Prediction of Co, Co2, and Particulate Matter Using Random Forest: Implementation of a Smart Monitoring Prototype in Nuevo Leon, Mexico

Authors

  • Luis Alejandro Reynoso-Guajardo Tecnológico Nacional de México/IT de Nuevo León
  • Axel Roberto-Perez Tecnológico Nacional de México/IT de Nuevo León
  • Carlos Hernandez-Santos Tecnológico Nacional de México/IT de Nuevo León https://orcid.org/0000-0003-1751-1096
  • Amadeo Hernandez Tecnológico Nacional de México/IT de Pachuca https://orcid.org/0009-0004-1266-0759
  • José Isidro Hernández-Vega Tecnológico Nacional de México/IT de Nuevo León https://orcid.org/0000-0002-2634-8828
  • Mario Carlos Gallardo-Morales Tecnológico Nacional de México/IT de Nuevo León
  • Nain de la Cruz Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey
  • María Ernestina Macias-Arias Tecnológico Nacional de México/IT de Nuevo León
  • Jorge Eduardo Ortega-Lopez Tecnológico Nacional de México/IT de Nuevo León
  • Juan Velazquez-Coronel Tecnológico Nacional de México/IT de Nuevo León

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i2.1234

Keywords:

Air quality, Air pollution, Artificial Intelligence, Random Forest, Embedded System, Pollutant detection

Abstract

This study introduces a predictive air quality monitoring system based on Random Forest machine learning models and low-cost embedded sensors. The system was designed and implemented in Guadalupe, Nuevo León, Mexico, to monitor carbon monoxide (CO), car-bon dioxide (CO2), and particulate matter (PM). Real-time data was collected using a Particle Photon 2 microcontroller with four different sensors. The data was processed using Python scripts, and the Random Forest model was trained to predict future pollutant values. Results demonstrated strong model performance, validated through statistical evaluation metrics and graphical comparisons. The proposed system shows promise for deployment in smart urban environments.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.1234
Dimensions.
Open Alex.

References

Alfano, B., Barretta, L., Del Giudice, A., De Vito, S., Di Francia, G., Esposito, E., Formisano, F., Massera, E., Miglietta, M. L., & Polichetti, T. (2020). A review of low-cost particulate matter sensors from the developers’ perspectives. Sensors, 20(23), 6819. https://doi.org/10.3390/s20236819

Ansari, M., & Alam, M. (2024). An intelligent IoT-cloud-based air pollution forecasting model using univariate time-series analysis. Arabian Journal for Science and Engineering, 49, 3135–3162. https://doi.org/10.1007/s13369-023-07876-9

Babu, S., & Thomas, B. (2023). A survey on air pollutant PM2.5 prediction with random forest model. Environmental Health Engineering and Management Journal, 10(2), 157–163. https://doi.org/10.34172/EHEM.2023.18

Cican, G., Buturache, A.-N., & Mirea, R. (2023). Applying machine learning techniques in air quality prediction—A Bucharest city case study. Sustainability, 15(11), 8445. https://doi.org/10.3390/su15118445

Cortes, S. (2025, April). AURA—Real-time air pollution alerts [Project]. Hackster.io. https://www.hackster.io/sofiacortes/aura-air-uv-real-time-alerts-ab7047

Dayberry, B. (2023). EdgeML energy monitoring with Photon 2. Edge Impulse Expert Projects. https://docs.edgeimpulse.com/projects/expert-network/energy-monitoring-particle-photon-2

Dharshani, J., & Annamalai, S. (2023). Cloud-based effective environmental monitoring of temperature, humidity and air quality using IoT sensors. In Proceedings of ICIMMI 2023 (pp. 1–7). ACM. https://doi.org/10.1145/3647444.3647839

Eren, B., Serat, S., Arifoglu, Y. D., & Ozdemir, S. (2025). Seasonal analysis and machine learning-based prediction of air pollutants in relation to meteorological parameters: A case study from Sakarya, Türkiye. Applied Sciences, 15(8), 4551. https://doi.org/10.3390/app15084551

Ghorpade, R., Naik, N., Shetty, A., Malim, M., & Lad, M. (2021). IoT-based air quality monitoring system using MQ135 and MQ7 with ML. International Journal of Advanced Research in Science, Communication and Technology, 6(1). https://doi.org/10.48175/568

Gladkova, E., & Saychenko, L. (2022). Applying machine learning techniques in air quality prediction. Transportation Research Procedia, 63, 256–263. https://doi.org/10.1016/j.trpro.2022.06.222

Guntaka, S., Parchuri, P., Kandru, R., Lokesh, T., & Konda, C. (2024). Air quality prediction using random forest regression. JETIR, 11(6), d76–d84.

