A Predictive Study of the 2024 Presidential Elections

Authors

  • Maria Beatriz Bernábe-Loranca Benemérita Universidad Autónoma de Puebla, México.
  • Fernando Pérez Téllez Faculty of Computing, Digital and Data, Technological University Dublin, Ireland.
  • David Pinto Avendaño Director General de Innovación y Transferencia del Conocimiento, Benemérita Universidad Autónoma de Puebla, México.

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i1.1196

Keywords:

Artificial Intelligence, machine learning, Naïve Bayes, Bayesian Classifier

Abstract

A predictive study was conducted to examine user opinions expressed on the social network YouTube in relation to the 2024 presidential elections in Mexico. The methodology applied natural language processing techniques together with supervised classification algorithms for the purpose of electoral estimation.

The procedure began with the systematic extraction of YouTube comments through the analysis of hashtags associated with the presidential candidates Claudia and Xóchitl. To this end, a download schedule with varied time slots was designed in order to obtain a stochastic and representative sample. A team of six researchers participated in the data collection process to help ensure heterogeneity and randomness in the dataset.

The collected data were modelled using the Support Vector Machine algorithm, Naive Bayes, and linear regression to estimate trends. The results suggested that Claudia Sheinbaum would be the election winner, a prediction that was found to be consistent with the official election results.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i1.1196

References

Bernabe Loranca, M. B., Espinoza, E., González Velázquez, R., & Cerón Garnica, C. (2020). Algorithm for collecting and sorting data from Twitter through the use of dictionaries in Python. Computación y Sistemas, 24(2), 719–724. https://doi.org/10.13053/cys-24-2-3408

Botster. (n.d.). Botster: Web data extraction and automation. https://botster.io/

Hernández Martínez, R. (2018, January 8). Redes sociales serán la nueva arena electoral en 2018. Universidad Iberoamericana Ciudad de México. https://ibero.mx/prensa/redes-sociales-seran-la-nueva-arena-electoral

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning: With applications in R (2nd ed.). Springer. https://doi.org/10.1007/978-1-0716-1418-1

Loranca, M. (2025). A predictive study of the 2024 presidential elections [GitHub repository]. https://github.com/MariaLoranca88/A-PREDICTIVE-STUDY-OF-THE-2024-PRESIDENTIAL-ELECTIONS

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2021). Deep learning-based text classification: A comprehensive review. ACM Computing Surveys, 54(3), Article 62.

Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011

Sandu, A., Cotfas, L.-A., Delcea, C., Crăciun, L., & Molănescu, A. G. (2023). Sentiment analysis in the age of COVID-19: A bibliometric perspective. Information, 14(12), 659. https://doi.org/10.3390/info14120659

Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with Twitter: What 140 characters reveal about political sentiment. Proceedings of the International AAAI Conference on Web and Social Media, 4(1), 178–185. https://doi.org/10.1609/icwsm.v4i1.14009

Yang, F.-J. (2018). An implementation of Naive Bayes classifier. In 2018 International Conference on Computational Science and Computational Intelligence (CSCI) (pp. 301–306). IEEE. https://doi.org/10.1109/CSCI46756.2018.00065

Downloads

Published

2026-01-02

How to Cite

Bernábe-Loranca, M. B., Pérez Téllez, F., & Pinto Avendaño , D. (2026). A Predictive Study of the 2024 Presidential Elections. International Journal of Combinatorial Optimization Problems and Informatics, 17(1), 48–66. https://doi.org/10.61467/2007.1558.2026.v17i1.1196

Issue

Section

Articles