Repair and Initialization Functions in the Generation of School Schedules with Genetic Algorithms
DOI:
https://doi.org/10.61467/2007.1558.2026.v17i1.1144Keywords:
Genetic Algorithms, School Schedules, Timetabling ProblemAbstract
The elaboration of school timetables is a complex and laborious task when performed manually, due to the large number of requirements and constraints that must be considered for its correct construction. In this work, the problem is addressed by using a simple Genetic Algorithms (GA) and compared with an improved approach that incorporates both an initialization function and a repair function. The study uses real data from the Computer Engineering course at the Centro Universitario UAEM Valle de México. The results obtained show that the initialization function significantly reduces errors from the first generations, while the repair function further accelerates the reduction of class or teacher splices. Thus, the effectiveness of the proposed approach to solve the scheduling problem in the university center is demonstrated.
Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i1.1144
Dimensions.
Open Alex.
References
Abdelhalim, E. A., & El Khayat, G. A. (2016). A utilization-based genetic algorithm for solving the university timetabling problem (UGA). Alexandria Engineering Journal, 55(2), 1395-1409. https://doi.org/10.1016/j.aej.2016.02.017
Abdullah, S., Turabieh, H., McCollum, B., & McMullan, P. (2012). A hybrid metaheuristic approach to the university course timetabling problem. Journal of Heuristics, 18(1), 1–23. https://doi.org/10.1007/s10732-010-9154-y
Abramson, D., & Abela, J. (1992). A parallel genetic algorithm for solving the school timetabling problem. En Proceedings of the Australian Computer Science Conference (pp. 1–11).
Assi, M., Halawi, B., & Haraty, R. A. (2018). Genetic algorithm analysis using the graph coloring method for solving the university timetable problem. Procedia Computer Science, 126, 899–906. https://doi.org/10.1016/j.procs.2018.08.024
Bejarano, G. (2011). Planificación de Horarios del Personal de Cirugía de un Hospital del Estado Aplicando Algoritmos Genéticos [Tesis]. Pontificia Universidad Católica de Perú.
Broca, J. M. (2016). Algoritmos genéticos en la generación de horarios escolares [Tesis de maestría, Universidad Autónoma del Estado de México]. Repositorio Institucional UAEMex. https://ri.uaemex.mx/handle/20.500.11799/63083
Castrillón, O. D. (2014). Combinación entre algoritmos genéticos y aleatorios para la programación de horarios de clases basado en ritmos cognitivos. Información Tecnológica, 25(4), 51–62. https://doi.org/10.4067/S0718-07642014000400008
Cortez Vásquez, A., Rosales Gerónimo, G., Naupari Quiroz, R., & Vega Huerta, H. Z. (2010). Sistema de apoyo a la generación de horarios basado en algoritmos genéticos. Revista de Investigación de Sistemas e Informática, 7(1), 37–55.
Flores, P., Brau, E., Monteverde, J. A., Salazar, N. F., Figueroa, J., Cadena, E., & Lizárraga, C. A. (2004). Experimentos con algoritmos genéticos para resolver un problema real de programación maestros-horarios-cursos. Revista Iberoamericana de Sistemas, Cibernética e Informática, 1, 42–46.
Guerra, M., Pardo, E., & Salas, E. (2013). Problema del school timetabling y algoritmos genéticos: una revisión. Revista Vínculos, 10(2), 259–276. https://doi.org/10.14483/2322939X.6478
Hafsa, M., Wattebled, P., Jacques, J., & Jourdan, L. (2023). Solving a multiobjective professional timetabling problem using evolutionary algorithms at Mandarine Academy. International Transactions in Operational Research. https://doi.org/10.1111/itor.13276
Jafari, H., & Salmasi, N. (2015). Maximizing the nurses’ preferences in nurse scheduling problem: Mathematical modeling and a meta-heuristic algorithm. Journal of Industrial Engineering International, 11(3), 439–458. https://doi.org/10.1007/s40092-015-0111-0
Jha, S. K. (2014). Exam timetabling problem using genetic algorithm. International Journal of Research in Engineering and Technology, 3(5), 649–654.
Mahlous, A. R., & Mahlous, H. (2023). Student timetabling genetic algorithm accounting for student preferences. PeerJ Computer Science, 9, e1200. https://doi.org/10.7717/peerj-cs.1200
Savdekar, M., Bornare, C., Birari, K., & Kolhe, K. (2023). Timetable generation system. International Research Journal of Modernization in Engineering Technology and Science, 5(4), 1574–1577.
Shahvali Kohshori, M., & Saniee Abadeh, M. (2012). Hybrid genetic algorithms for university course timetabling. International Journal of Computer Science Issues, 9(2), 446.
Tan, Y. Y., Li, Y. X., & Wang, R. X. (2020). Scheduling extra train paths into cyclic timetable based on the genetic algorithm. IEEE Access, 8, 102199–102211. https://doi.org/10.1109/ACCESS.2020.2997777
Zandavi, S. M., Chung, V., & Anaissi, A. (2021). Multi-user remote lab: Timetable scheduling using simplex nondominated sorting genetic algorithm. ACM/IMS Transactions on Data Science, 2(2), 1–13. https://doi.org/10.1145/3437260
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 International Journal of Combinatorial Optimization Problems and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.