Conversational agent with integrated tracking based on generative AI considering the effect of document order and structure

Authors

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i2.1267

Keywords:

chatbot, conversational agent evaluation, education

Abstract

This article describes the development of a conversational agent for managing and tracking academic procedures. Based on requirements analysis, the essential components were defined to provide real-time updates on processes and improve the user experience. The development phases included dialogue flow design, training with Generative Artificial Intelligence (GAI), implementation of a data warehouse, generators, database integration, a web interface, and a module.

Follow-up. A crucial aspect was the importance of data order and structure. Standardization and organization of training content are fundamental to ensuring the accuracy and relevance of responses. The solution coherently articulates the components, ensuring robust interconnections. The follow-up module expands the agent's capabilities, offering comprehensive, efficient, and personalized interaction.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.1267
Dimensions.
Open Alex.

References

Akter, M., Bansal, N., & Karmaker, S. K. (2022). Revisiting automatic evaluation of extractive summarization task: Can we do better than ROUGE? In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Findings of the Association for Computational Linguistics: ACL 2022 (pp. 1547–1560). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.findings-acl.122

Amazon Web Services. (2025). Amazon Lex. https://aws.amazon.com/lex/

Andia, R. D. A., Chacaltana, G. G. P., & Farfan, R. A. M. (2024). La inteligencia artificial generativa en el proceso de diseño y producción de recursos educativos digitales para la educación superior: Un estudio de caso del curso piloto «Designing Educational Innovation Projects» de la Universidad Peruana de Ciencias Aplicadas (Tesis de maestría). Universidad Peruana de Ciencias Aplicadas.

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610–623). https://doi.org/10.1145/3442188.3445922

Blagec, K., Dorffner, G., Moradi, M., & Samwald, M. (2021). A critical analysis of metrics used for measuring progress in artificial intelligence. arXiv. https://arxiv.org/abs/2008.02577

Croxford, E., Gao, Y., Pellegrino, N., Wong, K., Wills, G., First, E., Liao, F., Goswami, C., Patterson, B., & Afshar, M. (2024). Current and future state of evaluation of large language models for medical summarization tasks. npj Health Systems, 2(1), 6. https://doi.org/10.1038/s44401-024-00011-2

Ganesan, K. (2018). ROUGE 2.0: Updated and improved measures for evaluation of summarization tasks. arXiv. https://arxiv.org/abs/1803.01937

Google Cloud. (2025). Dialogflow CX architecture. https://cloud.google.com/dialogflow/cx/docs/concept/architecture

Google DeepMind. (2023). Gemini: Our largest and most capable AI models. https://deepmind.google/technologies/gemini

IBM. (2025). IBM Watson Assistant. https://www.ibm.com/watson/assistant

Rasa Technologies GmbH. (s. f.). Rasa Open Source. https://rasa.com/

Rodriguez, M. M. S., & Deudor, D. D. V. (2022). Sistema de información para el servicio de posventa inmobiliaria usando chatbot (Tesis). Universidad Peruana de Ciencias Aplicadas.

Romero, M., Casadevante, C., & Montoro, H. (2020). Cómo construir un psicólogo chatbot [Trabajo académico no publicado]. Universidad Autónoma de Madrid.

Rosario, G., & Noever, D. (2023). Grading conversational responses of chatbots. arXiv. https://arxiv.org/abs/2303.12038

Then, R., Espinal, L., Marte, E., & Cascante, G. (2024, July). Exploring technologies for intelligent tutoring systems in the development of AIDET: Integrating IAG and advanced pedagogical concepts for their design, overcoming challenges and their potential. In Proceedings of the 22nd LACCEI International Multi-Conference for Engineering, Education, and Technology.

Tran, A. (2019). Artificial intelligence in e-commerce: Case Amazon (Master’s thesis). Centria University of Applied Sciences.

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2020). BERTScore: Evaluating text generation with BERT. In International Conference on Learning Representations (ICLR).

Downloads

Published

2026-02-16

How to Cite

Gutiérrez Tafoya, R. R., Quintana López , M., López Chau , A., & Morales Escobar , S. J. (2026). Conversational agent with integrated tracking based on generative AI considering the effect of document order and structure. International Journal of Combinatorial Optimization Problems and Informatics, 17(2), 190–205. https://doi.org/10.61467/2007.1558.2026.v17i2.1267

Issue

Section

CINIAI

Most read articles by the same author(s)