A Low-Cost IoT Wearable Device with XGBoost, CNN and SVM for Early Detection of Fever, Tachycardia and Hypoxia
DOI:
https://doi.org/10.61467/2007.1558.2026.v17i2.1259Keywords:
Wearable Device, Machine Learning, XGBoost, CNN, SVM, Healthcare, remote monitoring, body temperature, heart rate, oxygen saturationAbstract
Chronic and cardiovascular diseases present a significant global health threat, underscoring the need for remote monitoring technologies capable of ensuring continuous and accessible care. Vital signs such as body temperature, heart rate, and blood oxygen saturation are critical indicators for early detection of health alterations. This study proposes the design of a low-cost wearable device with non-invasive sensors for real-time acquisition and processing of these variables, integrating machine learning algorithms including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and XGBoost. A dataset of 2,480 samples (2,130 experimental, 350 public) was used for training and validation. The models achieved high predictive performance, with XGBoost obtaining an R² of 0.9765, accuracy of 95.8%, and F1-score of 0.96, surpassing SVM and CNN. These results highlight the potential of combining affordable wearable devices with advanced ML to enable early detection, preventive monitoring, and scalable healthcare solutions.
References
Netala, V., Teertam, S., Li, H., & Zhang, Z. (2024). A comprehensive review of cardiovascular disease management: Cardiac biomarkers, imaging modalities, pharmacotherapy, surgical interventions, and herbal remedies. Cells, 13(17), 1471. https://doi.org/10.3390/cells13171471
Li,X. (2024). The Treatment of Cardiovascular Disease. Theoretical and Natural Science,74,144-150.
Valenzuela, P., Ruilope, L., Santos-Lozano, A., Wilhelm, M., Kränkel, N., Fiuza-Luces, C., & Lucía, A. (2023). Exercise benefits in cardiovascular diseases: From mechanisms to clinical implementation. European Heart Journal. https://doi.org/10.1093/eurheartj/ehad170
Kapoor, A., Guha, S., Das, M., Goswami, K., & Yadav, R. (2020). Digital healthcare: The only solution for better healthcare during COVID-19 pandemic?. Indian Heart Journal, 72, 61 - 64. https://doi.org/10.1016/j.ihj.2020.04.001
Kaushik, A., Patel, S., & Dubey, K. (2020). Digital cardiovascular care in COVID‐19 pandemic: A potential alternative?. Journal of Cardiac Surgery, 35, 3545 - 3550. https://doi.org/10.1111/jocs.15094.
Arabi, Y., Azoulay, É., Al-Dorzi, H., Phua, J., Salluh, J., Binnie, A., Hodgson, C., Angus, D., Cecconi, M., Du, B., Fowler, R., Gomersall, C., Horby, P., Juffermans, N., Kesecioglu, J., Kleinpell, R., Machado, F., Martin, G., Meyfroidt, G., Rhodes, A., Rowan, K., Timsit, J., Vincent, J., & Citerio, G. (2021). How the COVID-19 pandemic will change the future of critical care. Intensive Care Medicine, 47, 282 - 291. https://doi.org/10.1007/s00134-021-06352-y.
Anikwe, C., Nweke, H., Ikegwu, A., Egwuonwu, C., Onu, F., Alo, U., & Teh, Y. (2022). Mobile and wearable sensors for data-driven health monitoring system: State-of-the-art and future prospect. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2022.117362.
Panoulas, V., & Kitas, G. (2020). Pharmacological management of cardiovascular risk in chronic inflammatory rheumatic diseases. Expert Review of Clinical Pharmacology, 13, 605 - 613. https://doi.org/10.1080/17512433.2020.1766964.
Ahn, S., Esquivel, J., Davis, E., Logan, J., & Chung, M. (2021). Cardiovascular Disease Incidence and Risk in Family Caregivers of Adults With Chronic Conditions. The Journal of Cardiovascular Nursing, 37, E47 - E60. https://doi.org/10.1097/JCN.0000000000000816.
Kalasin, S., & Surareungchai, W. (2022). Challenges of emerging wearable sensors for remote monitoring toward telemedicine healthcare. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.2c02642
Wu, T., Wu, F., Qiu, C., Redouté, J., & Yuce, M. (2020). A Rigid-Flex Wearable Health Monitoring Sensor Patch for IoT-Connected Healthcare Applications. IEEE Internet of Things Journal, 7, 6932-6945. https://doi.org/10.1109/jiot.2020.2977164.
