Intelligent Automatic Feeder for Pregnant Sows

Authors

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i2.1260

Keywords:

Pregnant Sows, Decision Tree Algorithm, Non-parametric supervised learning, Internet of Things

Abstract

Pork consumption has increased considerably in recent years, making pig reproduction of vital importance. Feeding sows during the gestational period involves several factors that impact their health, well-being, and postpartum outcomes. Automated feeding systems for sows, unlike feed delivery by human feeders, can measure and adjust the quantity and quality of feed provided at scheduled times with diets established by human experts, allowing for the establishment of a nutritional program for each stage of pregnancy. They also allow for the calculation, using probabilistic and statistical tools, of future diets for the gestational period, which promotes the health and well-being of the sow. This research paper describes, and presents the results obtained from experiments carried out with intelligent automatic feeders for pregnant sows, implemented with Internet of Things (IoT) devices and operated with a predictive computing algorithm, which uses decision trees to predict feeding for the gestation stages of sows, using the weight of the sows, as well as the amount and type of feed provided to the sow. The experiments were carried out with a typical feeding process performed by a human operator, against a feeding process provided with automatic feeders to two different sets of pregnant sows. The results obtained with the automatic feeders show weights closer to the standard weights established for the gestational stages of the sows.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.1260
Dimensions.
Open Alex.

References

Barlocco, N., Battegazzore, G., Primo, P., & Aguiar, T. (2005). Contribución a la definición de programas de alimentación de cerdas gestantes en condiciones de pastoreo permanente y restricción de concentrado (Comunicado técnico en producción porcina No. 3). Centro Regional Sur – Facultad de Agronomía – Universidad de la República.

Baucells, M. D., & Cerisuelo, A. (2004). Alimentación de la cerda gestante. Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona.

Campabadal, C. (2009). Conceptos importantes en la alimentación de los cerdos. Ministerio de Agricultura y Ganadería.

Castro, S. S., López, M. J. S., Menéndez, D. G., & Marigorta, E. B. (2019). Decision matrix methodology for retrofitting techniques of existing buildings. Journal of Cleaner Production, 240, 118153. https://doi.org/10.1016/j.jclepro.2019.118153

Chapinal, N., Ruiz-de-la-Torre, J. L., Cerisuelo, A., Baucells, M. D., Gasa, J., & Manteca, X. (2008). Feeder use patterns in group-housed pregnant sows fed with an unprotected electronic sow feeder (Fitmix). Journal of Applied Animal Welfare Science, 11(4), 319–336. https://doi.org/10.1080/10888700802329619

Chen, C., Liu, X., Liu, C., & Pan, Q. (2023). Development of the precision feeding system for sows via a rule-based expert system. International Journal of Agricultural and Biological Engineering, 16(2), 187–198.

Dourmad, J. Y., Brossard, L., Pomar, C., Pomar, J., Gagnon, P., & Cloutier, L. (2017). Development of a decision support tool for precision feeding of pregnant sows. In D. Berckmans & A. Keita (Eds.), Precision Livestock Farming ’17 (pp. 584–592).

Drewnowski, A. (2024). Perspective: The place of pork meat in sustainable healthy diets. Advances in Nutrition, 15(5), Article 100213. https://doi.org/10.1016/j.advnut.2024.100213

Gaillard, C., Quiniou, N., Gauthier, R., Cloutier, L., & Dourmad, J. Y. (2020). Evaluation of a decision support system for precision feeding of gestating sows. Journal of Animal Science, 98(9), skaa255. https://doi.org/10.1093/jas/skaa255

Gaillard, C., Quiniou, N., Gauthier, R., Cloutier, L., & Dourmad, J. Y. (2020). Evaluation of a decision support system for precision feeding of gestating sows. Journal of Animal Science, 98(9), skaa255. https://doi.org/10.1093/jas/skaa255

Gotardo, M. (2019). Using decision tree algorithm to predict student performance. Indian Journal of Science and Technology, 12(5), 1–8. https://doi.org/10.17485/ijst/2019/v12i5/140987

Hasan, R., Palaniappan, S., Raziff, A., Mahmood, S., & Sarker, K. (2018). Student academic performance prediction by using decision tree algorithm. In Proceedings of the 4th International Conference on Computer and Information Sciences (ICCOINS) (pp. 1–5). IEEE. https://doi.org/10.1109/ICCOINS.2018.8510600

Iida, R., Piñeiro, C., & Kashiha, Y. (2017). Behavior, displacement and pregnancy loss in pigs under an electronic sow feeder. Journal of Agricultural Science, 9(12), 43–53. https://doi.org/10.5539/jas.v9n12p43

Islas, P., Roldán, P., de la Cruz, L. A., Limón, O., Dutro, A., Orozco, H., & Bonilla, H. (2024). Importance of selected nutrients and additives in the feed of pregnant sows for the survival of newborn piglets. Animals, 14(3), 418. https://doi.org/10.3390/ani14030418

Kumar, R. (2013). Decision tree for the weather forecasting. International Journal of Computer Applications, 76(2), 31–34.