Jayaratne, R., Liu, X., Ahn, K. H., Asumadu-Sakyi, A., Fisher, G., Gao, J., Mabon, A., Mazaheri, M., Mullins, B., Nyaku, M., Ristovski, Z., Scorgie, Y., Thai, P., Dunbabin, M., & Morawska, L. (2020). Low-cost PM2.5 sensors: An assessment of their suitability for various applications. Aerosol and Air Quality Research, 20, 520–532. https://doi.org/10.4209/aaqr.2018.10.0390

Kalaivani, G., & Mayilvahanan, P. (2021). Air quality prediction and monitoring using machine learning algorithm-based IoT sensor—A researcher’s perspective. In 6th International Conference on Communication and Electronics Systems (ICCES) (pp. 1–9). IEEE. https://doi.org/10.1109/ICCES51350.2021.9489153

Kalajdjieski, J., Korunoski, M., Stojkoska, B. R., & Trivodaliev, K. (2020). Smart city air pollution monitoring and prediction: A case study of Skopje. In V. Dimitrova & I. Dimitrovski (Eds.), ICT Innovations 2020: Machine Learning and Applications (CCIS Vol. 1316, pp. 17–30). Springer. https://doi.org/10.1007/978-3-030-62098-1_2

Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362–367. https://doi.org/10.1016/j.envpol.2007.06.012

Kamsing, P., Cao, C., Boonpook, W., Boonprong, S., Xu, M., & Boonsrimuang, P. (2025). Artificial neural network for air pollutant concentration predictions based on aircraft trajectories over Suvarnabhumi International Airport. Atmosphere, 16(4), 366. https://doi.org/10.3390/atmos16040366

Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., Crunaire, S., & Borowiak, A. (2019). Review of the performance of low-cost sensors for air quality monitoring. Atmosphere, 10(9), 506. https://doi.org/10.3390/atmos10090506

Kang, Y., Lu, A., Ngo, D., Zhou, J., et al. (2022). Performance evaluation of low-cost air quality sensors: A review. Science of the Total Environment, 818, 151769. https://doi.org/10.1016/j.scitotenv.2021.151769

Kinnera, B. K. S., Subbareddy, S., & Luhach, A. (2019). IoT-based air quality monitoring system using MQ135 and MQ7 with machine learning analysis. Scalable Computing: Practice and Experience, 20(4), 599–606. https://doi.org/10.12694/scpe.v20i4.1561

Kozłowski, M., Asenov, A., Pencheva, V., Bęczkowska, S. A., Czerepicki, A., & Zysk, Z. (2025). Autonomous system for air quality monitoring on the campus of the University of Ruse: Implementation and statistical analysis. Sustainability, 17(14), 6260. https://doi.org/10.3390/su17146260

Kumar, S., & Jasuja, A. (2017). Air quality monitoring system based on IoT using Raspberry Pi. In International Conference on Computing, Communication and Automation (ICCCA) (pp. 1341–1346). IEEE. https://doi.org/10.1109/CCAA.2017.8230005

Liu, H., Wang, M., & Hu, T. (2024). Air pollution and public health: Study on the effects and transmission mechanism in the case of China. SAGE Open, 14(4). https://doi.org/10.1177/21582440241288334

Margaritis, D., Keramydas, C., & Lambropoulou, D. (2021). Calibration of low-cost gas sensors for air quality monitoring. Aerosol and Air Quality Research, 21, 210073. https://doi.org/10.4209/aaqr.210073

Mera Pérez, D., Cotos Yáñez, J. M., Gómez Tato, A., Vidal Franco, J. I., Mouriño Gallego, J. C., Recamán González, S., González Pichel, J., & Martínez Pérez, J. A. (2023). Método y sistema para controlar el contenido de humedad de fibra en un proceso de fabricación de aglomerado (Patente ES2950188T3). Oficina Española de Patentes y Marcas. https://patents.google.com/patent/ES2950188T3