Siam, A., Elaffendi, M., Elazm, A., El-Banby, G., El-Bahnasawy, N., El-Samie, F., & El-Latif, A. (2023). Portable and Real-Time IoT-Based Healthcare Monitoring System for Daily Medical Applications. IEEE Transactions on Computational Social Systems, 10, 1629-1641. https://doi.org/10.1109/TCSS.2022.3207562.
Archana, R., Vaishnavi, C., Priyanka, D., Gunaki, S., Swamy, S., & Honnavalli, P. (2022). Remote Health Monitoring using IoT and Edge Computing. 2022 International Conference on IoT and Blockchain Technology (ICIBT), 1-6. https://doi.org/10.1109/ICIBT52874.2022.9807710.
Alasmary, H. (2024). ScalableDigitalHealth (SDH): An IoT-Based Scalable Framework for Remote Patient Monitoring. Sensors (Basel, Switzerland), 24. https://doi.org/10.3390/s24041346.
Chaudhury, S., Roy, S., Agarwal, I., & Ray, N. (2020). Real-Time Processing and Monitoring in Health Care. , 99-116. https://doi.org/10.1007/978-3-030-42934-8_7.
Sharma, A., Badea, M., Tiwari, S., & Marty, J. (2021). Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules, 26. https://doi.org/10.3390/molecules26030748.
Mukhopadhyay, S., Suryadevara, N., & Nag, A. (2022). Wearable Sensors for Healthcare: Fabrication to Application. Sensors (Basel, Switzerland), 22. https://doi.org/10.3390/s22145137.
Jha, R., Mishra, P., & Kumar, S. (2024). Advancements in optical fiber-based wearable sensors for smart health monitoring. Biosensors & bioelectronics, 254, 116232 . https://doi.org/10.1016/j.bios.2024.116232.
Zhu, C., Chen, Z., Zhao, R., Wang, J., & Yan, R. (2021). Decoupled Feature-Temporal CNN: Explaining Deep Learning-Based Machine Health Monitoring. IEEE Transactions on Instrumentation and Measurement, 70, 1-13. https://doi.org/10.1109/TIM.2021.3084310.
Kondaka, L., Thenmozhi, M., Vijayakumar, K., & Kohli, R. (2021). An intensive healthcare monitoring paradigm by using IoT based machine learning strategies. Multimedia Tools and Applications, 81, 36891 - 36905. https://doi.org/10.1007/s11042-021-11111-8.
Fei, C., Liu, R., Li, Z., Wang, T., & Baig, F. (2021). Machine and Deep Learning Algorithms for Wearable Health Monitoring. Health Information Science. https://doi.org/10.1007/978-3-030-68723-6_6.
Damaševičius, R., Jagatheesaperumal, S., Kandala, R., Hussain, S., Alizadehsani, R., & Górriz, J. (2024). Deep learning for personalized health monitoring and prediction: A review. Computational Intelligence, 40. https://doi.org/10.1111/coin.12682.
Yan, J., Cai, S., Cai, X., Guo, R., & Yan, J. (2023). Uncertainty quantification of microcirculatory characteristic parameters for recognition of cardiovascular diseases. Computer Methods and Programs in Biomedicine, 242, 107674. https://doi.org/10.1016/j.cmpb.2023.107674.
Amado-Rey, A. B., Seabra, A. C. G., & Stieglitz, T. (2025). Towards ultrasound wearable technology for cardiovascular monitoring: From device development to clinical validation. IEEE Reviews in Biomedical Engineering, 18, 93–112. https://doi.org/10.1109/RBME.2024.3410399
H, A., P., Agarwal, A., Dev, A., Mohanta, B., & Garg, P. (2025). Wearable biosensors for continuous monitoring of cardiovascular health. In 2025 International Conference on Automation and Computation (AUTOCOM) (pp. 876–880). IEEE. https://doi.org/10.1109/AUTOCOM64127.2025.10956331.
Van Velthoven, M., Oke, J., & Kardos, A. (2022). ChroniSense National Early Warning Score Study: Comparison study of a wearable wrist device to measure vital signs in patients who are hospitalized. Journal of Medical Internet Research, 25, e40226. https://doi.org/10.2196/40226.
Kadhim, M., Fayadh, R., & Mahdi, J. (2022). Design a medical device to monitor the human body (blood oxygen saturation, heart rate, body temperature). In 2022 International Conference for Natural and Applied Sciences (ICNAS) (pp. 52–57). IEEE. https://doi.org/10.1109/ICNAS55512.2022.9944718.
