Electronics and Programming for Bioprocess Control in Biotechnology Engineering: Accessible Solutions for Industry 4.0

Authors

  • Marco Antonio Márquez-Vera Universidad Politécnica de Pachuca, México.
  • Ricardo Calderón-Suárez Autonomous University of Hidalgo State, México. https://orcid.org/0000-0002-8022-4738
  • Evelin Gutiérrez-Moreno Universidad Politécnica de Pachuca, México. https://orcid.org/0000-0001-7610-9318
  • Ocotlán Díaz-Parra Universidad Politécnica de Pachuca, México.
  • Carlos Antonio Márquez-Vera Universidad Veracruzana, México. https://orcid.org/0000-0002-2192-665X

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i1.1200

Keywords:

Control Systems, programming, Education, Embedded System

Abstract

This article examines the importance of teaching electronics and process control within biotechnology engineering programmes, particularly in the context of Industry 4.0. With the increasing adoption of automation and the Internet of Things (IoT), it has become important to equip students with practical and applied skills. However, economic constraints and limited access to specialised software in many developing countries present significant challenges.

This study illustrates how the use of affordable microcontrollers, such as the ESP32, together with open-source software, can provide an effective alternative that enables hands-on learning without compromising educational quality. In particular, the ESP32 incorporates Wi-Fi connectivity, which allows online control and monitoring, as well as data storage in external databases. Practical projects involving data acquisition, signal conditioning, and actuator control are intended to offer students experience with real-world applications. In addition, project-based assessment supported by detailed rubrics may enhance students’ understanding and performance, thereby preparing them more effectively for the demands of the contemporary workforce.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i1.1200

Dimensions.
Open Alex.

References

Ahmad, R., Choudhary, N., Gupta, S. K., Joshi, A. M. & Boolchandani, D. (2023). Novel tunable current feedback instrumentation amplifier based on BBFC op-amp for biomedical applications with low power and high CMRR. Integration 90, 214–223. https://doi.org/10.1016/j.vlsi.2023.02.003

Anwar, O., Keating, A., Cardell-Oliver, R., Datta, A. & Putrino, G. (2022). Design and development of low-power, long-range data acquisition system for beehives - beeDAS. Computers and Electronics in Agriculture 201, 107281. https://doi.org/10.1016/j.compag.2022.107281

Babu, T., Nair, R. R., Kishore, S. & Vineeth, M. (2024). Enhancing gas leak detection with IoT technology: An innovative approach. Procedia Computer Science 235, 961–969. https://doi.org/10.1016/j.procs.2024.04.091

Barry, B. I. A. (December 2009). Using open source software in education in developing countries: The Sudan as an example. In: International Conference on Computational Intelligence and Software Engineering. IEEE, Wuhan, China, pp. 1–4. https://doi.org/10.1109/CISE.2009.5364872

Bastin, G. & Dochain, D. (1990). On-line estimation and adaptive control of bioreactors. Elsevier. https://doi.org/10.1016/C2009-0-12088-3

Batista, D. S., Granziera-Jr, F., Tosin, M. C. & de Melo, L. F. (2023). Analysis and practical implementation of a high-power howland current source. Measurement 207, 112404. https://doi.org/10.1016/j.measurement.2022.112404

Bertsatos, A. & Chovalopoulou, M. E. (2019). A novel method for analyzing long bone diaphyseal cross-sectional geometry. A GNU Octave CSG toolkit. Forensic Science International 297, 65–71. https://doi.org/10.1016/j.forsciint.2019.01.041

Botero, M. L., Selmer, A., Watson, R., Bansal, M. & Kraft, M. (2016). Cambridge weblabs: A process control system using industrial standard Simatic PCS 7. Education for Chemical Engineers 16, 1–8. https://doi.org/10.1016/j.ece.2016.04.

Caccavale, F., Gargalo, C. L., Gernaey, K. V. & Krühne, U. (2023). Spyce: A structured and tailored series of Python courses for (bio) chemical engineers. Education for Chemical Engineers 45, 90–103. . https://doi.org/10.1016/j.ece.2023.08.003

Caro, F., Ferreira, J., Castelló, E., Pinto, J. C. & Santiviago, C. (2024). Bio2py: An api for integrating python with biowin for enhanced data acquisition in wastewater treatment simulations. Journal of Water Process Engineering 63, 105426. https://doi.org/10.1016/j.jwpe.2024.105426

Castelló, E., Santiviago, C., Ferreira, J., Coniglio, R., Larnaudie, E. B. V., Passeggi, M. & López, I., 2023. Towards competency-based education in the chemical engineering undergraduate program in Uruguay: Three examples of integrating essential skills. Education for Chemical Engineers 44, 54–62. https://doi.org/10.1016/j.ece.2023.05.004

