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Abstract. This paper presents an analysis of the quality and | Article Info
randomness of information in images generated with a | Received March 4, 2025
convolutional autoencoder (CAE). The CAE convolved altered | Accepted Dec 11, 2025
color images from CIFAR-10 dataset. The CIFAR-10 images were
altered by randomly setting 30%, 60%, and 90% of pixel values to
[0, 0, 0] or [255, 255, 255], respectively. In the validation stage,
Mean Square Error (MSE) loss function reached 0.0115 and the
accuracy metric 0.7461. Similarity Structural Index Measure
(SSIM), Pearson Correlation Coefficient (PCC) and Peak Signal-
to-Noise Ratio (PSNR) metrics, assessed quality of generated
images. The assessment results ranged as follows: SSIM [0.3251,
0.6830], PCC [0.5034, 0.9358], and PSNR [18.63 dB, 26.04 dB].
The Shannon metric assessed randomness both locally and
globally for each image, ranging from 1.25 to 2.49 bits, and from
6.61 to 9.71 bits, respectively. CAE implementations highlight
their potential for applications in technological innovation.
Keywords: Autoencoder, Convolutional Neural Network,
Similarity Structural Index Measure (SSIM), Pearson Correlation
Coefficient, Peak Signal-to-Noise Ratio, Shannon metric.

1 Introduction

According to Wang et al. (2004), an objective image quality metric can play two roles in images processing applications: First,
it can be used to dynamically monitor and adjust image quality, and the second, it can help to optimize algorithms and
parameters settings of image processing system. In this sense, objective assessment of any feature can provide some precise
criteria about facts related to the nature of images. In this work we focused on two basic features: quality and randomness of
information on generated images with a convolutional autoencoder (CAE). Most of the time, the quality is conceptualized as
overall fidelity, clarity, and accuracy in representing visual information (Pappas et al., 2000). The scope of this paper reaches the
discussion about assessing quality with objective methods such SSIM, PCC and PSNR, all applied on images generated by a
simple proposal of a CAE. The implementation of these metrics was based on several previous works (Wang et al., 2004; Fan
etal., 2019; Ilesanmi & Ilesanmi, 2021). On the other hand, randomness of information contained in images refers to the degree
of unpredictability of pixel values, i.e., the intensity defined for three values which vary from 0 to 255 per pixel with color

images and one value from the [0, 1] interval with grayscale images, respectively. Similarly, in this work for assessing the
randomness of the pixel values in the generated images we have used the Shannon entropy metric which measures the amount of
uncertainty in the probability distribution on pixel values (Ghojogh etal.,, 2019; Sparavigna, 2019). In this sense, it is
undoubtedly that the process of generating images by a CAE produces new outcome images with useful information.

The initial point in this work is to alter the structural nature of an image. In this case, distortions or noises are considered

structural modifications. Noise is defined as a random variation of the values of some pixels, i.e., random variations in intensity
or brightness (Venkataraman, 2022). From a subjective human point of view, noise is considered corruption or distortion that
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results in a low-quality image. It is very common that variational patterns in intensity or brightness resulted from different real
applications, e.g., environmental factors for cameras, functionality of sensors, vibrations, dusty scenarios, humidity, chemical
compositions, etc. (Fan et al., 2019). In contrast, from a mathematical point of view, distortion could be an opportunity for
discovering new facts about images obtained from experimental scenarios or for concluding about the functionality of models
and algorithms, e.g., in Lopez-Betancur et al. (2024) state-of-the-art optimization strategies available in PyTorch have been
evaluated, using the AlexNet model, pre-trained and coupled with a Multiple Linear Regression (MLR) model for estimating
the suspended solids (represented for black pixels randomly distributed on a white background image) in liquid samples.

In the last years, convolutional neural network (CNN) algorithms have received great attention for the flexibility on image
denoising image (Ilesanmi & Ilesanmi, 2021). For that reason, based on the architecture and functionality of a CNN, a simple
autoencoder (AE) was proposed. Fundamentally, the AE was implemented for compressing and decompressing 50,000 altered
images from CIFAR-10 dataset. Through the process of compression and decompression, altered images are gradually cleaned
to generate novel images. The dataset of new images can be implemented to make pattern analysis.

