Conversational agent with integrated tracking based on generative AI considering the effect of document order and structure
DOI:
https://doi.org/10.61467/2007.1558.2026.v17i2.1267Keywords:
chatbot, conversational agent evaluation, educationAbstract
This article describes the development of a conversational agent for managing and tracking academic procedures. Based on requirements analysis, the essential components were defined to provide real-time updates on processes and improve the user experience. The development phases included dialogue flow design, training with Generative Artificial Intelligence (GAI), implementation of a data warehouse, generators, database integration, a web interface, and a module.
Follow-up. A crucial aspect was the importance of data order and structure. Standardization and organization of training content are fundamental to ensuring the accuracy and relevance of responses. The solution coherently articulates the components, ensuring robust interconnections. The follow-up module expands the agent's capabilities, offering comprehensive, efficient, and personalized interaction.
Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.1267
Dimensions.
Open Alex.
References
Akter, M., Bansal, N., & Karmaker, S. K. (2022). Revisiting automatic evaluation of extractive summarization task: Can we do better than ROUGE? In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Findings of the Association for Computational Linguistics: ACL 2022 (pp. 1547–1560). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.findings-acl.122
Amazon Web Services. (2025). Amazon Lex. https://aws.amazon.com/lex/
Andia, R. D. A., Chacaltana, G. G. P., & Farfan, R. A. M. (2024). La inteligencia artificial generativa en el proceso de diseño y producción de recursos educativos digitales para la educación superior: Un estudio de caso del curso piloto «Designing Educational Innovation Projects» de la Universidad Peruana de Ciencias Aplicadas (Tesis de maestría). Universidad Peruana de Ciencias Aplicadas.
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610–623). https://doi.org/10.1145/3442188.3445922
Blagec, K., Dorffner, G., Moradi, M., & Samwald, M. (2021). A critical analysis of metrics used for measuring progress in artificial intelligence. arXiv. https://arxiv.org/abs/2008.02577
Croxford, E., Gao, Y., Pellegrino, N., Wong, K., Wills, G., First, E., Liao, F., Goswami, C., Patterson, B., & Afshar, M. (2024). Current and future state of evaluation of large language models for medical summarization tasks. npj Health Systems, 2(1), 6. https://doi.org/10.1038/s44401-024-00011-2
Ganesan, K. (2018). ROUGE 2.0: Updated and improved measures for evaluation of summarization tasks. arXiv. https://arxiv.org/abs/1803.01937
Google Cloud. (2025). Dialogflow CX architecture. https://cloud.google.com/dialogflow/cx/docs/concept/architecture
Google DeepMind. (2023). Gemini: Our largest and most capable AI models. https://deepmind.google/technologies/gemini
IBM. (2025). IBM Watson Assistant. https://www.ibm.com/watson/assistant
Rasa Technologies GmbH. (s. f.). Rasa Open Source. https://rasa.com/
Rodriguez, M. M. S., & Deudor, D. D. V. (2022). Sistema de información para el servicio de posventa inmobiliaria usando chatbot (Tesis). Universidad Peruana de Ciencias Aplicadas.
Romero, M., Casadevante, C., & Montoro, H. (2020). Cómo construir un psicólogo chatbot [Trabajo académico no publicado]. Universidad Autónoma de Madrid.
Rosario, G., & Noever, D. (2023). Grading conversational responses of chatbots. arXiv. https://arxiv.org/abs/2303.12038
Then, R., Espinal, L., Marte, E., & Cascante, G. (2024, July). Exploring technologies for intelligent tutoring systems in the development of AIDET: Integrating IAG and advanced pedagogical concepts for their design, overcoming challenges and their potential. In Proceedings of the 22nd LACCEI International Multi-Conference for Engineering, Education, and Technology.
Tran, A. (2019). Artificial intelligence in e-commerce: Case Amazon (Master’s thesis). Centria University of Applied Sciences.
Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2020). BERTScore: Evaluating text generation with BERT. In International Conference on Learning Representations (ICLR).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 International Journal of Combinatorial Optimization Problems and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.