Identification of Cardiac Arrhythmia by Selection of Relevant Variables Using Genetic Algorithms

Authors

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i1.1145

Keywords:

: arrhythmia; classification; relevant variables; ECG; genetic algorithm.

Abstract

This article presents the computational identification of cardiac arrhythmia from electrocardiogram (ECG) signal recordings to facilitate timely diagnosis and clinical management. The cardiac arrhythmia dataset from the public UCI repository was used, comprising 279 features and 452 classified cases. Several variable selection algorithms were applied, including filter methods such as OneR, Chi-square, information gain, symmetric uncertainty, gain ratio, CFS, and consistency, as well as a metaheuristic approach based on the genetic algorithm. The variables identified through the filter methods were subsequently used as inputs for the OneR, PART, Rpart, JRip, C4.5, SVMlin, KNN, and random forest classifiers. The results indicate two subsets of particular interest: 37 relevant variables achieving an average balanced accuracy of 82.93% using the Random Forest classifier in combination with the CFS filter method, and 12 relevant variables yielding an average balanced accuracy of 82.56% when the Random Forest classifier is combined with the genetic algorithm. These outcomes were obtained without the application of any data balancing method.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i1.1145
Dimensions.
Open Alex.

References

Al-Saffar, B., Ali, Y. H., Muslim, A. M., & Ali, H. A. (2023). ECG Signal Classification Based on Neural Network. Lecture Notes in Networks and Systems, 573 LNNS, 3–11. https://doi.org/10.1007/978-3-031-20429-6_1

Arias García, S., Hernández Torruco, J., & Hernández Ocaña, B. (2021). Imputación de datos de pacientes con arritmia cardiaca. Investigación Aplicada, Un Enfoque En La Tecnología, 6(2021), 351–359. https://scholar.google.com/citations?view_op=view_citation&hl=es&user=ABDCkcAAAAAJ&cstart=100&pagesize=100&citation_for_view=ABDCkcAAAAAJ:qxL8FJ1GzNcC

Ayar, M., & Sabamoniri, S. (2018). An ECG-based feature selection and heartbeat classification model using a hybrid heuristic algorithm. Informatics in Medicine Unlocked, 13, 167–175. https://doi.org/10.1016/j.imu.2018.06.002

Babatunde, O., Armstrong, L., Leng, J., & Diepeveen, D. (2014). A genetic algorithm-based feature selection. Edith Cowan University. https://ro.ecu.edu.au/ecuworkspost2013/653

Betancourt, G. A. (2005). Las máquinas de soporte vectorial (SVMs). (SVMs). Scientia Et Technica, XI(27), 67–72. https://doi.org/10.22517/23447214.6895

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

Chakraborty, A., Chatterjee, S., Majumder, K., Shaw, R. N., & Ghosh, A. (2022). A comparative study of myocardial infarction detection from ECG data using machine learning. En Proceedings publicados por Springer (pp. 257–267). https://doi.org/10.1007/978-981-16-2164-2_21

Dash, M., & Liu, H. (2000). Feature selection for clustering. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1805, 110–121. https://doi.org/10.1007/3-540-45571-X_13

Dash, M., & Liu, H. (2003). Consistency-based search in feature selection. Artificial Intelligence, 151(1–2), 155–176. https://doi.org/10.1016/S0004-3702(03)00079-1

Elsayad, A. M. (2009). Classification of ECG arrhythmia using learning vector quantization neural networks. Proceedings - The 2009 International Conference on Computer Engineering and Systems, ICCES’09, 139–144. https://doi.org/10.1109/ICCES.2009.5383295

Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. In Proceedings of the Fifteenth International Conference on Machine Learning (pp. 144–151).

Guvenir H., A. B. M. H., & Quinlan, R. (1998). Arrhythmia - UCI Machine Learning Repository.

Hall, M. A. (1999). Correlation-based feature selection for machine learning (Doctoral dissertation). University of Waikato.

Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.). Elsevier. https://doi.org/10.1016/C2009-0-61819-5

Hechenbichler, K., Schliep, K., & Lizee, A. (2016). Weighted k-nearest-neighbor techniques and ordinal classification (SFB 386 Working Paper). Ludwig-Maximilians-Universität München. http://www.stat.uni-muenchen.de/sfb386/papers/dsp/paper399.ps

Holte, R. C. (1993). Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning, 11(1), 63–90. https://doi.org/10.1023/A:1022631118932

Hornik, K. (2012). RWeka odds and ends (RWeka package vignette). Comprehensive R Archive Network (CRAN). http://ftp.arklinux.org/pub/cran/web/packages/RWeka/vignettes/RWeka.pdf

Jadhav, S. M., Nalbalwar, S. L., & Ghatol, A. (2010). Artificial neural network based cardiac arrhythmia classification using ECG signal data. In Proceedings of the 2010 International Conference on Electronics and Information Engineering (ICEIE). https://doi.org/10.1109/ICEIE.2010.5559887

Jangra, M., Dhull, S. K., Singh, K. K., Singh, A., & Cheng, X. (2021). O-WCNN: An optimized integration of spatial and spectral feature map for arrhythmia classification. Complex & Intelligent Systems. https://doi.org/10.1007/s40747-021-00371-4

Kadam, V. J., Yadav, S. S., & Jadhav, S. M. (2020). Soft-margin SVM incorporating feature selection using improved elitist GA for arrhythmia classification. En Advances in Intelligent Systems and Computing (Vol. 941, pp. 965–976). Springer. https://doi.org/10.1007/978-3-030-16660-1_94

Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05

Leng, S., Tan, R. S., Chai, K. T. C., Wang, C., Ghista, D., & Zhong, L. (2015). The electronic stethoscope. BioMedical Engineering Online, 14(1), 1–37. https://doi.org/10.1186/s12938-015-0056-y

Morganroth, J. (1983). Identification of the Patient at High Risk of Sudden Cardiac Death. In Cardiac Arrhythmias (pp. 13–19). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-68926-0_3

Nevill-Manning, C. G., Holmes, G., & Witten, I. H. (1995). The development of Holte’s 1R classifier. Proceedings - 1995 2nd New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, ANNES 1995, 239–242. https://doi.org/10.1109/ANNES.1995.499480

Pandey, S. K., & Janghel, R. R. (2019). ECG Arrhythmia Classification Using Artificial Neural Networks. In Lecture Notes in Networks and Systems (Vol. 46, pp. 645–652). Springer. https://doi.org/10.1007/978-981-13-1217-5_63

Parveen, A., Vani, R. M., Hunagund, P. V., & Soher-wardy, M. A. (2021). Classification of ECG Arrhythmia Using Different Machine Learning Approach (pp. 319–325). Springer, Singapore. https://doi.org/10.1007/978-981-33-4604-8_25

Roopa, C. K., Harish, B. S., & Aruna Kumar, S. V. (2018). A novel method of clustering ECG arrhythmia data using robust spatial kernel fuzzy C-means. Procedia Computer Science, 143, 133–140. https://doi.org/10.1016/j.procs.2018.10.361

Salzberg, S. L. (1994). C4.5: Programs for machine learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993 [Book review]. Machine Learning, 16(3), 235–240. https://doi.org/10.1007/BF00993309

Scrucca, L. (2013). GA: A package for genetic algorithms in R. Journal of Statistical Software, 53(4), 1–37. https://doi.org/10.18637/JSS.V053.I04

Therneau, T., Atkinson, B., & Ripley, B. (2022). rpart: Recursive partitioning and regression trees (R package). Comprehensive R Archive Network (CRAN). https://cran.r-project.org/package=rpart

Xu, S. S., Mak, M. W., & Cheung, C. C. (2017). Deep neural networks versus support vector machines for ECG arrhythmia classification. 2017 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2017, 127–132. https://doi.org/10.1109/ICMEW.2017.8026250

Zheng, Z., Wu, X., & Srihari, R. (2004). Feature selection for text categorization on imbalanced data. ACM SIGKDD Explorations Newsletter, 6(1), 80–89. https://doi.org/10.1145/1007730.1007741

Downloads

Published

2026-01-02

How to Cite

Arias-García, S., Hernandez-Torruco, J., Hernandez-Ocaña, B., & Chávez-Bosquez, O. (2026). Identification of Cardiac Arrhythmia by Selection of Relevant Variables Using Genetic Algorithms. International Journal of Combinatorial Optimization Problems and Informatics, 17(1), 275–285. https://doi.org/10.61467/2007.1558.2026.v17i1.1145

Issue

Section

Articles