The outline of this paper is as follows. In section 2, AE are described in the mathematical sense and their functionality with
images. In section 3, the ways datasets were generated and organized are described in detail. Also, the proposal of CAE and its
implementation, resources and its performance evaluation are described. Section 4 contains the results of the application of the
model as well as the discussions about the implementation of the objective metrics such SSIM index, PCC and PSNR for quality
assessment, as well as the results of application of Shannon metric for randomness on information assessment. Finally, section 5
contains some conclusions and suitable work for the future.

2 State of the art
A2.1 Mathematical foundation

The origin of AE dates to the 1980’s. The foundation is the learning procedure called back-propagation. This procedure consists
of repeated adjustments for weights of the connections in the neural network in a manner that it minimizes a measure of the
difference between the actual output vector of the network and the desired output vector. These adjustments in weights and
their interactions, especially in hidden layers of the network, which are independent of input and the output, represent important
meaningful features and regularities in the task domain of the network (Rumelhart et al., 1986). In mathematical words, an AE is

a network that has the same number of input units as output units, and it is trained to generate an output X that is close to the
input X, The structure of this model may be viewed as the composition of two functions, f and 9, that is 9 °f, where
f:R"™ = R™ is the encoder and where 9:R™ — R" i5 the decoder, respectively. Usually, ™ =7 because of the functionality
of AE as a compressor of information or as a reductor of the high dimensionality of data. Thus, the input X € R" is mapped into
a code h = f(x), where h € R™ represents meaningful features of X. Furthermore, R™ is defined as the latent space. On the

other hand, the decoder 9 maps ¥ into 9 (f (x)) =g(h) = xr, where X' & X Therefore, ¥' € R" is defined as the
reconstruction of X from 1 (Goodfellow et al., 2016).

To measure the degree of mismatch between input ¥ and its reconstruction x” the weights W of the network are determined by
minimizing an error function. In this work, we have used the average sum-of-square-errors, which has the form

— i ' _ 2

Ew) = X1 x'(e,w) —x I 0
Equation (1) is called the loss function. E (W) is the difference between X and X', It is desirable to avoid having an AE as an
. . . . ! P . . .

identity mapping, which maps ¥ to X such that * = X. Alternatively, one approach is to force the model to extract important
and meaningful features from input data X. In this way, a useful model is a denoising autoencoder (DAE). If so, before training a
DAE, input data X is altered with some kind of noise to give a modified input data X, In consequence, the output x' (%, w)
depends on X and W (Vincent et al., 2008). Similarly, the degree of mismatch is given by the adjusted error function:

EW) =TI x'GEw)—x I7 @)
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Notice from Equation (2) that x’ depends on X and W. Image denoising is considered an ill-posed problem. Owing to the
difficulties in finding a unique solution, some techniques have been developed. A very simple and intuitive mathematical
definition for noise on images is stated as follows:

I=x+n (3)

>

where X is the distorted image, ™ is some additive noise added to X. Equation (3) represents the transformation of X into X,
which are in the same Euclidean space. In a practical sense, denoising X implies to process X to obtain X', which is the best

estimation of X. Such conceptualization is a starting point for understanding and dealing with structural modifications in images
as a relevant fact among different study fields. According to Ilesanmi & Ilesanmi (2021), the most discussed types of noise are
Gaussian noise, impulse noise, quantization noise, Poisson noise, speckle noise and salt-pepper noise. The presence of noise in
images and its dealing with implies areas like medical imaging, remote sensing, military surveillance, biometrics and forensics,
industrial, agricultural automation and many others. Denoising methods are classified as spatial domain methods, transform
domain methods and CNN-based denoising methods. Spatial domain methods are divided into spatial domain filtering and
variational denoising methods, which aim is to remove noise by calculating the gray value of each pixel based on the correlation
between pixels/image patches in the original image. In contrast, transform domain methods include Fourier transform, cosine
transform, wavelet domain, block-matching and 3D filtering. In general, with these methods, the characteristics of image
information and noise are different in the transformation domain. CNN-based methods attempt to learn a mapping function by
optimizing a loss function on a training set that contains distorted images (Fan et al., 2019). In a detailed way, CNN methods
are described as more flexible and with more capacity respect to spatial and transform domain methods. CNN methods are
divided into two approaches: the first one, for denoising general images; and the second one, for denoising specific images. In
previous works, authors refer to general images which represent general purpose and for specific images that were created in
specific fields like medicine, remote sensing, infrared sensing, etc. According to the authors, they concluded that different
techniques related to CNN methods can remove all king of noise from images, and additionally, CNN architecture can be
modified to remove bottleneck of vanish gradient (Ilesanmi & Ilesanmi, 2021). According to Venkataraman, (2022) and
Zhang, (2018) two different models were used for denoising and compressing images. In both mentioned publications, a simple
fully connected autoencoder (SAE) and a CAE were proposed as DAE. Both concluded that CAE had better performance than
SAE. Inspired by these efforts, we have proposed CAE architecture with the aim of considering denoising images to generate
novel images. Also, we focused on the performance of the CAE in the light of induced noise patterns.