Totuk, A., Bayramoğlu, B., & Tayfur, I. (2023). Reliability of smartphone measurements of peripheral oxygen saturation and heart rate in hypotensive patients: Measurement of vital signs with smartphones. Heliyon, 9, e13145. https://doi.org/10.1016/j.heliyon.2023.e13145.
Kayed, M., Balbola, A., Lou, E., & Moussa, W. (2020). Hybrid smart temperature compensation system for piezoresistive 3D stress sensors. IEEE Sensors Journal, 20, 13310–13317. https://doi.org/10.1109/JSEN.2020.3005091.
Lin, M., Zheng, Z., Yang, L., Luo, M., Fu, L., Lin, B., & Xu, C. (2021). A high‐performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection. Advanced Materials, 34, 2107309. https://doi.org/10.1002/adma.202107309.
Kyriakou, K., Resch, B., Sagl, G., Petutschnig, A., Werner, C., Niederseer, D., Liedlgruber, M., Wilhelm, F., Osborne, T., & Pykett, J. (2019). Detecting moments of stress from measurements of wearable physiological sensors. Sensors, 19, 3805. https://doi.org/10.3390/s19173805.
Dian, J., Vahidnia, R., & Rahmati, A. (2020). Wearables and the Internet of Things (IoT), applications, opportunities, and challenges: A survey. IEEE Access, 8, 69200–69211. https://doi.org/10.1109/ACCESS.2020.2986329.
Costanzo, A., Augello, E., Battistini, G., Benassi, F., Masotti, D., & Paolini, G. (2023). Microwave devices for wearable sensors and IoT. Sensors, 23, 4356. https://doi.org/10.3390/s23094356.
Rahmani, A., Szu-Han, W., Yu-Hsuan, K., & Haghparast, M. (2022). The Internet of Things for applications in wearable technology. IEEE Access, 10, 123579–123594. https://doi.org/10.1109/ACCESS.2022.3224487.
Shamshirband, S., Fathi, M., Dehzangi, A., Chronopoulos, A., & Alinejad-Rokny, H. (2020). A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues. Journal of Biomedical Informatics, 111, 103627. https://doi.org/10.1016/j.jbi.2020.103627.
Qayyum, A., Qadir, J., Bilal, M., & Al-Fuqaha, A. (2020). Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering, 14, 156–180. https://doi.org/10.1109/RBME.2020.3013489.
Zhang, A., Xing, L., Zou, J., & Wu, J. (2022). Shifting machine learning for healthcare from development to deployment and from models to data. Nature Biomedical Engineering, 6, 1330–1345. https://doi.org/10.1038/s41551-022-00898-y.
Morid, M., Sheng, O., & Dunbar, J. (2021). Time series prediction using deep learning methods in healthcare. ACM Transactions on Management Information Systems, 14(2), 1–29. https://doi.org/10.1145/3531326.
Guerrero-Osuna, H. A., Luque-Vega, L. F., Carlos-Mancilla, M. A., Ornelas-Vargas, G., Castañeda-Miranda, V. H., & Carrasco-Navarro, R. (2021). Implementation of a MEIoT weather station with exogenous disturbance input. Sensors, 21(5), 1653. https://doi.org/10.3390/s21051653.
Mata-Romero, M. E., Simental-Martínez, O. A., Guerrero-Osuna, H. A., Luque-Vega, L. F., Lopez-Neri, E., Ornelas-Vargas, G., Castañeda-Miranda, R., Martínez-Blanco, M. d. R., Nava-Pintor, J. A., & García-Vázquez, F. (2024). A low-cost wearable device to estimate body temperature based on wrist temperature. Sensors, 24(6), 1944. https://doi.org/10.3390/s24061944.
Amjad, M., Ahmad, I., Ahmad, M., Wróblewski, P., Kamiński, P., & Amjad, U. (2022). Prediction of pile bearing capacity using XGBoost algorithm: Modeling and performance evaluation. Applied Sciences, 12(4), 2126. https://doi.org/10.3390/app12042126.
Chicco, D., Warrens, M., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7. https://doi.org/10.7717/peerj-cs.623.
Yacouby, R., & Axman, D. (2020). Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models. 79-91. https://doi.org/10.18653/v1/2020.eval4nlp-1.9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 International Journal of Combinatorial Optimization Problems and Informatics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.