Cugnet, M., Gallois, F., Kirchev, A. & Dutykh, D. (2023). Neolab: A Scilab tool to simulate the negative electrode of lead-acid batteries. SoftwareX 22, 101394. https://doi.org/10.1016/j.softx.2023.101394

Domínguez, J., Alonso, M., González, E., Guijarro, M., Miranda, R., Oliet, M., Rigual, V., Toledo, J., Vallar-Chavero, M. & Yustos, P. (2021). Teaching chemical engineering using Jupyter Notebook: Problem generators and lecturing tools. Education for Chemical Engineers 37, 1–10. https://doi.org/10.1016/j.ece.2021.06.004

Faritha, B., Revathi, R., Suganya, M. & Gladiss, M. (2020). IoT based cloud integrated smart classroom for smart and a sustainable campus. Procedia Computer Science 172, 77–81. https://doi.org/10.1016/j.procs.2020.05.012

Feise, H. & Schaer, E. (2021). Mastering digitized chemical engineering. Education for Chemical Engineers 34, 78–86. https://doi.org/10.1016/j.ece.2020.11.011

Gunasekera, M., Ahmed, S. & Khan, F. (2020). Integration of process safety in equipment design: A framework for academic learning activity. Education for Chemical Engineers 30, 32–39. https://doi.org/10.1016/j.ece.2019.09.004

Hasan, M. W. (2023). Building an IoT temperature and humidity forecasting model based on long short-term memory (LSTM) with improved whale optimization algorithm. Memories - Materials, Devices, Circuits and Systems 6, 100086. https://doi.org/10.1016/j.memori.2023.100086

Hrnčiῐík, P. & Kohout, J. (2024). A Matlab-based simulator for the study of process control of fed-batch yeast fermentations. Education for Chemical Engineers 49, 67–77. https://doi.org/10.1016/j.ece.2024.06.001

Islam, D. T., Williams, M. R., Teppen, B. J., Johnston, C. T., Li, H., Boyd, S. A., Zylstra, G. J., Fennell, D. E., Cupples, A. M. & Hashsham, S. A. (2024). Comprehensive model for predicting toxic equivalents (TEQ) reduction due to dechlorination of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/F congeners). Journal of Hazardous Materials 480, 135749. https://doi.org/10.1016/j.jhazmat.2024.135749

Jhurree, V. (2005). Technology integration in education in developing countries: Guidelines to policy makers. International Education Journal 6 (4), 467–483.

Kakkar, S., Kwapinski, W., Howard, C. & Kumar, K. (2021). Deep neural networks in chemical engineering classrooms to accurately model adsorption equilibrium data. Education for Chemical Engineers 36, 115–127. https://doi.org/10.1016/

j.ece.2021.04.003

Khan, F., Amyotte, P. & Adedigba, S. (2021). Process safety concerns in process system digitalization. Education for Chemical Engineers 34, 33–46. https://doi.org/10.1016/j.ece.2020.11.002

Lynch, K. M., Marchuk, N. & Elwin, M. L. (2016). Chapter 13 - I2C communication. In: Lynch, K. M., Marchuk, N., Elwin, M. L. (Eds.), Embedded Computing and Mechatronics with the PIC32. Newnes, Oxford, pp. 191–211.

Mahmoud, M., Darwish, R. & Bassiuny, A. (2024). Development of an economic smart aquaponic system based on IoT. Journal of Engineering Research 12 (4), 886-894. https://doi.org/10.1016/j.jer.2023.08.024

Márquez-Vera, M., Martínez-Quezada, M., Calderón-Suárez, R., Rodríguez, A. & Ortega-Mendoza, R. (2023). Microcontrollers programming for control and automation in undergraduate biotechnology engineering education. Digital Chemical Engineering 9, 100122. https://doi.org/10.1016/j.dche.2023.100122

Ozdilek, E. E., Ozcakar, E., Muhtaroglu, N., Simsek, U., Gulcan, O. & Sendur, G. K. (2024). A finite element based homogenization code in Python: Hompy. Advances in Engineering Software 194, 103674. https://doi.org/10.1016/j.advengsoft.2024.103674

Paoli, L. T., Inguva, P. K., Haslam, A. J. & Walker, P. J. (2024). Confronting the thermodynamics knowledge gap: A short course on computational thermodynamics in Julia. Education for Chemical Engineers 48, 1–14. https://doi.org/10.1016/

j.ece.2024.03.002

Quive, L. G., Leandro, S., Bandali, E. C., Gueze, G. A., João, D. A., Gomundanhe, A. M., Neuana, N. F. & Macuvele, D. L. P. (2021). Exploring materials locally available to teach chemistry experimentally in developing countries. Education for Chemical Engineers 34, 1–8. https://doi.org/10.1016/j.ece.2020.09.004

Reverter, F. & Areny, R. P. (2009). Circuitos de interfaz directa sensor-microcontrolador. Marcombo, Barcelona, Spain.