In fact, according to consulted literature reviews on methods for image denoising using CNN architectures, it is possible to set
up experimental work with simple CNN models, or even with implementing more advanced CNN models reported in the
literature. Furthermore, there are different CNN architectures for different applications, e.g., classification (Navarro-Solis et al.,
2024), denoising information, generative modeling, anomaly detection in medicine (Lopez-Betancur et al., 2021), missing value
imputation, image compression, dimensionality reduction, and so forth. So far, most of the ideas cited in the state of the art have
proven useful.

3 Models and Methods
3.1 Dataset description and preprocessing

Initially, the CIFAR-10 dataset was downloaded from https://www.cs.toronto.edu/~kriz/cifar.htm. The CIFAR-10 dataset
consists of 60,000 32x32 color images in 10 different classes, with 6000 images per class: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship and truck. The CIFAR-10 dataset is subdivide into two subsets: one with 50,000 for training a model,
and a second one with 10,000 for validating it (CIFAR-10 and CIFAR-100 datasets, 2025). The dataset was saved in a CPU
directory folder. Subsequently, each image was altered by randomly modifying pixel values in proportions of 30% (307 pixels),
60% (641 pixels), and 90% (912 pixels), respectively. The alteration process involved replacing proportions of pixels with
completely black ([0, 0, 0]) or white ([255, 255, 255]) pixels. This process generated three distinct datasets, each containing
60,000 new images and subdivided similarly to the CIFAR-10 dataset. Fig. 1 presents one element from the validation subset of
CIFAR-10 and its altered versions for validation, respectively.

407


https://www.cs.toronto.edu/~kriz/cifar.htm

Castaneda-Diaz et al. / International Journal of Combinatorial Optimization Problems and Informatics, 17(2) 2026, 405-415.

Validation original image versus validation altered images

Validation item 330 from DL-1
0

1] 10 20 30

Fig. 1. Visual distortion in CIFAR-10: from 0% (original data from CIFAR-10) to 30%, 60% and 90% altered pixels.
3.2 Distortion levels on CIFAR-10 dataset

After the distortion process of CIFAR-10 dataset with three different levels, the resulting datasets were saved and labeled as
follows: DL-1 for 30 % (307 of 1024 pixels), DL-2 for 30 % (614 of 1024 pixels) and DL-3 for 90% (912 of 1024 pixels).

3.3 The model architecture
Mostly, a CAE is structured in two basic parts: the first one, an encoder, which extracts features from input data and generates a

representation into lower dimensions space (latent space); the second one, a decoder, that will take the latent representation to
reconstruct the input data. In Fig. 2, a representation of the CAE architecture model is shown.

4x4x8 I

encoder

Max_Pooling2D Up_Samplin2D

Fig. 2. CAE architecture model.

A detailed description is given below:

a) The encoder, which takes input color images of size 32x32x3 elements ¥ of Raa?z’ processes X through 4
convolutional layers and 3 max pooling layers, mapping them into a latent space of dimension 4x4x8 =128.

Encoder maps ¥ into an element of R Notice that after each convolutional layer there is a rectified linear
layer (ReLU).

b) The decoder takes the code (latent value) and processes them through 3 convolutional layers and 3 transposed
convolutional layers to reconstruct the original image. The resulting outputs are images with dimensions of
32x32x3.