Meneses-Albala, E., Montalban-Faet, G., Felici-Castell, S., Perez-Solano, J. J., & Fayos-Jordan, R. (2025). Assessment of a multisensor ZPHS01B-based low-cost air quality monitoring system: Case study. Electronics, 14(8), 1531. https://doi.org/10.3390/electronics14081531

Mtetwa, N. S., Tarwireyi, P., Abu-Mahfouz, A. M., & Adigun, M. O. (2019). Secure firmware updates in the Internet of Things: A survey. In International Multidisciplinary Information Technology and Engineering Conference (IMITEC) (pp. 1–7). IEEE. https://doi.org/10.1109/IMITEC45504.2019.9015845

Ponselvakumar, A. P., et al. (2024). Predictive modeling of environmental parameters using ensemble machine learning techniques. In International Conference on Communication, Control, and Intelligent Systems (CCIS) (pp. 1–5). IEEE. https://doi.org/10.1109/CCIS63231.2024.10932016

Particle. (2023). Photon 2 product documentation. https://docs.particle.io/photon-2/

Particle. (2023). Particle cloud platform overview. https://www.particle.io/

Pradeep Kumar Dongre, Patel, V., Bhoi, U., & Maltare, N. N. (2025). An outlier detection framework for air quality index prediction using linear and ensemble models. Decision Analytics Journal, 14, 100546. https://doi.org/10.1016/j.dajour.2025.100546

Samiul Islam, F. A. (2025). The role of artificial intelligence in environmental monitoring for sustainable development and future perspectives. Journal of Global Ecology and Environment, 21(2), 164–179. https://doi.org/10.56557/jogee/2025/v21i29272

Siva Kumari, K., Nikhil, T., Bhanu Prakash, K., & Ajay Kumar, S. (2024). Home air quality monitoring system. International Journal for Research in Applied Science & Engineering Technology, 12(7), 318–325. https://doi.org/10.22214/ijraset.2024.63566

Unik, M., Sitanggang, I. S., Syaufina, L., & Jaya, I. N. S. (2023). PM2.5 estimation using machine learning models and satellite data: A literature review. International Journal of Advanced Computer Science and Applications, 14(5). https://doi.org/10.14569/IJACSA.2023.0140538

Wang, Q., Liu, H., Li, Y., Li, W., Sun, D., Zhao, H., Tie, C., Gu, J., & Zhao, Q. (2024). Predicting plateau atmospheric ozone concentrations by a machine learning approach: A case study of a typical city on the southwestern plateau of China. Environmental Pollution, 363, 125071. https://doi.org/10.1016/j.envpol.2024.125071

Wen, P.-J., & Huang, C. (2020). Noise prediction using machine learning with measurements analysis. Applied Sciences, 10(18), 6619. https://doi.org/10.3390/app10186619

World Health Organization. (2023). Air quality, energy and health: Science and policy summaries. WHO.

Xu, Y., & Helal, A. (2016). Scalable cloud–sensor architecture for the Internet of Things. IEEE Internet of Things Journal, 3(3), 285–298. https://doi.org/10.1109/JIOT.2015.2455555

Zhang, Z., Hao, Q., Xu, D., Wang, J., Jia, H., & Zhou, Z. (2021). Hardware-assisted security monitoring unit for real-time ensuring secure instruction execution and data processing in embedded systems. Micromachines, 12(12), 1450. https://doi.org/10.3390/mi12121450

Downloads

Published

2026-02-16

How to Cite

Reynoso-Guajardo, L. A., Roberto-Perez, A., Hernandez-Santos, C., Hernandez, A., Hernández-Vega, J. I., Gallardo-Morales, M. C., de la Cruz, N., Macias-Arias, M. E., Ortega-Lopez, J. E., & Velazquez-Coronel, J. (2026). Prediction of Co, Co2, and Particulate Matter Using Random Forest: Implementation of a Smart Monitoring Prototype in Nuevo Leon, Mexico. International Journal of Combinatorial Optimization Problems and Informatics, 17(2), 324–340. https://doi.org/10.61467/2007.1558.2026.v17i2.1234

Issue

Section

Articles

Most read articles by the same author(s)