Artificial Intelligence for Sustainable Ocean Management Using Satellite Data
DOI:
https://doi.org/10.61467/2007.1558.2026.v17i2.1291Keywords:
Artificial Intelligence, Sustainable Ocean ManagementAbstract
The integration of artificial intelligence and satellite remote sensing provides an innovative approach to sustainable ocean management. This study demonstrates how oceanographic sensors and AI‑driven predictive models enhance the monitoring and governance of Marine Protected Areas (MPAs) and sustainable fishing zones. Multivariate datasets are used to map areas of high primary productivity in the Gulf of Mexico, employing QGIS and ArcGIS for spatial analysis. Long Short‑Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural networks trained on historical time series forecast ecological risks, including hypoxic zones and harmful algal blooms. Unsupervised clustering and dimensionality reduction identify anomalies relative to natural oceanographic patterns, supporting more adaptive and precautionary ocean governance.
The integration of artificial intelligence and satellite remote sensing provides an innovative approach to sustainable ocean management. This study demonstrates how oceanographic sensors and AI‑driven predictive models enhance the monitoring and governance of Marine Protected Areas (MPAs) and sustainable fishing zones. Multivariate datasets are used to map areas of high primary productivity in the Gulf of Mexico, employing QGIS and ArcGIS for spatial analysis. Long Short‑Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural networks trained on historical time series forecast ecological risks, including hypoxic zones and harmful algal blooms. Unsupervised clustering and dimensionality reduction identify anomalies relative to natural oceanographic patterns, supporting more adaptive and precautionary ocean governance.
Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.1291
Dimensions.
Open Alex.
References
Bu, X., Liu, K., Liu, J., & Ding, Y. (2023). A harmful algal bloom detection model combining moderate resolution imaging spectroradiometer multi-factor and meteorological heterogeneous data. Sustainability, 15(21), 15386. https://doi.org/10.3390/su152115386
Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., … Santoso, A. (2015). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4, 111–116. https://doi.org/10.1038/nclimate2492
Cheng, H., Sun, L., & Li, J. (2021). Neural network approach to retrieving ocean subsurface temperatures from surface parameters observed by satellites. Water, 13(3), 388. https://doi.org/10.3390/w13030388
Cho, K. H., Kang, J. H., Park, Y., Cha, S. M., & Kim, J. H. (2018). Impact of SST on phytoplankton biomass: A machine-learning approach. Ecological Modelling, 369, 42–55.
Church, J. and White, N. (2011). sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32(4-5), 585-602. https://doi.org/10.1007/s10712-011-9119-1
Clay, S., Peña, M., DeTracey, B., & Devred, É. (2019). Evaluation of satellite-based algorithms to retrieve chlorophyll-a concentration in the Canadian Atlantic and Pacific oceans. Remote Sensing, 11(22), 2609. https://doi.org/10.3390/rs11222609
Costa, N., & Rodrigues, R. (2021). Future summer marine heatwaves in the western South Atlantic. Geophysical Research Letters, 48(22). https://doi.org/10.1029/2021GL094509
Davies, B. F. R., Holmes, L., Rees, A., Attrill, M. J., Cartwright, A., & Sheehan, E. V. (2021). Ecosystem approach to fisheries management works—How switching from mobile to static fishing gear improves populations of fished and non-fished species inside a marine-protected area. Journal of Applied Ecology, 58(11), 2463–2478. https://doi.org/10.1111/1365-2664.13986
Dharmarathne, G., Abekoon, A. M. S. R., Bogahawaththa, M., Alawatugoda, J., & Meddage, D. P. P. (2025). A review of machine learning and internet-of-things on water quality assessment: Methods, applications and future trends. Results in Engineering, 26, 105182. https://doi.org/10.1016/j.rineng.2025.105182
Doney, S., Fabry, V., Feely, R., & Kleypas, J. (2009). ocean acidification: the other co2problem. Annual Review of Marine Science, 1(1), 169-192. https://doi.org/10.1146/annurev.marine.010908.163834
Dwyer, R. G., Krueck, N. C., Udyawer, V., Heupel, M. R., Chapman, D. D., Pratt, H. L., & Simpfendorfer, C. A. (2020). Individual and population benefits of marine reserves for reef sharks. Current Biology, 30(3), 480–489.e5. https://doi.org/10.1016/j.cub.2019.12.005
Feng, J., Durant, J., Stige, L., Hessen, D., Hjermann, D., Zhu, L., … & Stenseth, N. (2015). Contrasting correlation patterns between environmental factors and chlorophyll levels in the global ocean. Global Biogeochemical Cycles, 29(12), 2095–2107. https://doi.org/10.1002/2015GB005216
Foster, D., Gagne, D., & Whitt, D. (2021). Probabilistic machine learning estimation of ocean mixed layer depth from dense satellite and sparse in situ observations. Journal of Advances in Modeling Earth Systems, 13(12). https://doi.org/10.1029/2021ms002474
Foster, D., Gagne, D., & Whitt, D. (2021). Probabilistic machine learning estimation of ocean mixed layer depth from dense satellite and sparse in situ observations. Journal of Advances in Modeling Earth Systems, 13(12). https://doi.org/10.1029/2021ms002474
García-Morales, R., García-Gómez, J., & López, P. (2017). Chlorophyll-a patterns in tropical waters. Oceanologia, 59(3), 345–358.
