional y calidad del servicio al cliente en cooperativas de taxis. Revista Científica Arbitrada Multidisciplinaria Pentaciencias, 6(4), 38-45. https://doi.org/10.59169/pentaciencias.v6i4.1175
Suárez, J. C. and Paredes, S. S. (2022). El factor humano y su rol en la transición a Industria 5.0: una revisión sistemática y perspectivas futuras . Entreciencias: Diálogos en La Sociedad Del Conocimiento, 10(24). https://doi.org/10.22201/enesl.20078064e.2022.24.81727
Mahat, D. (2024). Society 5.0: A Bibliometric Analysis from Management Approach. NPRC J. Multidis. Res., 1(2), 1-19. https://doi.org/10.3126/nprcjmr.v1i2.69237
Garduño Santana, M. A., Díaz-Sánchez, L. E., Tabarez Paz, I., & Romero Huertas, M. (2017). Estado del arte en reconocimiento facial. Research in Computing Science, 140(1), 19–27.
Rumpak, T., Faturrahman, M., Ramadhan, K., & Agam, Y. (2022). Citizenship Education in Defending Nationalism in the Digital 4.0 Era to Face the Society 5.0 Era. Jurnal Sosial Dan Sains, 2(2), 210-215. https://doi.org/10.36418/sosains.v2i2.345
Haddada, L. and Amara, N. (2019). Double watermarking‐based biometric access control for radio frequency identification card. International Journal of Rf and Microwave Computer-Aided Engineering, 29(11). https://doi.org/10.1002/mmce.21905
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … & Bengio, Y. (2020). Generative adversarial networks. communications of the Acm, 63(11), 139-144. https://doi.org/10.1145/3422622
Granado, Emanuel, (2011). Sistemas con Radiofrecuencia, Venezuela.
Saunila, M., Nasiri, M., Ukko, J., & Gastaldi, L. (2025). Managing Social Sustainability With IoT Implementation: An Industry 5.0 Perspective. Sustainable Development, 33(4), 5327-5335. https://doi.org/10.1002/sd.3398
Benavente, O. and Piccio-Marchetti, R. (2005). Authentication services and biometrics: network security issues., 333-336. https://doi.org/10.1109/ccst.2005.1594871
Dantcheva, A., Elia, P., & Ross, A. (2016). What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics. ieee transactions on Information Forensics and Security, 11(3), 441-467. https://doi.org/10.1109/tifs.2015.2480381
Microchip Technology, (2014). “DSPIC30FXX Data Sheet High-Performance, 16-bit Microcontrollers”. Chandler, Arizona: http://www.microchip.com
Mikroelektronika, (2014). “GSM Click Manual”: www.mikroe.com
Torres-Toukoumidis, Á., Picoita, F., & Mendoza, E. (2024). Capítulo 2. Inteligencia Artificial y educomunicación. Espejo de Monografías de Comunicación Social, (23), 37-57. https://doi.org/10.52495/c2.emcs.23.ti12
Monroy, F. (2018). Estacionamientos automatizados. Disponible en: https://multiplojp.wordpress.com/2018/07/26/estacionamientos-automatizados/
Dheyaa, S. and Sadik, M. (2016). Biometrics System based Human Identification using STR DNA Marker. International Journal of Computer Applications, 138(7), 31-37. https://doi.org/10.5120/ijca2016908931
Noble, J. (2009). Programming Interactivity: A Designer's Guide to Proceserjrsing, Arduino, and openFramework (1ª edición). O'Reilly Media. p. 768. ISBN 0596154143.
Panasonic, (2014). DN6851 Data Sheet. http://www.semicon.panasonic.co.jp/
Portilla Jimenez, J. J. (2018). Análisis y Diseño de un Sistema de Reconocimiento Facial aplicando Machine Learning para detectar e identificar intrusos. En Universidad de Guayaquil.
Ross, A., et al. (2018). Multibiometric systems for access control. IEEE Signal Processing Magazine, 35(1)
Ruiz, José Manuel, (2007). Manual de Programación Arduino, México.
Sánchez, M., & Morales, J. (2022). Transformación digital y tecnologías emergentes en instituciones educativas. Revista Iberoamericana de Tecnología Educativa, 17(1), 45–60.
Uber facial recognition. (2016). https://www.techinasia.com/uber-china-facial-recognition
Vázquez, L. (2023). La evolución de los sistemas biométricos en entornos inteligentes: un enfoque desde la seguridad digital. Revista de Innovación y Tecnología Aplicada, 12(4), 102–119.
Wadham, Rachel, (2003). Radio Frequency Identification. Library Mosaics.
Wang, L. and Siddique, A. A. (2020). Facial recognition system using LBPH face recognizer for anti-theft and surveillance application based on drone technology. Measurement and Control, 53(7-8), 1070-1077. https://doi.org/10.1177/0020294020932344
Zumba Gamboa, J. P., & León Arreaga, C. A. (2018). Evolución de las Metodologías y Modelos utilizados en el Desarrollo de Software. INNOVA Research Journal, 3(10).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Combinatorial Optimization Problems and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.