An Explainable Artificial Immune System (XAIS) for Classification in Biomedical Classification Tasks
DOI:
https://doi.org/10.61467/2007.1558.2026.v17i2.1278Keywords:
XAI, Biomedical dataAbstract
Biomedical datasets often contain noise, missing values, imbalance, and heterogeneous feature structures, making them difficult to model reliably and complicating the extraction of discriminative patterns required for effective classification. Although modern machine-learning models can achieve strong performance on such data, many of these approaches operate as opaque systems, offering little insight into how decisions are produced—an essential requirement in biomedical applications. This work introduces the Explainable Artificial Immune System (XAIS), an immune-inspired classification model that delivers prototype-based explanations derived from similarity-driven antibody responses and complemented by performance-aware indicators, providing users with direct evidential insight into each decision.
XAIS was evaluated on eight publicly available biomedical datasets using stratified 5-fold cross-validation and compared against standard machine-learning classifiers. The results show that XAIS attains competitive predictive performance while offering structured, instance-level evidential explanations, underscoring its potential as a transparent and trustworthy foundation for biomedical decision-support systems.
Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.1278
Dimensions.
Open Alex.
References
x Genomics. (2016, July 24). AML027 pre-transplant BMMCs / Human (Dataset by Cell Ranger 1.1.0). https://www.10xgenomics.com/datasets/aml-027-pre-transplant-bmm-cs-1-standard-1-1-0
x Genomics. (2016, July 24). Frozen BMMCs (Healthy Control 1) / Human (Dataset by Cell Ranger 1.1.0). https://www.10xgenomics.com/datasets/frozen-bmm-cs-healthy-control-1-1-standard-1-1-0
x Genomics. (2016, July 24). Frozen BMMCs (Healthy Control 2) / Human (Dataset by Cell Ranger 1.1.0). https://www.10xgenomics.com/datasets/frozen-bmm-cs-healthy-control-2-1-standard-1-1-0
Aickelin, U., Dasgupta, D., & Gu, F. (2014). Artificial immune systems. In E. K. Burke & G. Kendall (Eds.), Search methodologies (pp. 187–211). Springer. https://doi.org/10.1007/978-1-4614-6940-7_7
Audemard, G., Bellart, S., Bounia, L., Koriche, F., Lagniez, J.-M., & Marquis, P. (2021). On the explanatory power of decision trees. http://www.cril.univ-artois.fr/expekctation/
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Routledge.
Carter, J. H. (2000). The immune system as a model for pattern recognition and classification. Journal of the American Medical Informatics Association, 7(1), 28–41. https://doi.org/10.1136/jamia.2000.0070028
Chikh, M. A., Saidi, M., & Settouti, N. (2012). Diagnosis of diabetes diseases using an artificial immune recognition system (AIRS2) with fuzzy k-nearest neighbor. Journal of Medical Systems, 36(5), 2721–2729. https://doi.org/10.1007/s10916-011-9748-4
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. https://doi.org/10.1109/TIT.1967.1053964
de Castro, L. N., & von Zuben, F. J. (2002). Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, 6(3), 239–251.
Do, T. D., Hui, S. C., Fong, A. C. M., & Fong, B. (2009). Associative classification with artificial immune system. IEEE Transactions on Evolutionary Computation, 13(2), 217–228. https://doi.org/10.1109/TEVC.2008.923394
Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2–3), 103–130. https://doi.org/10.1023/A:1007413511361
Dudek, G. (2012). An artificial immune system for classification with local feature selection. IEEE Transactions on Evolutionary Computation, 16(6), 847–860. https://doi.org/10.1109/TEVC.2011.2173580
González-Patiño, D., Villuendas-Rey, Y., Argüelles-Cruz, A. J., Camacho-Nieto, O., & Yáñez-Márquez, C. (2020). AISAC: An artificial immune system for associative classification applied to breast cancer detection. Applied Sciences, 10(2), 515. https://doi.org/10.3390/app10020515
Han, H., & Liu, X. (2021). The challenges of explainable AI in biomedical data science. BMC Bioinformatics, 22(Suppl 12), 443. https://doi.org/10.1186/s12859-021-04368-1
Houssein, E. H., Hosney, M. E., Emam, M. M., Younis, E. M. G., Ali, A. A., & Mohamed, W. M. (2023). Soft computing techniques for biomedical data analysis: Open issues and challenges. Artificial Intelligence Review, 56(Suppl 2), 2599–2649. https://doi.org/10.1007/s10462-023-10585-2
Ilter, N., & Güvenir, H. A. (1998). Dermatology dataset. UCI Machine Learning Repository. https://doi.org/10.24432/C5FK5P
Miller, T. (2023). Explainable AI is dead, long live explainable AI! Hypothesis-driven decision support using evaluative AI. In ACM Proceedings. https://doi.org/10.1145/3593013.3594001
Moura, D. C., & Guevara López, M. A. (2013). An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. International Journal of Computer Assisted Radiology and Surgery, 8(4), 561–574. https://doi.org/10.1007/s11548-013-0838-2
Myakala, P. K., Bura, C., & Jonnalagadda, A. K. (2025). Artificial immune systems: A bio-inspired paradigm for computational intelligence. Journal of Artificial Intelligence and Big Data, 5(1), 1–13. https://doi.org/10.31586/jaibd.2025.1233
Pan, F., Yang, T.-L., Chen, X.-D., et al. (2010). Impact of female cigarette smoking on circulating B cells in vivo. Immunogenetics, 62(4), 237–251. https://doi.org/10.1007/s00251-010-0431-6
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0
Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., & Johannes, R. S. (1988). Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the Symposium on Computer Applications in Medical Care (pp. 261–265).
Sotiropoulos, D. N., & Tsihrintzis, G. A. (2017). Artificial immune systems. In Intelligent Systems Reference Library (Vol. 118, pp. 159–235). Springer. https://doi.org/10.1007/978-3-319-47194-5_7
Street, W. N., Wolberg, W. H., & Mangasarian, O. L. (1993). Breast Cancer Wisconsin (Diagnostic) dataset. UCI Machine Learning Repository. https://doi.org/10.24432/C5DW2B
Wang, Y., & Li, T. (2020). Local feature selection based on artificial immune system for classification. Applied Soft Computing, 87, 105989. https://doi.org/10.1016/j.asoc.2019.105989
Watkins, A. B., & Boggess, L. C. (2002). A resource limited artificial immune classifier. In Proceedings of the Congress on Evolutionary Computation (pp. 926–931). https://doi.org/10.1109/CEC.2002.1007049
Zhou, Q., Li, R., Xu, L., et al. (2023). Towards explainable meta-learning for DDoS detection. SN Computer Science. https://doi.org/10.1007/s42979-023-02383-y
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 International Journal of Combinatorial Optimization Problems and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.