The model was designed to generate new images with minimal alterations, aiming to match CIFAR-10 images as closely as
possible. For that reason, the model was cloned and saved separately three times with different names; it guarantees that the
weights of each version of the model are adjusted according to the distortion levels during training stage. Table 1. presents in
more detail the type of layer and its output dimensions as the number of learnable parameters.
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Layer Output Learnable Parameters
conv2d (Conv2D) [(None, 32, 32,32)] 896
max_pooling2d

(MaxPooling2D) [(None, 16, 16,32)] 0
conv2d (Conv2D) [(None, 16, 16,8)] 2312
max_pooling2d 0
(MaxPooling2D) [(None, 8, 8, 8)]

conv2d (Conv2D) [(None, 4, 4, 8)] 584
max_pooling2d 0
(MaxPooling2D) [(None, 4, 4, 8)]

conv2d (Conv2D) [(None, 4, 4, 8)] 584
Up_Sampling2D [(None, 8, 8, 8)] 0
conv2d (Conv2D) [(None, 8, 8, 32)] 2336
Up_Sampling2D [(None, 16, 16,32)] 0
conv2d (Conv2D) [(None,16, 16,32)] 9,248
Up_Sampling2D [(None,32,32,32)] O
conv2d (Conv2D) [(None,32, 32, 3)] 867
Total of learnable parameters: 16827

3.4 Experiment setup

The model was programmed using Python version 3.11.7, TensorFlow and Keras libraries. Table 2. presents the characteristics
of the computer resources implemented for this experiment.

Table 2. Specifications and setup.

Specifications

Memory RAM 16 GB

Processor 13th Gen Intel(R) Core (TM) i7-13650HX 2.60 GHz
Graphics NVIDIA GeForce RTX 4050 Laptop GPU

Operating Systems Windows 11 Home Single Language

3.5 Training details

For the created datasets DL-1, DL-2, DL-3, the same hyperparameters values for each version model were set up for training
stages. Each training phase took 500 epochs with the following hyperparameters values: learning-rate = 0.001, Adam optimizer
parameters B1 = 0.9, B = 0.999 and € = 1 X107 The key optimizer parameters are set for default on Keras APL For the
random initialization of weights was using a random seed equal to 42 (seed = 42). The Adam optimizer was implemented in
this work following the descriptions provided by its creators (Kingma & Ba, 2017) and examples from https://keras.io.

4 Evaluation metrics

4.1 Performing Evaluation

Evaluating model performance was done in three steps: the first one, was through the estimation of loss function MSE which
calculated the average of the squared difference errors between images from CIFAR-10 validation subsets and the outcome
images after processing altered images from DL-1, DL-2, DL-3 validation subsets, respectively. The second step was through
the implementation of three metrics: SSIM, PCC and PSNR which are useful for quality assessment of the new generated
images, respect to CIFAR-10 images. Finally, the third step was through the application of the Shannon metric which measures
the randomness of pixel values.
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4.1.1 Structural Similarity Index Metric

The SSIM is an algorithm that captures from two images X and ¥ three aspects: luminance I(x,¥), contrast ¢(*,¥) and
structure S(%, ¥). These three aspects are combined as follows:

(2pxpy 61 ) (2axy+63)
(ux 2 +py 2 +C ) (ox " +ay 2 +67) ' (4)

SSIM(x,y) = 1(x,y)c(x, y)s(x,y) =

where X and ¥ are discrete signals, Hx and ¥ are the respective mean intensity. 9x and ¥ are estimations of the signals
contrast, respectively. 9*v is the correlation coefficient between X and V- The constants 1 and €2 in Equation (4) are included
2 2 2 2

to avoid instability when #x~ T Ky and %x" T 9y" are close to cero. SSIM index ranges from -1 to 1. If the score is close to 1,
that indicates that similarly is almost total. If it is close to 0, then similarity is low. And for negative values there is not any
structural similarity (Wang et al., 2004; Nilsson & Akenine-Moller, 2020). In this generation process of images, the outcomes
from CAE and the corresponding ones from CIFAR-10 must be compared one-to-one to evaluate the model performance, but
basically the structural similarity of them, i.e., the quality of the outcomes.

