The Computational Theory of Mind: Ethical and Philosophical Implications in the Age of Artificial Intelligence

Authors

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i1.1245

Keywords:

Computational Theory of Mind, Large Language Models

Abstract

The Computational Theory of Mind (CTM) posits that the human mind operates in ways analogous to a computer, processing information through symbolic representations and formal rules. With the advent of Artificial Intelligence (AI) and Large Language Models (LLMs), the scope and implications of CTM have broadened considerably. This paper examines the ethical and philosophical dilemmas associated with research on and applications of CTM, with particular attention to human enhancement, privacy, consent, moral responsibility, and free will. It also considers how CTM intersects with longstanding philosophical debates on consciousness and personal identity, while addressing challenges raised by alternative perspectives, such as embodied cognition. Rather than advancing a prescriptive stance, the paper argues for a balanced approach that seeks to leverage technological developments while safeguarding human values and identity in an increasingly AI-driven context.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i1.1245

Dimensions.
Open Alex.

References

Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., & Friston, K. J. (2013). The computational anatomy of psychosis: A predictive coding account. Frontiers in Psychiatry, 4, 47.

Asgher, U., Qamar, A., & Rizwan, M. (2023). Advances in artificial intelligence (AI) in brain computer interface (BCI) and Industry 4.0 for human machine interaction (HMI). Frontiers in Human Neuroscience, 17, 583256. https://doi.org/10.3389/fnhum.2023.583256

Bateson, G. (1972). Steps to an Ecology of Mind: Collected Essays in Anthropology, Psychiatry, Evolution, and Epistemology. University of Chicago Press.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901. https://arxiv.org/abs/2005.14165

Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., ... & Raffel, C. (2024). Scaling instruction-finetuned language models. arXiv preprint arXiv:2207.10551. https://arxiv.org/abs/2207.10551

Clark, A. (1997). Being There: Putting Brain, Body, and World Together Again. MIT Press.

Dasgupta, I., Wang, J. X., & Botvinick, M. (2023). Computational psychiatry and the theory of mind: Applications of large language models. Nature Neuroscience, 26, 1278-1286. https://doi.org/10.1038/s41593-023-01154-8

Deisseroth, K. (2011). Optogenetics. Nature Methods, 8(1), 26-29. https://doi.org/10.1038/nmeth.f.324

Ekins, S., & Puhl, A. C. (2013). The next era: deep learning in pharmaceutical research. Pharmaceutical Research, 30(8), 2121-2130. https://doi.org/10.1007/s11095-013-1040-8

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118. https://doi.org/10.1038/nature21056

Fleming, S. M., & Michel, M. (2025). Sensory Horizons and the Functions of Conscious Vision. Behavioral and Brain Sciences, 1–53. https://doi.org/10.1017/S0140525X25000068

Fodor, J. A. (1975). The Language of Thought. Harvard University Press.

Fodor, J. A. (1975). The Language of Thought. Harvard University Press.

Goh, G. B., Hodas, N. O., & Vishnu, A. (2017). Deep learning for computational chemistry. Journal of Computational Chemistry, 38(16), 1291-1307. https://doi.org/10.1002/jcc.24764

Hong, L. E., Summerfelt, A., McMahon, R., Adami, H., Francis, G., Elliott, A., & Thaker, G. K. (2005). Response to unexpected target changes during sustained visual tracking in schizophrenic patients. Experimental Brain Research, 165(2), 125–134.

Husserl, E. (1931). Ideas: General Introduction to Pure Phenomenology. George Allen & Unwin.

Jang, J., & LeBel, A. (2023). Semantic reconstruction of continuous language from non-invasive brain recordings. Nature Neuroscience, 26(5), 858-866. https://doi.org/10.1038/s41593-023-01154-8

Kosinski, M. (2024). Evaluation of language models in tasks of theory of mind. Nature Communications. (Este artículo aún no está disponible en acceso abierto, por lo que se sugiere buscarlo en la revista Nature Communications).

Kosinski, M. (2024). Evaluation of large language models in false belief scenarios. Nature Machine Intelligence. (Este artículo aún no está disponible en acceso abierto, por lo que se sugiere buscarlo en la revista Nature Machine Intelligence).

Lakoff, G., & Johnson, M. (1999). Philosophy in the Flesh: The Embodied Mind and its Challenge to Western Thought. Basic Books.

