Frugal mechatronic design of a mobile self-balancing robot

Authors

  • Erick Axel Padilla-García Tecnologico de Estudios Superiores de Ecatepec
  • Raúl Dalí Cruz-Morales Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores Cuautitlán (FESC) https://orcid.org/0000-0002-8754-8196
  • Jaime González-Sierra UPIIH, Instituto Politécnico Nacional https://orcid.org/0000-0001-9141-0061
  • David Tinoco-Varela Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores Cuautitlán (FESC) https://orcid.org/0000-0002-1919-7451

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i1.1159

Keywords:

Mechatronics, Innovation, mobile robots, mathematical modeling

Abstract

Mobile robots are commonly used for tasks such as monitoring, mapping, and transportation. Among them, the self-balancing robot stands out, as it is capable of maintaining balance and adapting to different slopes, which makes it particularly suitable for material distribution. However, commercial robots are often costly, which limits their practical implementation. Rapid Manufacturing (RM), through additive manufacturing (AM), offers a potential approach by enabling low-cost and reproducible designs. This approach is characteristic of frugal innovation, allowing the robot’s structure and component selection to be scalable and low-cost, thereby supporting more efficient use of available resources. This manuscript describes a frugal mechatronic design for a self-balancing mobile robot with a 5 kg payload, based on a dynamic mechatronic model. A feasible solution was obtained through CAD development, appropriate component selection, and instrumentation for the synthesis of the physical configuration, while dynamic model simulations were used to parameterise inertial parameters. The resulting design is presented as a reproducible and affordable proposal.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i1.1159

Dimensions.
Open Alex.

References

Bartalucci, L. S. (2023). An original mechatronic design of a kinaesthetic hand exoskeleton for virtual reality-based applications. Mechatronics, 90, 102947.

Borase, R. P. (2021). A review of PID control, tuning methods and applications. International Journal of Dynamics and Control, 9, 818–827.

Cervantes, C. H. (2021). Concurrent design of a 2 DoF five-bar parallel robot: A hybrid design of rigid and flexible links. IEEE Access, 9, 17450–17462.

Díaz, D. J. (2023). Diseño, implementación, simulación y control de un brazo robótico para el Rover UVG [unpublished].

Durango, I. S. (2018). Tecnologías avanzadas de mecatrónica, diseño y manufactura. En Memorias del IV Congreso AMDM 2018.

Hernández, G. C. (2018). Enfoques, teorías y perspectivas de la ingeniería de sistema y sus programas académicos. Corporación Universitaria del Caribe.

Herrera, C. C. (2024). Desarrollo de competencias a través de prototipos y simuladores en un entorno interdisciplinario de física-matemática. Revista Oratores, 20, 78–102.

Joseph, S. B. (2022). Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems. Heliyon, 8(5), e09526.

Lira Hernández, I. A. (2022). Sistema híbrido para asistir los procesos de diseño de ingeniería hacia la industria 4.0 [Tesis de licenciatura/posgrado, Universidad Autónoma Metropolitana]. https://doi.org/10.24275/uama.5810.8747

Morales, C. C. (2021). An innovative optimization design procedure for mechatronic systems with a multi-criteria formulation. Applied Sciences, 11(19), 8900.

Pedraza, Á. J. (2017). Implementación de una metodología de diseño mecatrónico con herramientas modernas de simulación[unpublished].

Santiago, L. M. (2024). Creando más con menos: La innovación frugal como nuevo paradigma de diseño para la sostenibilidad. Revista de Estudios Interdisciplinarios del Arte, Diseño y la Cultura (Especial: Intersecciones entre Sustentabilidad, Artes y Diseño), 38–55.

Trejo, L. O. (2024). Control industrial de un motor a pasos usando tecnología frugal. AvaCient, 4(2), 11–21.

Trujillo, M. S. (2025). El fenómeno de la innovación frugal: Productos asequibles, funcionales y minimalistas para atender el segmento bajo del mercado. Innovar, 35(95), e101621.

Velandia, L. J. (2023). Sistema de control self-balancing robot (SBR) [unpublished].

Zheng, C. A. (2023). Knowledge-based engineering approach for defining robotic manufacturing system architectures. International Journal of Production Research, 61(5), 1436–1454.

Downloads

Published

2026-01-02

How to Cite

Padilla-García, E. A., Cruz-Morales, R. D., González-Sierra, J., & Tinoco-Varela, D. (2026). Frugal mechatronic design of a mobile self-balancing robot. International Journal of Combinatorial Optimization Problems and Informatics, 17(1), 400–410. https://doi.org/10.61467/2007.1558.2026.v17i1.1159

Issue

Section

CNIIS 2025