4.1.2 Pearson Correlation Coefficient

Similarly, in this work the PCC (T") measures the linear relationship between two random vectors (images)
and ¥, ranging from -1 to 1. 7 is defined as follows:
D o ) )
JER D2 (B, 0-5) )

where X and ' are the means of X and ¥, and ™ is the length of the vectors. The coefficient 7 is interpreted
as follows:

e If 7 =1 there is a perfect linear correlation. As one variable increases, the other increases
proportionally.

e If0 <7 <1 thereis a positive correlation. A higher 7" indicates higher linear correlation.
e If " =0, there is no linear correlation.
e If—1 <7 <0 negative linear correlation. A lower " indicates a stronger negative relationship.

e If7 = —1 there is a perfect negative linear correlation. As one variable increases, the other
decreases proportionally.

In this work PCC is applied over all pixel images. Also, this metric is known as Correlation Criteria (CC) or  Dependency
Measure (DM) that is based on relevance (predictive power) of feature image. The predictive power is

computed by finding the correlation between features of two variables (Ghojogh et al., 2019).

4.1.3 Peak Signal-to-Noise Ratio

As third metric option for quality is PSNR. Given a ground truth image X, the PSNR of a generated image x' is defined by

, 2552
PSNR(x,x') = 10 = nglo(m)

(6)
where 255 is maximum pixel value in images. In the preprocessing stage of the CIFAR-10 dataset, all
images were normalized from 0 to 1. For that reason, the Equation (6) takes the form:
PSNR(x,x") = 10 * logys(——)
X,x) = 09100 xrig’ (7)

The PSNR metric values are given in decibels (dB).
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e From 40 to higher, the new image is indistinguishable from the original.

e From 30 to 40, the new image is a very good quality image.

e From 20 to 30, the new image has an acceptable quality, with visible distortions.
e Below 20 the new image is of very poor quality, with significant distortions.

To see more about these metric and its applications refer to other works (Fan et al., 2019; Ilesanmi & Ilesanmi, 2021; Nilsson &
Akenine-Moller, 2020).

4.1.4 The Shannon metric

It is important to have insights into the complexity, randomness, and informational content of data. In particular,
randomness of pixel values in a generated image is compared with that in the original one. A low entropy indicates low
variability. A high entropy means that an image has uniform pixel values, and it suggests high variability for noise or texture.

The Shannon entropy /7 is defined as follows:
H(x) = — EiL; p(x)ingp(xy) | (8)

where ¥ is random image, *:i is a pixel value of X, p(x:) s the probability associated with X: and P(x:)In2p(x;)
is entropy in bits. Also, this metric is known as Mutual Information (MI) or Information Gain (IG) and is the measure
of dependence or shared information between two random variables (Ghojogh et al., 2019).

5 Results and Discussions

In this work, we confirm that CNN-based models have demonstrated potential for generating information. In some works,
Venkataraman, (2022) and Zhang, (2018), proposals of CAE and a full-connected autoencoder were compared on denoising
images. CAE was better than fully connected. According to Venkataraman, (2022) in 20 epochs for training, the CAE reached a
validation loss of 0.0871, and the fully connected autoencoder reached a validation loss of 0.2305 in a training time of 100
seconds. In this sense, for this work, MSE loss function (left graph) over 500 epochs tended to decline slowly for higher
distortion levels. This fact confirms that higher distortion levels make it more difficult to adjust model weights.

Loss over Epochs Accuracy over Epochs

—— Training loss for DL-1
Validation loss for DL-1
0.035 1 = Training loss of DL-2
—— Validation loss for DL-2
—— Training loss for DL-3 0.70 -
—— Validation loss for DL-3

0.75 A

il l‘illji!"i'l.‘\i.":-i"".?;’l i
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—— Training Accuracy DL-1
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Fig. 3. MSE and accuracy metrics were applied over 500 epochs for DL-1, DL-2 and DL-3.

Table 3. presents the model performance trained independently on the three datasets: DL-1, DL-2 and DL-3. According to the
first row, MSE function declined more slowly during training and validation stages for DL-2 and DL-3 than for DL-1.
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Similarly, the second row presents challenging improvements for accuracy metric with validation images from DL-3. In
contrast, for DL-1 and DL-2 it appears to reach a higher value over 500 epochs. With respect to time for training and validation,
it increases with higher levels of distortion. The training and validations times, in seconds, for each model amounted as follows:
6113.49 and 1.48 for DL-1, 6826.38 and 1.58 for DL-2, and finally, 7890.34 and 1.60 for DL-3.

Table 3. Validation loss and Accuracy.