García-Morales, R., López-Martínez, J., Váldez-Holguín, J., Herrera-Cervantes, H., & Espinosa-Chaurand, L. (2017). Environmental variability and oceanographic dynamics of the central and southern coastal zone of Sonora in the Gulf of California. Remote Sensing, 9(9), 925. https://doi.org/10.3390/rs9090925
Graham, R., Boer, A., Sebille, E., Kohfeld, K., & Schlösser, C. (2015). Inferring source regions and supply mechanisms of iron in the southern ocean from satellite chlorophyll data. Deep Sea Research Part I: Oceanographic Research Papers, 104, 9–25. https://doi.org/10.1016/j.dsr.2015.05.007
Hansen, J., Rüedy, R., Sato, M., & Lo, K. (2010). global surface temperature change. Reviews of Geophysics, 48(4). https://doi.org/10.1029/2010rg000345
Hartmann, D. (2015). Pacific sea surface temperature and the winter of 2014. Geophysical Research Letters, 42(6), 1894–1902. https://doi.org/10.1002/2015GL063083
Intergovernmental Panel on Climate Change. (2021). Climate change 2021: The physical science basis. Summary for policymakers. Cambridge University Press.
Jimeno-Sáez, P., Vicente, V., & Tomás, C. (2020). Estimating total suspended solids (TSS) using multispectral satellite data. Environmental Monitoring and Assessment, 192, 340.
Kavanaugh, M. T., Oliver, M. J., Chavez, F. P., & Letelier, R. M. (2014). Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic ecosystem monitoring. Progress in Oceanography, 120, 291–304.
Keeling, C., Bacastow, R., Bainbridge, A., Ekdahl, C., Guenther, P., Waterman, L., … & Chin, J. (1976). atmospheric carbon dioxide variations at mauna loa observatory, hawaii. Tellus a Dynamic Meteorology and Oceanography, 28(6), 538. https://doi.org/10.3402/tellusa.v28i6.11322
Keller, A., Taylor, D., Oviatt, C., & Kavanaugh, M. (2018). Chlorophyll as an indicator of ecosystem productivity. Estuaries and Coasts, 41, 162–176.
Li, H., Ilyina, T., Müller, W. A., & Landschützer, P. (2019). Predicting the variable ocean carbon sink. Science Advances, 5(4), eaav6471. https://doi.org/10.1126/sciadv.aav6471
Li, S., Yu, X., & Zhao, H. (2018). Satellite-based evaluation of marine primary productivity. Remote Sensing, 10(12), 1923.
Momenimovahed, A., Gagné, S., Martens, P., Jakobi, G., Czech, H., Wichmann, V., … & Thomson, K. (2021). Comparison of black carbon measurement techniques for marine engine emissions using three marine fuel types. Aerosol Science and Technology, 56(1), 46-62. https://doi.org/10.1080/02786826.2021.1967281
Novi, L., Bracco, A., & Falasca, F. (2021). Uncovering marine connectivity through sea surface temperature. Scientific Reports, 11(1), 8839. https://doi.org/10.1038/s41598-021-87711-z
Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., … Wernberg, T. (2018). Longer and more frequent marine heatwaves over the past century. Nature Communications, 9, 1324. https://doi.org/10.1038/s41467-018-03732-9
Paolo, F. S., Kroodsma, D., Raynor, J., Hochberg, T., Davis, P., Cleary, J., Marsaglia, L., Orofino, S., Thomas, C., & Halpin, P. (2024). Satellite mapping reveals extensive industrial activity at sea. Nature, 625, 85–91. https://doi.org/10.1038/s41586-023-06825-8
Park, J., Kug, J., Park, J., Yeh, S., & Jang, C. (2011). Variability of chlorophyll associated with El Niño–Southern Oscillation and its possible biological feedback in the equatorial Pacific. Journal of Geophysical Research: Oceans, 116(C10). https://doi.org/10.1029/2011JC007056
Parsons, S.; Amani, M.; Moghimi, A. (2021). Ocean colour mapping using remote sensing technology and an unsupervised machine learning algorithm. The Journal of Ocean Technology, 16(3), 103–115
Prochaska, X. (2021). Deep learning of sea surface temperature patterns to identify ocean extremes.. https://doi.org/10.5281/zenodo.5537791
Qi, J., Liu, C., Chi, J., Li, D., Gao, L., & Yin, B. (2022). An ensemble-based machine learning model for estimation of subsurface thermal structure in the South China Sea. Remote Sensing, 14(13), 3207. https://doi.org/10.3390/rs14133207
Quang, N. H., Nguyen, L. H. K., & Nguyen, T. T. (2021). Deep learning models for chlorophyll-a estimation using satellite imagery. Environmental Modelling & Software, 140, 105031.
