Video-based detection of the parasite responsible for causing Chagas disease

Authors

DOI:

https://doi.org/10.61467/2007.1558.2026.v17i2.1139

Keywords:

image analysis, chagas disease, machine learning

Abstract

This study introduces a technique for identifying the presence of the parasite Trypanosoma cruzi in video recordings, the primary cause of Chagas disease. Early diagnosis—especially during the acute phase—is vital to prevent serious complications. The primary contribution of this work is a computational algorithm capable of detecting the presence of Chagas parasites in capillary tubes containing blood samples. While prior algorithms relied on stained blood samples, this study employs unstained blood samples, utilizing the motility of living parasites for detection. The proposed approach combines optical flow estimation using Farnebäck’s algorithm with a classification stage where several machine learning models were evaluated. Among these, the best performance in terms of accuracy was achieved by a convolutional neural network based on the ResNet-18 architecture. The dataset consists of 24 videos totaling 32 minutes of recording. The results demonstrate optimal performance, achieving a F1-score of 0.9383.

 

Smart citations: https://scite.ai/reports/10.61467/2007.1558.2026.v17i2.1139
Dimensions.
Open Alex.

References

Breiman, L (2001). Random Forests. Machine Learning 45, 5–32.

Butler, D. J. and Wulff, J. and Stanley, G. B. and Black, M. J. A naturalistic open source movie for optical flow evaluation. In Computer Vision – ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VI 12, (pp. 611-625). Springer Berlin Heidelberg.

Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, Van Der Smagt P, Cremers D, Brox T. (2015). Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE international conference on computer vision (pp. 2758-2766). IEEE.

Farnebäck, G. (2003). Two-frame motion estimation based on polynomial expansion. In Image Analysis: 13th Scandinavian Conference, SCIA 2003 Halmstad, Sweden, June 29–July 2, 2003 Proceedings 13 (pp. 363-370). Springer Berlin Heidelberg.

Geiger A., Lenz, P., & Urtasun, R. (2012). Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In 2012 Conference on Computer Vision and Pattern Recognition (pp. 3354-3361). IEEE.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). IEEE.

Hui, T. W., Tang, X., & Loy, C. C. (2020). A lightweight optical flow cnn—revisiting data fidelity and regularization. IEEE transactions on pattern analysis and machine intelligence, 43(8), 2555-2569.

James G., Witten, D., Hastie, T., Tibshirani, R., & Taylor J. (2023). An Introduction to Statistical Learning: With Applications in Python. Springer.

Jung, T., Anzaku, E. T., Ozbulak, U., Magez, S., Van Messem, A., & De Neve, W. (2020). Automatic detection of Trypanosomosis in thick blood smears using image pre-processing and deep learning. In International Conference on Intelligent Human Computer Interaction (pp. 254-266). Springer International Publishing.

Khan, M. I., Acharya, B., Singh, B. K., & Soni, J. (2011). Content based image retrieval approaches for detection of malarial parasite in blood images. International Journal of Biometrics and Bioinformatics (IJBB), 5(2), 97.

Morais, M. C. C., Silva, D., Milagre, M. M., de Oliveira, M. T., Pereira, T., Silva, J. S., … & Nakaya, H. I. (2022). Automatic detection of the parasite Trypanosoma cruzi in blood smears using a machine learning approach applied to mobile phone images. PeerJ, 10, e13470.

Ojeda-Pat, A., Martin-Gonzalez, A., Brito-Loeza, C., Ruiz-Piña, H., & Ruz-Suarez, D. (2022). Effective residual convolutional neural network for Chagas disease parasite segmentation. Medical & Biological Engineering & Computing, 60(4), 1099-1110.

Pereira, A. S., Mazza, L. O., Pinto, P. C., Gomes, J. G. R., Nedjah, N., Vanzan, D. F., ...& Soares, J. G. (2022). Deep convolutional neural network applied to Trypanosoma cruzi detection in blood samples. International Journal of Bio-Inspired Computation, 19(1), 1-17.

Poostchi, M., Silamut, K., Maude, R. J., Jaeger, S., & Thoma, G. (2018). Image analysis and machine learning for detecting malaria. Translational Research, 194, 36-55.

Purwar, Y., Shah, S. L., Clarke, G., Almugairi, A., & Muehlenbachs, A. (2011). Automated and unsupervised detection of malarial parasites in microscopic images. Malaria journal, 10, 1-11.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408.

Sanchez-Patiño, N., Toriz-Vazquez, A., Hevia-Montiel, N., & Perez-Gonzalez, J. (2021, November). Convolutional neural networks for chagas’ parasite detection in histopathological images. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 2732-2735). IEEE.

Tek, F. B., Dempster, A. G., & Kale, I. (2006). “Malaria parasite detection in peripheral blood images”. BMVA, 347-356

Uc-Cetina, V., Brito-Loeza, C., & Ruiz-Piña, H. (2015). Chagas parasite detection in blood images using AdaBoost. Computational and Mathematical Methods in Medicine, 2015(1), 139681.

Vapnik, V.N. (1997). The Support Vector method. In International conference on artificial networks (pp. 261-21). Springer, Berlin, Heidelberg.

Weinzaepfel, P., Revaud, J., Harchaoui, Z., & Schmid, C. (2013). DeepFlow: Large displacement optical flow with deep matching. In Proceedings of the IEEE international conference on computer vision (pp. 1385-1392). IEEE.

Downloads

Published

2026-02-16

How to Cite

Villanueva-Paredes, A., Brito Loeza, C. F., Legarda-Saenz, R., Escobedo-Ortegon, F., & Ruiz-Piña, H. (2026). Video-based detection of the parasite responsible for causing Chagas disease. International Journal of Combinatorial Optimization Problems and Informatics, 17(2), 416–425. https://doi.org/10.61467/2007.1558.2026.v17i2.1139

Issue

Section

Articles