Rocha-Cozatl, E., Sbarciog, M., Dewasme, L., Moreno, J. & Wouwer, A.V. (2015). State and input estimation of an anaerobic digestion reactor using a continuous-discrete unknown input observer. IFAC-PapersOnLine 48 (8), 129–134. https://doi.org/10.1016/j.ifacol.2015.08.169

Roumen, G. J. & Fernaeus, Y. (2021). Envisioning Arduino action: A collaborative tool for physical computing in educational settings. International Journal of Child-Computer Interaction 29, 100277. https://doi.org/10.1016/j.ijcci.2021.100277

Rowe, S. C., Samson, C. I. & Clough, D. E. (2020). A framework to guide the instruction of industrial programmable logic controllers in undergraduate engineering education. Education for Chemical Engineers 31, 76–84. https://doi.org/10.

/j.ece.2020.03.001

Sanbatoro, L., Laveglia, A., Ukraincsyk, N. & Koenders, E. (2023). Life cycle assessment modelling in Octave/Matlab: Hydrated lime manufacturing case study. Materials Today: Proceedings, Article in Press. https://doi.org/10.1016/j.matpr.2023.08.002

Santos, G. F. & Reis, F. B. (2021). Automated analytical procedure using multicommuted flow analysis and organic solvent extraction controlled by an Arduino due board for photometric determination of zinc in water. Microchemical Journal 163, 105918. https://doi.org/10.1016/j.microc.2021.105918

Saravanan, G., Parkhe, S., Thakar, C., Kulkarni, V., Mishra, H. & Gulothungan, G. (2022). Implementation of IoT in production and manufacturing: An industry 4.0 approach. Materials Today: Proceedings 51 (8), 2427–2430. https://doi.org/10.1016/j.matpr.2021.11.604

Seifrid, M., Strieth-Kalthoff, F., Haddadnia, M., Wu, T. C., Alca, E., Bodo, L., Arellano-Rubach, S., Yoshikawa, N., Skreta, M., Keunen, R. & Aspuru-Guzik, A. (2024). Chemspyd: An open-source Python interface for chemspeed robotic chemistry and materials platforms. Digital Discovery 3 (7), 1319–1326. http://doi.org/10.1039/d4dd00046c

Sun, Y., Chan, K. L. & Krishnan, S. M. (2002). ECG signal conditioning by morphological filtering. Computers in Biology and Medicine 32 (6), 465–479. https://doi.org/10.1016/S0010-4825(02)00034-3

Sung, W. T., Isa, I. G. T. & Hsiao, S. J. (2023). An IoT-based aquaculture monitoring system using Firebase. Computers, Materials and Continua 76 (2), 2179–2200. https://doi.org/10.32604/cmc.2023.041022

Thapa, P. & Gautam, A. (October 2021). Potential of free and open source software for education in developing countries. In: FOSS4G-Asia. International Association of Online Engineering, Dhulikhel, Kavrepalanchok, Nepal, pp. 168–172.

Viana, S. S., Vieira, L. F. M., Nacif, J. A. M. & Vieira, A. B. (2016). Survey on the design of underwater sensor nodes. Design Automation for Embedded Systems 20, 171–190. https://doi.org/10.1007/s10617-015-9169-6

Vishwanatha, J., Swamy, R. S., Mahesh, G. & Gouda, H. V. (2023). A toolkit for computational fluid dynamics using spectral element method in Scilab. Materials Today: Proceedings 92 (1), 209–214. https://doi.org/10.1016/j.matpr.2023.04.341

Wu, X. D., Wang, Y., Yu, C. H., Fei, X. X., Yang, J. Q. & Li, X. J. (2024). Impact of SiC power MOSFET interface trap charges on UIS reliability under single pulse. Microelectronics Reliability 155, 115375. https://doi.org/10.1016/j.microrel.2024.115375

Zárate-Navarro, M. A., Schiavone-Valdez, S. D., Cuevas, J. E., Warren-Vega, W. M., Campos-Rodríguez, A. & Romero-Cano, L. A. (2024). Stem activities for heat transfer learning: Integrating simulation, mathematical modeling, and experimental validation in transport phenomena education. Education for Chemical Engineers 49, 81–90. https://doi.org/10.1016/j.ece.2024.06.004

Downloads

Published

2026-01-02

How to Cite

Márquez-Vera, M. A., Calderón-Suárez, R., Gutiérrez-Moreno, E., Díaz-Parra, O., & Márquez-Vera, C. A. (2026). Electronics and Programming for Bioprocess Control in Biotechnology Engineering: Accessible Solutions for Industry 4.0. International Journal of Combinatorial Optimization Problems and Informatics, 17(1), 20–33. https://doi.org/10.61467/2007.1558.2026.v17i1.1200

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>