CAE metrics DL-1 DL-2 DL-3
Validation Loss 0.0095 0.0117 0.0134
Validation Accuracy  0.7549 0.7486 0.7359

Table 4. Experimental results of SSIM, PCC, and PSNR on four randomly generated images after denoising, with their versions
from the validation subsets of DL-1, DL-2, and DL-3, compared with the version from the CIFAR-10 validation subset.

Image * SSIM PCC PSNR in dB

330 0.6830 0.6351  0.6044  0.9235 0.9073 0.8966  20.08 19.25 18.77
8551 0.6146 0.5545 0.6044  0.9358  0.9168 0.9005  20.54 19.49 18.63
5555 0.4148 0.3939  0.3251  0.6259  0.5790 0.5034  24.62 23.94 23.71
70 0.6753 0.5869  0.4697  0.8998  0.8597  0.8109  26.04 24.67 23.77

*Four images (item numbers in the first column) were randomly selected from validation subset from CIFAR-10. The metrics
were applied to compare them with the three generated images (middle columns for each metric) resulting from applying the
CEA to the altered images from the validation subsets from DL-1, DL-2 and DL-3, respectively.

5.1 Quality assessment for generated images: performance insights

To assess objectively the quality for generated images by the CAE respect to those from CIFAR-10, three metrics were applied:
SSIM, PCC and PSNR. Table 4. presents the results of applying these metrics to 330th, 8551st, 5555th, and 70th images, which
were randomly selected from the validation subsets of the CIFAR-10, DL-1, DL-2, and DL-3, respectively. Because of 10,000
images in validation subsets from CIFAR-10, refer to Fig. 4. to see image 8551 (a ship) with its altered versions.

Validation item 8551 from CIFAR-10 Validation item 8551 from DL-1 Validation item 8551 from DL-2 Validation item 8551 from DL-3
o 0 ] o

5

10

15

20

25

30

o 10 20 30 ] 10 20 30

Fig. 4. Items 8551 randomly selected from validation subsets: CIFAR-10, DL1-, DL-2 and DL-3, respectively.

In Table 4, SSIM index score describes moderate structural similarity between 330, 8551 and 70 compared to the generated
images. In contrast, item 5555 has significant structural differences with the CAE outcomes. Refer to Fig. 5. to have a visual
comparison between item 5555 and the outcomes of the model.

0
5
10
15
20

25

Original and generated images

30

30 0 10 20 30

Fig. 5. Item 5555 from CIFAR-10 and the model outputs.

0 10 20 30

412



Castaneda-Diaz et al. / International Journal of Combinatorial Optimization Problems and Informatics, 17(2) 2026, 405-415.

According to the PCC, for items 330, 8551 and 70 measured a strength linear correlation with the CAE outcomes. So, notice

that 7 is close to 1. In contrast, PCC for item 5555 indicates a weak linear correlation. Finally, PSNR indicates respect to
generated outcomes, particularly about the 330 and 8551 items, a more degradation or less quality. In contrast, with respect to
items 5555 and 70, PSNR shows more quality in the generated images. Refer to Fig. 6. to have a visual comparison between
item 8551 and the generated ones.

Visual comparison between modified and generated items

Altered images

Generated images

Fig. 6. Images generated (second row) with CAE using items no. 8551 from validation datasets DL-1, DL-2 and DL-3.

SSIM index as a popular measure in many different scientific projects for almost two decades (Nilsson & Akenine-Moller,
2020). However, in CrapooiitoB (2019) authors demonstrated that SSIM index or any linear transformation of it is not a
metric in the mathematical sense. Additionally, in this work, it was discussed that SSIM cannot correctly determine the
similarity between two images, just only similarity of visually close images of the same scene. Finally, authors concluded that
PCC is a more accurate measure of similarity and dissimilarity of the compared images than the SSIM. As a factual element for
discussion about using SSIM, in Fan et al. (2019) implemented SSIM and PSNR metrics to evaluate the denoising results on