Raitsos, D.E., Hoteit, I., Prihartato, P., Chronis, T., Triantafyllou, G., & Abualnaja, Y. (2011). Abrupt warming of the red sea. Geophysical Research Letters, 38(14), n/a-n/a. https://doi.org/10.1029/2011gl047984
Rinaldi, M., Fuzzi, S., Decesari, S., Marullo, S., Santoleri, R., Provenzale, A., … & Facchini, M. (2013). Is chlorophyll-a the best surrogate for organic matter enrichment in submicron primary marine aerosol? Journal of Geophysical Research: Atmospheres, 118(10), 4964–4973. https://doi.org/10.1002/jgrd.50417
Roxy, M., Modi, A., Murtugudde, R., Valsala, V., Swapna, P., Kumar, S., … & Lévy, M. (2016). A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophysical Research Letters, 43(2), 826–833. https://doi.org/10.1002/2015GL066979
Rozenstein, O., & Karnieli, A. (2011). Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Applied Geography, 31(2), 533–544. https://doi.org/10.1016/j.apgeog.2010.11.006
Silveira Kupssinskü, L., Thomassim Guimarães, T., Menezes de Souza, E., Zanotta, D. C., Veronez, M. R., Gonzaga, L., & Mauad, F. F. (2020). A method for chlorophyll-a and suspended solids prediction through remote sensing and machine learning. Sensors, 20(7), 2125. https://doi.org/10.3390/s20072125
Su, H., Xu, H., Liu, G., & Zeng, T. (2021). Deep-learning-based SST prediction using OLCI data from Sentinel platforms. Remote Sensing of Environment, 265, 112671.
Trossman, D. and Bayler, E. (2022). An algorithm to bias-correct and transform arctic smap-derived skin salinities into bulk surface salinities.. https://doi.org/10.5281/zenodo.6353521
Wan, X., Zhang, L., Ma, X., Xu, W., Chen, Q., Zhao, R., & Zeng, M. (2025). Dynamic gradient orientation and multi-scale fusion network for ocean front detection. Journal of Sea Research, 206, 102601. https://doi.org/10.1016/j.seares.2025.102601
Wang, D., Fang, G., Jiang, S., Xu, Q., Wang, G., Wei, Z., … & Xu, T. (2022). satellite-detected sea surface chlorophyll-a blooms in the japan/east sea: magnitude and timing.. https://doi.org/10.5194/egusphere-2022-547
Wang, S., Wang, W., Chen, J., Zhang, B., Li, Z., & Jiang, X. (2020). Characteristics of dissolved organic matter and its role in lake eutrophication at the early stage of algal blooms—a case study of lake taihu, china. water, 12(8), 2278. https://doi.org/10.3390/w12082278
Welch, H., Pressey, R., Heron, S., Ceccarelli, D., & Hobday, A. (2015). Regimes of chlorophyll-a in the Coral Sea: Implications for evaluating adequacy of marine protected areas. Ecography, 39(3), 289–304. https://doi.org/10.1111/ecog.01450
Yang, G., Ye, X., Xu, Q., Yin, X., & Xu, S. (2023). Chl-a retrieval using a residual network with HY-1C satellite data. Remote Sensing, 15(14), 3696. https://doi.org/10.3390/rs15143696
Ye, H., Tang, S., & Yang, C. (2021). Deep learning for chlorophyll-a retrieval in the Pearl River Estuary. Remote Sensing, 13(18), 3717. https://doi.org/10.3390/rs13183717
Zavala‐Romero, O., Bozec, A., Chassignet, E., & Miranda, J. (2024). Convolutional neural networks for sea surface data assimilation in operational ocean models: test case in the gulf of mexico.. https://doi.org/10.5194/egusphere-2024-1293
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 International Journal of Combinatorial Optimization Problems and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.