Hybrid Combination of the Dragonfly and Firefly Algorithms with Parameter Adaptation using Type-2 Fuzzy Logic and its Comparison with Cuckoo Search
DOI:
https://doi.org/10.61467/2007.1558.2026.v17i2.872Keywords:
Hybrid Algorithm, Cuckoo Search, Type-2 Fuzzy Logic.Abstract
This paper explores a hybrid approach combining the Dragonfly Algorithm (DA) and Firefly Algorithm (FA) to balance exploration and exploitation, avoiding local optima and refining solutions in promising areas. The hybrid achieved higher-quality solutions, faster convergence to optimal results, and adaptability to diverse optimization problems through complementary strategies. Additionally, the Cuckoo Search Algorithm (CS), known for its effectiveness in global optimization via random search and solution space exploitation, was integrated. To further enhance performance, Type-2 Fuzzy Logic was applied for parameter adaptation in the algorithms.
Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.872
Dimensions.
Open Alex.
References
Barraza, J., Rodríguez, L., Castillo, O., Melin, P., & Valdez, F. (2018). A new hybridization approach between the Fireworks Algorithm and Grey Wolf Optimizer Algorithm. Mathematical Problems in Engineering, 2018, 6495362. https://doi.org/10.1155/2018/6495362
Carreon-Ortiz, H., Valdez, F., & Castillo, O. (2023). Comparative study of type-1 and interval type-2 fuzzy logic systems in parameter adaptation for the fuzzy discrete mycorrhiza optimization algorithm. Mathematics, 11(11), 2501. https://doi.org/10.3390/math11112501
Castillo, O. (2012). Type-2 fuzzy logic. En O. Castillo, Type-2 fuzzy logic: Theory and applications (pp. 21–35). Springer. https://doi.org/10.1007/978-3-642-24663-0_2
Khennak, I., Drias, H., Drias, Y., et al. (2023). I/F-Race tuned firefly algorithm and particle swarm optimization for K-medoids-based clustering. Evolutionary Intelligence, 16, 351–373. https://doi.org/10.1007/s12065-022-00794-z
Klir, G. J., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: Theory and applications. Prentice Hall.
Kosko, B. (1992). Neural networks and fuzzy systems: A dynamical systems approach to machine intelligence. Prentice-Hall.
Mendel, J. M. (2017). Uncertain rule-based fuzzy systems: Introduction and new directions (2nd ed.). Springer. https://doi.org/10.1007/978-3-319-51379-7
Saophan, P., Pannakkong, W., Singhaphandu, R., & Huynh, V. (2023). Rapid production re-scheduling for flow shop under machine failure disturbance using hybrid perturbation population genetic algorithm-artificial neural networks (PPGAANNs). IEEE Access, 11, 75794–75817. https://doi.org/10.1109/ACCESS.2023.3294573
Sengupta, S., Basak, S., & Peters, R. A. (2018). Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives. Machine Learning and Knowledge Extraction, 1(1), 157–191. https://doi.org/10.3390/make1010010
Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(3), 341–359. https://doi.org/10.1023/A:1008202821328
Wikelski, M., Moskowitz, D., Adelman, J. S., Cochran, J., Wilcove, D. S., & May, M. L. (2006). Simple rules guide dragonfly migration. Biology Letters, 2(3), 325–329. https://doi.org/10.1098/rsbl.2006.0487
Yager, R. R., & Filev, D. P. (1994). Essentials of fuzzy modeling and control. Wiley-Interscience.
Yang, X.-S. (2010). Firefly algorithms for multimodal optimization. En Stochastic Algorithms: Foundations and Applications (Lecture Notes in Computer Science, Vol. 5792, pp. 169–178). Springer. https://doi.org/10.1007/978-3-642-04944-6_14
Yang, X.-S. (2014). Cuckoo search and firefly algorithm: Overview and analysis. En Cuckoo Search and Firefly Algorithm (pp. 1–26). Springer. https://doi.org/10.1007/978-3-319-02123-0_1
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 International Journal of Combinatorial Optimization Problems and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.