Manteca, X., & Gasa, J. (2005). Bienestar y nutrición de cerdas reproductoras. Facultat de Veterinària, Universitat Autònoma de Barcelona.

Manteuffel, C. (2015). The technical manipulation of the behaviour of sows exemplified by call feeding and active crushing prevention (Doctoral dissertation). https://d-nb.info/1067841989

Manteuffel, C., Schön, P. C., & Manteuffel, G. (2011). Beyond electronic feeding: The implementation of call feeding for pregnant sows. Computers and Electronics in Agriculture, 79(1), 36–41. https://doi.org/10.1016/j.compag.2011.08.009

Massey, J. L. (1994). Guessing and entropy. In Proceedings of the IEEE International Symposium on Information Theory.

Moehn, S., & Ball, R. O. (2013). Nutrition of pregnant sows. Swine Research and Technology Centre, University of Alberta.

Neethirajan, S., & Kemp, B. (2021). Digital livestock farming. Sensing and Bio-Sensing Research, 32, 100408. https://doi.org/10.1016/j.sbsr.2021.100408

Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann.

Schillings, J., Bennett, R., & Rose, D. (2021). Exploring the potential of precision livestock farming technologies to help address farm animal welfare. Frontiers in Animal Science, 2, Article 639678. https://doi.org/10.3389/fanim.2021.639678

Soare, E., & Chiurciu, I. A. (2017). Study on the pork market worldwide. Scientific Papers Series “Management, Economic Engineering in Agriculture and Rural Development”, 17(4), 321–326.

Soare, E., Chiurciu, I. A., Apostol, C. E., Stoicea, P., Dobre, C. A., Iorga, A. M., Bălan, A. V., & Firățoiu, A. R. (2024). Study on the worldwide pork market for the period 2015–2021. Scientific Papers Series “Management, Economic Engineering in Agriculture and Rural Development”, 24(1), 923–928.

Song, Y., & Lu, Y. (2015). Decision tree methods: Applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), 130–135.

Subedi, S., Bist, R., Yang, X., & Chai, L. (2023). Tracking pecking behaviors and damages of cage-free laying hens with machine vision technologies. Computers and Electronics in Agriculture, 204, 107545. https://doi.org/10.1016/j.compag.2023.107545

Szűcs, I., & Vida, V. (2017). Global tendencies in pork meat – Production, trade and consumption. APSTRACT: Applied Studies in Agribusiness and Commerce, 11(3–4), 105–112. https://doi.org/10.19041/APSTRACT/2017/3-4/15

Tanner, L., Schreiber, M., Low, J. G., Ong, A., Tolfvenstam, T., Lai, Y. L., … Hibberd, M. L. (2008). Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Neglected Tropical Diseases, 2(3), e196. https://doi.org/10.1371/journal.pntd.0000196

Vargovic, L., Hermesch, S., Athorn, R. Z., & Bunter, K. L. (2021). Feed intake and feeding behavior traits for gestating sows recorded using electronic sow feeders. Journal of Animal Science, 99(1), skaa395. https://doi.org/10.1093/jas/skaa395

Velarde, A., González, G., & Estrada, J. (2025) Prediction of the Fattening Process of Pregnant Sows using Decision Trees. Abstraction & Application, 50, 75-90. Universidad Autónoma de Yucatán.

Xia, J., Xu, J., Zeng, Z., Lv, E., Wang, F., He, X., & Li, Z. (2023). Development of a precision feeding system with hierarchical control for gestation units using stalls. Applied Sciences, 13(21), 12031. https://doi.org/10.3390/app132112031

Downloads

Published

2026-02-16

How to Cite

Velarde Martínez, A. (2026). Intelligent Automatic Feeder for Pregnant Sows. International Journal of Combinatorial Optimization Problems and Informatics, 17(2), 174–189. https://doi.org/10.61467/2007.1558.2026.v17i2.1260

Issue

Section

CINIAI