Lena image that was corrupted with Gaussian noise with @ = 30 and filtered with the methods: Weiner filtering (PSNR =
27.81 dB; SSIM= 0.707); Bilateral filtering (PSNR = 27.88 dB; SSIM= 0.712); PCA method (PSNR = 26.68 dB; SSIM=
0.596); Wavelet transform domain method (PSNR = 21.74 dB; SSIM= 0.316); Collaborative filtering: BM3D (PSNR = 31.26
dB; SSIM= 0.845). Hint: dB for decibels. The previous work, based on the PSNR and PCC values, concluded that 3D Filtering
(BM3D) method is better than the other ones, and with a big potential for noise reduction and edge protection. In this sense, the
assessment results in Table 4. obtained in this work, SSIM and PCC values are lower for image 5555, but with a larger value for
PSNR. Particularly, that indicates less structural similarities, but with a higher quality. It is noticeable about metrics values, that
for some generated images, there is not a linear correlation. However, to have general conclusions about the model, it is
necessary to estimate ranges of values based on the Table 4: SSIM [0.3251, 0.6830], PCC [0.5034, 0.9358], and PSNR [18.63
dB, 26.04 dB], respectively.

5.2 Performance: randomness assessment with Shannon entropy

The randomness assessment of pixel values is another important aspect of the generated images with CAE. It is important to
know that this assessment of entropy is applied just to one individual image. In this work we calculated separately the LAE by
local regions of 4x4 pixels, TE of each selected randomly image. According to this metric, a higher value indicates higher
uncertainty on information. In this sense, entropy is an inherent property of pixel values, and it is not dependent on external
factors. Nevertheless, in this experimental work, the entropy values are very similar to each other, which could suggest a
potential relationship between them. The resulting values ranged as follows: [1.25 bits, 2.49 bits] for local regions, and [6.61
bits, 9.71 bits] for the total image, respectively. Refer to Table 5.
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Table 5. LAE of 64 local 4x4 pixel regions and the TE of the entire validation image from CIFAR-10 and the corresponding

generated ones.

Validation  images  versus

generated ones.

Image 330

Image generated from DL-1
Image generated from DL-2
Image generated from DL-3
Image 8551

Image generated from DL-1
Image generated from DL-2
Image generated from DL-3
Image 5555

Image generated from DL-1
Image generated from DL-2
Image generated from DL-3
Image 70

Image generated from DL-1
Image generated from DL-2
Image generated from DL-3

Local Average Entropy

2.49
2.18
2.17
2.03
243
2.19
2.19
222
2.28
1.44
1.43
1.25
1.69
1.51
1.44
1.31

Total Entropy Image
9.12
9.04
8.92
8.75
9.71
9.40
9.61
9.68
7.79
7.86
8.36
7.91
6.61
7.44
7.61
7.55

In Table 5 LAE in most cases is higher for validation images than that from generated images, and that indicates a higher
uncertainty of pixel values. The validations images are in their original condition. In this sense, generated images have less
randomness. In contrast, TE shows a little lower value for images of 70 and 5555 for validation images than that for generated

images.
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Fig. 7. The LAE map is shown for image 8551 from the validation subset of CIFAR-10 and for the
corresponding generated images.
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Fig. 7. presents the distribution of local average entropy (second row) in 4x4 pixel regions. For yellow color
regions LE values are higher and gradually decreased values for the other colors. Also, Fig. 7 presents a visual
patterns of the colors according with higher and lower intensity.

5.3 Conclusions

According to the results obtained in this experiment, we have concluded that:
e Despite its simplicity, the CAE effectively learns meaningful features from corrupted images with a relatively
small number of parameters. The ratio of trainable parameters to validation images highlights its efficiency;

16827 learnable parameters to 10,000 validation images.

e The study avoids relying on subjective human evaluation and instead emphasizes objective metrics to analyze
image quality and structural information.
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e The study measures image similarity using SSIM and PCC, showing moderate structural resemblance and
strong linear correlation between generated and original images.

e Lower Shannon entropy in generated images suggests that the CAE may not fully preserve the original
dataset’s complexity, indicating a need for architectural adjustments

5.4 Future Work

The CAE model coded 60,000 vectors from a 3072-dimensional to a 128-dimensional vector space. Future work could
investigate the characteristics of 128-dimensional latent space. Furthermore, it is a high dimensionality reduction problem.
Additionally, the datasets generated for altering the pixel values and the outputs images after feeding the CAE give a suitable
opportunity for applying stochastic embedding methods to understand about feature extraction and data visualization: Stochastic
Neighbor Embedding (SNE), Student’s t-Distributed Stochastic Method (t-SNE) and Uniform Manifold Approximation
Projection (UMAP).
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