Comparative Analysis of Tail Tip and Hip Based Features for Dog Tail Wag Classification with Depth Cameras and Support Vector Machines

Authors

  • Carlos Enrique Greene-Mex Facultad de Matemáticas, Universidad Autónoma de Yucatán
  • Antonio Armando Aguileta-Güemez Facultad de Matemáticas, Universidad Autónoma de Yucatán https://orcid.org/0000-0001-5155-3543
  • Jorge Alberto Ríos-Martínez Facultad de Matemáticas, Universidad Autónoma de Yucatán https://orcid.org/0000-0003-4208-0515
  • Raúl Antonio Aguilar Vera Facultad de Matemáticas, Universidad Autónoma de Yucatán

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i2.1252

Keywords:

Tail Tip, Hip, Tail Wagging, Support Vector Machines

Abstract

Understanding dogs’ emotional patterns through their tail movement is key to strengthening the human-canine bond and improving their well-being. This study presents an innovative approach to identify the direction of tail movement (either left or right), using the dog’s hip as the primary reference point. Through a preprocessing and feature extraction process, a Support Vector Machine (SVM) classifier was trained with spatial data from the hip and compared to a classifier from a previous study. The results indicate that the classifier trained with hip data achieved a 99% score in accuracy, precision, and F1-score metrics. Additionally, the Friedman test was performed to verify whether there are statistically significant differences between the two classifiers.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.1252
Dimensions.
Open Alex.

References

Ferretti, V., & Papaleo, F. (2019). Understanding others: Emotion recognition in humans and other animals. Genes, Brain and Behavior, 18(1), e12544. https://doi.org/10.1111/gbb.12544

Leonetti, S., Cimarelli, G., Hersh, T. A., & Ravignani, A. (2024). Why do dogs wag their tails? Biology Letters, 20(1), 20230407. https://doi.org/10.1098/rsbl.2023.0407

Raman, S., Maskeliūnas, R., & Damaševičius, R. (2022). Markerless dog pose recognition in the wild using ResNet deep learning model. Computers, 11(1), 2. https://doi.org/10.3390/computers11010002

Ren, W., Wei, P., Yu, S., & Zhang, Y. Q. (2022). Left-right asymmetry and attractor-like dynamics of dog’s tail wagging during dog-human interactions. iScience, 25(8), 104747. https://doi.org/10.1016/j.isci.2022.104747

Hernández-Luquin, F., Escalante, H. J., Villaseñor-Pineda, L., Reyes-Meza, V., Pérez-Espinosa, H., & Gutiérrez-Serafín, B. (2022). Dog emotion recognition from images in the wild: DEBIw dataset and first results. In Proceedings of the Ninth International Conference on Animal-Computer Interaction (ACI ’22). https://doi.org/10.1145/3565995.3566041

Greene, C., Aguileta, A., Ríos, J., & Aguilar, R. (2025). Dog tail wag classification using deep cameras and support vector machine. In Congreso Internacional en Inteligencia Artificial e Industria 4.0 (CINIAI), UNIVA, México.

Müller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: A guide for data scientists. O’Reilly Media.

Quaranta, A., Siniscalchi, M., & Vallortigara, G. (2007). Asymmetric tail-wagging responses by dogs to different emotive stimuli. Current Biology, 17(6), R199–R201. https://doi.org/10.1016/j.cub.2007.02.008

Bartneck, C., Lütge, C., Wagner, A., & Welsh, S. (2021). An introduction to ethics in robotics and AI. Springer. https://doi.org/10.1007/978-3-030-51110-4

Nagy, B., & Korondi, P. (2022). Deep learning-based recognition and analysis of limb-independent dog behavior for ethorobotical application. IEEE Access, 10, 3825–3834. https://doi.org/10.1109/ACCESS.2022.3140513

Heath, S. (2017). Canine emotions, behavioural responses and body language [PDF]. https://d12geb6i3t2qxg.cloudfront.net/webinar_resources/uploads/2017/01/Canine_Emotions_Behavioural_Responses_and_Body_Language.pdf

Ruge, L., Cox, E., Mancini, C., & Luck, R. (2018). User centered design approaches to measuring canine behavior: Tail wagging as a measure of user experience. In Proceedings of the Fifth International Conference on Animal-Computer Interaction. https://doi.org/10.1145/3295598.3295599

Ehsani, K., Bagherinezhad, H., Redmon, J., Mottaghi, R., & Farhadi, A. (2018). Who let the dogs out? Modeling dog behavior from visual data. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4051–4060). https://doi.org/10.1109/CVPR.2018.00426

Völter, C. J., Starić, D., & Huber, L. (2023). Using machine learning to track dogs’ exploratory behaviour in the presence and absence of their caregiver. Animal Behaviour, 197, 97–111. https://doi.org/10.1016/j.anbehav.2023.01.004

Patro, S. G. K., & Sahu, K. K. (2015). Normalization: A preprocessing stage (arXiv:1503.06462). arXiv. https://doi.org/10.48550/arXiv.1503.06462

Pike, A. L. (2018, February 13). Canine body language basics. American Veterinarian®. https://www.dvm360.com/view/canine-body-language-basics

Downloads

Published

2026-02-16

How to Cite

Greene-Mex, C. E., Aguileta-Güemez, A. A., Ríos-Martínez, J. A., & Aguilar Vera, R. A. (2026). Comparative Analysis of Tail Tip and Hip Based Features for Dog Tail Wag Classification with Depth Cameras and Support Vector Machines. International Journal of Combinatorial Optimization Problems and Informatics, 17(2), 163–173. https://doi.org/10.61467/2007.1558.2026.v17i2.1252

Issue

Section

CINIAI

Most read articles by the same author(s)