An improved CNN-based methodology to prevent risky situations in people by recognizing emotions from facial features

Authors

  • José Félix Serrano Talamantes Centro de Innovación y Desarrollo Tecnológico en Computación, Cómputo Inteligente-Instituto Politécnico Nacional (CIDETEC-IPN) https://orcid.org/0000-0002-7313-3053
  • Mauricio Olguín Carbajal Centro de Innovación y Desarrollo Tecnológico en Computación, Cómputo Inteligente-Instituto Politécnico Nacional (CIDETEC-IPN) https://orcid.org/0000-0002-2296-8536
  • Gerardo Miramontes de León Academic Unit of Electrical Engineering, Autonomous University of Zacatecas
  • Héctor Durán Muñoz Academic Unit of Electrical Engineering, Autonomous University of Zacatecas https://orcid.org/0000-0002-7190-3528
  • Claudia Sifuentes Gallardo Academic Unit of Electrical Engineering, Autonomous University of Zacatecas
  • Carlos Avilés Cruz Universidad Autónoma Metropolitana, Unidad Azcapotzalco. Departamento de Electrónica. https://orcid.org/0000-0002-2323-9335
  • Gabriel de Jesús Celis Escudero Universidad Autónoma Metropolitana, Unidad Azcapotzalco. Departamento de Electrónica.

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i2.1261

Keywords:

Deep Learning, Neural Networks, Google net, Computer Vision, MATLAB

Abstract

This proposal shows a methodology designed for the process of detecting emotions through facial features. The process of facial features detection involves several stages among which the most important ones are: Acquisition of the training set of images, detection and segmentation of the face using face location techniques in images using Viola & Jones algorithm. We also make use of neural networks that are part of Deep Learning techniques. In this way we propose to recognize people’s faces and also perceive their emotions through gestures that are captured by means of a camera, allowing us to obtain these in soft real time. The processes of this methodology were developed and programmed in the MATLAB and Python code. There was a significant improvement in the recognition results throughout the CNN.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.1261
Dimensions.
Open Alex.

References

Ahonen, T., Hadid, A., & Pietikäinen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041. https://doi.org/10.1109/TPAMI.2006.244

Gholamalinezhad, H., & Khosravi, H. (2020). Pooling methods in deep neural networks: A review (arXiv:2009.07485). https://arxiv.org/abs/2009.07485

Hardesty, L. (2017, April 14). Explained: Neural networks and deep learning. MIT News. https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414

Jesorsky, O., Kirchberg, K. J., & Frischholz, R. W. (2001). Robust face detection using the Hausdorff distance. In Proceedings of the International Conference on Audio- and Video-Based Biometric Person Authentication (pp. 90–95).

Jung, C.-Y. (2008). Face detection using LBP features. In Proceedings of the International Conference on Convergence and Hybrid Information Technology. IEEE.

Lundqvist, D., Flykt, A., & Öhman, A. (1998). The Karolinska Directed Emotional Faces (KDEF) [CD-ROM]. Karolinska Institutet. ISBN 91-630-7164-9

Martinez, A. M. (2009). Fisherfaces. Scholarpedia, 4(2), 5566. http://www.scholarpedia.org/article/Fisherfaces

MathWorks. (2024). DagNetwork. https://es.mathworks.com/help/deeplearning/ref/dagnetwork.html

Viola, P., & Jones, M. J. (2001). Rapid object detection using a boosted cascade of simple features. In Proceedings of the IEEE CVPR (Vol. 1, pp. I-511–I-518). https://doi.org/10.1109/CVPR.2001.990517

Viola, P., & Jones, M. J. (2001). Rapid object detection using a boosted cascade of simple features. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Vol. 1, pp. I-511–I-518). IEEE. https://doi.org/10.1109/CVPR.2001.990517

Yang, Y., Feng, H., & Zhou, D.-X. (2024). On the rates of convergence for learning with convolutional neural networks (arXiv:2403.16459). https://arxiv.org/abs/2403.16459

Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., & Parmar, M. (2024). A review of convolutional neural networks in computer vision. Artificial Intelligence Review, 57(4), 99. https://doi.org/10.1007/s10462-024-10721-6

Zhou, X. (2018). Understanding the convolutional neural networks with gradient descent and backpropagation. Journal of Physics: Conference Series, 1004(1), 012028. https://doi.org/10.1088/1742-6596/1004/1/012028

Downloads

Published

2026-02-16

How to Cite

Serrano Talamantes, J. F., Olguín Carbajal, M., Miramontes de León, G., Durán Muñoz, H., Sifuentes Gallardo, C., Avilés Cruz, C., & Celis Escudero, G. de J. (2026). An improved CNN-based methodology to prevent risky situations in people by recognizing emotions from facial features. International Journal of Combinatorial Optimization Problems and Informatics, 17(2), 89–101. https://doi.org/10.61467/2007.1558.2026.v17i2.1261

Issue

Section

CINIAI