The Web platform for diabetes prediction using weighted machine learning techniques based on personal and clinical indicators

Authors

  • Viridiana Barrera Soto Unidad Académica Multidisciplinaria Reynosa Rodhe – Universidad Autónoma de Tamaulipas
  • Juan Carlos Huerta Mendoza Unidad Académica Multidisciplinaria Reynosa Rodhe – Universidad Autónoma de Tamaulipas.
  • José Lázaro Martínez Unidad Académica Multidisciplinaria Reynosa Rodhe – Universidad Autónoma de Tamaulipas. https://orcid.org/0000-0002-1276-6957

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i2.1190

Keywords:

Artificial Intelligence, Predictive model, Machine Learning, Diabetes

Abstract

Diabetes is a chronic metabolic disease characterized by elevated levels of glucose in the blood (or blood sugar), which over time leads to severe damage to the heart, blood vessels, eyes, kidneys, and nerves. The most common type is type 2 diabetes, usually in adults, which occurs when the body becomes resistant to insulin or does not produce enough insulin. By using artificial intelligence (AI) techniques in complex problems such as disease diagnosis, a degree of certainty in the results has been achieved to identify a specific type of disease. These applications have been advantageous because large amounts of patient data can be analyzed to find patterns. This work proposes a platform for the prediction of type 2 diabetes based on clinical or personal indicators. To do this, two supervised classification models were constructed using the PIMA Indian Diabetes dataset and the Centers for Disease Control and Prevention (CDC) dataset, integrating both into a web platform for prediction with new data to support the decisions of doctors and healthcare professionals. By integrating different algorithms into the final predictive model through voting weighting, the accuracy percentage in prediction has been increased.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.1190
Dimensions.
Open Alex.

References

Ahmed, N., Ahammed, R., Islam, M. M., Uddin, M. A., Akhter, A., Talukder, M. A., & Paul, B. K. (2020). Machine learning based diabetes prediction and development of smart web application. International Journal of Cognitive Computing in Engineering, 2, 229–241. https://doi.org/10.1016/j.ijcce.2020.09.001

Anand, A., & Shakti, D. (2015). Prediction of diabetes based on personal lifestyle indicators. In 2015 1st International Conference on Next Generation Computing Technologies (NGCT) (pp. 253–257). IEEE. https://doi.org/10.1109/NGCT.2015.7375139

Ávila-Tomás, J. F., Mayer-Pujadas, M. A., & Quesada-Varela, V. J. (2021). La inteligencia artificial y sus aplicaciones en medicina II: Importancia actual y aplicaciones prácticas. Atención Primaria, 53(1), 81–88. https://doi.org/10.1016/j.aprim.2020.04.003

Barzallo, S., & Barzallo, P. (2019). La inteligencia artificial en medicina. Ateneo, 21(2), 81–94.

Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1), 20–29. https://doi.org/10.1145/1007730.1007735

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple Classifier Systems (Lecture Notes in Computer Science, Vol. 1857, pp. 1–15). Springer. https://doi.org/10.1007/3-540-45014-9_1

Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature selection and feature extraction techniques in machine learning. In 2014 Science and Information Conference (pp. 372–378). IEEE. https://doi.org/10.1109/SAI.2014.6918213

Rigalleau, V., Monlun, M., Foussard, N., & Mohammedi, K. (2021). Diagnóstico de diabetes. EMC – Tratado de Medicina, 25(2), 1–7. https://doi.org/10.1016/S1636-5410(21)46036-4

Shan, R., Sarkar, S., & Martin, S. S. (2019). Digital health technology and mobile devices for the management of diabetes mellitus: State of the art. Diabetologia, 62(6), 877–887. https://doi.org/10.1007/s00125-019-4864-7

Srivastava, A. K., Kumar, Y., & Singh, P. K. (2020). A rule-based monitoring system for accurate prediction of diabetes. International Journal of E-Health and Medical Communications, 11(3), 32–53. https://doi.org/10.4018/IJEHMC.2020070103

Teboul, A. (2021). Diabetes health indicators dataset. Kaggle. https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset

UCI Machine Learning Repository. (2016). Pima Indians diabetes database. Kaggle. https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

Verma, A. K., Pal, S., & Kumar, S. (2019). Classification of skin disease using ensemble data mining techniques. Asian Pacific Journal of Cancer Prevention, 20(6), 1887–1894. https://doi.org/10.31557/APJCP.2019.20.6.1887

World Health Organization. (2019). Classification of diabetes mellitus. WHO. https://www.who.int/publications/i/item/classification-of-diabetes-mellitus

Downloads

Published

2026-02-16

How to Cite

Barrera Soto, V., Huerta Mendoza, J. C., & Lázaro Martínez, J. (2026). The Web platform for diabetes prediction using weighted machine learning techniques based on personal and clinical indicators. International Journal of Combinatorial Optimization Problems and Informatics, 17(2), 312–323. https://doi.org/10.61467/2007.1558.2026.v17i2.1190

Issue

Section

Articles

Most read articles by the same author(s)