Lebedev, M. A., & Nicolelis, M. A. L. (2006). Brain–machine interfaces: past, present and future. Trends in Neurosciences, 29(9), 536-546. https://doi.org/10.1016/j.tins.2006.07.004

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A., Ciompi, F., Ghafoorian, M., ... & van der Laak, J. A. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005

Markram, H. (2012). The human brain project. Scientific American, 306(6), 50-55. https://doi.org/10.1038/scientificamerican0612-50

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1956). "A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence".

Merleau-Ponty, M. (1962). Phenomenology of Perception. Routledge & Kegan Paul.

Metzger, C., Galibert, S., Lu, J., Chakravarty, M. M., & Lajoie, G. (2023). Generative AI for brain imaging and brain signal decoding. arXiv. https://arxiv.org/abs/2403.07721

Park, J., Kim, S., Lee, K., & Choi, J. (2023). Multi-agent collaboration via large language models. Journal of Artificial Intelligence Research. https://arxiv.org/abs/2302.01442

Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504–510.

Putnam, H. (1967). Psychological Predicates. En W. H. Capitan & D. D. Merrill (Eds.), Art, Mind, and Religion (pp. 37-48). University of Pittsburgh Press.

Ramón y Cajal, S. (1894). The Croonian Lecture: La Fine Structure des Centres Nerveux. Proceedings of the Royal Society of London.

Ruiz-Vanoye, J. A., Sossa-Azuela, J. H., Díaz-Parra, O., & Trejo-Macotela, F. R. (n.d.). Quality of Consciousness Service (QoCS): Toward a Measurable Standard for Conscious Processing [Unpublished manuscript].

Sap, M., LeBras, R., Allaway, E., Bhagavatula, C., Lourie, N., Rashkin, H., & Choi, Y. (2022). Social Bias Frames: Reasoning about Social and Power Implications of Language. Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP). https://www.aclweb.org/anthology/2022.emnlp-main.681/

Schneider, S., Amvrosiadis, T., Buhmann, J., & Radtke, F. (2023). Learnable latent embeddings for joint behavioural and neural analysis. Nature, 619(7970), 321-329. https://doi.org/10.1038/s41586-023-04450-3

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27, 379-423, 623-656.

Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1), 230-265. https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf].

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., & Ugurbil, K. (2013). The WU-Minn Human Connectome Project: An overview. Neuroimage, 80, 62-79. https://doi.org/10.1016/j.neuroimage.2013.05.041

Wang, A., Kordi, Y., Mishra, S., Liu, P., Smith, N., & Khashabi, D. (2023). Multi-order theory of mind question answering: Machine theory of mind in a multi-agent environment. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP). https://arxiv.org/abs/2301.10911

Wu Tsai Neurosciences Institute. (2023). Research projects link neuroscience and AI to advance human health. Stanford University. https://neuroscience.stanford.edu/research/projects

Xu, F., Ming, D., Jung, T. P., Xu, P., & Xu, M. (2023). The application of artificial intelligence in brain-computer interface and neural system rehabilitation. Frontiers in Neuroscience, 17, Article 1290961. https://doi.org/10.3389/fnins.2023.1290961

Yadollahpour, A., Nourozi, J., Mirbagheri, S. A., Simancas-Acevedo, E., & Trejo-Macotela, F. R. (2018). Designing and implementing an ANFIS based medical decision support system to predict chronic kidney disease progression. Frontiers in Physiology, 9, 1753. https://doi.org/10.3389/fphys.2018.01753

Zhu, H. (2020). Big data and artificial intelligence modeling for drug discovery. Annual Review of Pharmacology and Toxicology, 60, 573-589. https://doi.org/10.1146/annurev-pharmtox-010919-023301

Downloads

Published

2026-01-02

How to Cite

Ruiz-Vanoye, J. A., Díaz-Parra, O., Vera-Jiménez, M. A., & Trejo-Macotela, F. R. (2026). The Computational Theory of Mind: Ethical and Philosophical Implications in the Age of Artificial Intelligence. International Journal of Combinatorial Optimization Problems and Informatics, 17(1), 90–100. https://doi.org/10.61467/2007.1558.2026.v17i1.1245

Issue

Section

Articles

Most read articles by the same author(s)

<< < 2 3 4 5 6 7