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Abstract. This paper presents an analysis of the quality and 

randomness of information in images generated with a 
convolutional autoencoder (CAE). The CAE convolved altered 

color images from CIFAR-10 dataset. The CIFAR-10 images were 

altered by randomly setting 30%, 60%, and 90% of pixel values to 
[0, 0, 0] or [255, 255, 255], respectively. In the validation stage, 

Mean Square Error (MSE) loss function reached 0.0115 and the 

accuracy metric 0.7461. Similarity Structural Index Measure 

(SSIM), Pearson Correlation Coefficient (PCC) and Peak Signal-

to-Noise Ratio (PSNR) metrics, assessed quality of generated 

images. The assessment results ranged as follows: SSIM [0.3251, 
0.6830], PCC [0.5034, 0.9358], and PSNR [18.63 dB, 26.04 dB]. 

The Shannon metric assessed randomness both locally and 

globally for each image, ranging from 1.25 to 2.49 bits, and from 
6.61 to 9.71 bits, respectively. CAE implementations highlight 

their potential for applications in technological innovation.   
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1 Introduction 
 

According to Wang et al. (2004), an objective image quality metric can play two roles in images processing applications: First, 

it can be used to dynamically monitor and adjust image quality, and the second, it can help to optimize algorithms and 

parameters settings of image processing system. In this sense, objective assessment of any feature can provide some precise 

criteria about facts related to the nature of images. In this work we focused on two basic features: quality and randomness of 

information on generated images with a convolutional autoencoder (CAE). Most of the time, the quality is conceptualized as 

overall fidelity, clarity, and accuracy in representing visual information (Pappas et al., 2000). The scope of this paper reaches the 

discussion about assessing quality with objective methods such SSIM, PCC and PSNR, all applied on images generated by a 

simple proposal of a CAE. The implementation of these metrics was based on several previous works (Wang et al., 2004; Fan 

et al., 2019;  Ilesanmi & Ilesanmi, 2021). On the other hand, randomness of information contained in images refers to the degree 

of unpredictability of pixel values, i.e., the intensity defined for three values which vary from 0 to 255 per pixel with color 

images and one value from the interval with grayscale images, respectively.  Similarly, in this work for assessing the 

randomness of the pixel values in the generated images we have used the Shannon entropy metric which measures the amount of 

uncertainty in the probability distribution on pixel values (Ghojogh et al., 2019; Sparavigna, 2019). In this sense, it is 

undoubtedly that the process of generating images by a CAE produces new outcome images with useful information.  

  

The initial point in this work is to alter the structural nature of an image. In this case, distortions or noises are considered 

structural modifications. Noise is defined as a random variation of the values of some pixels, i.e.,  random variations in intensity 

or brightness (Venkataraman, 2022). From a subjective human point of view, noise is considered corruption or distortion that 
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results in a low-quality image. It is very common that variational patterns in intensity or brightness resulted from different real 

applications, e.g., environmental factors for cameras, functionality of sensors, vibrations, dusty scenarios, humidity, chemical 

compositions, etc. (Fan et al., 2019). In contrast, from a mathematical point of view, distortion could be an opportunity for 

discovering new facts about images obtained from experimental scenarios or for concluding about the functionality of models 

and algorithms, e.g., in Lopez-Betancur et al. (2024) state-of-the-art optimization strategies available in PyTorch have been 

evaluated, using  the AlexNet model, pre-trained and coupled with a Multiple Linear Regression (MLR) model for estimating 

the suspended solids (represented for black pixels randomly distributed on a white background image)  in liquid samples.   

 

In the last years, convolutional neural network (CNN) algorithms have received great attention for the flexibility on  image 

denoising image (Ilesanmi & Ilesanmi, 2021). For that reason, based on the architecture and functionality of a CNN, a simple 

autoencoder (AE) was proposed. Fundamentally, the AE was implemented for compressing and decompressing 50,000 altered 

images from CIFAR-10 dataset. Through the process of compression and decompression, altered images are gradually cleaned 

to generate novel images.  The dataset of new images can be implemented to make pattern analysis.   

 

The outline of this paper is as follows. In section 2, AE are described in the mathematical sense and their functionality with 

images. In section 3, the ways datasets were generated and organized are described in detail. Also, the proposal of CAE and its 

implementation, resources and its performance evaluation are described. Section 4 contains the results of the application of the 

model as well as the discussions about the implementation of the objective metrics such SSIM index, PCC and PSNR for quality 

assessment, as well as the results of application of Shannon metric for randomness on information assessment. Finally, section 5 

contains some conclusions and suitable work for the future. 

 

 

2 State of the art 
 

A2.1 Mathematical foundation  

 

The origin of AE dates to the 1980’s. The foundation is the learning procedure called back-propagation. This procedure consists 

of repeated adjustments for weights of the connections in the neural network in a manner that it minimizes a measure of the 

difference between the actual output vector of the network and the desired output vector. These  adjustments in weights and 

their  interactions, especially in hidden layers of the network, which are independent of input and the output, represent important 

meaningful features and regularities in the task domain of the network (Rumelhart et al., 1986). In mathematical words, an AE is 

a network that has the same number of input units as output units, and it is trained to generate an output  that is close to the 

input . The structure of this model may be viewed as the composition of two functions, and , that is , where  

 is the encoder and where   is the decoder, respectively. Usually,   because of the functionality 

of AE as a compressor of information or as a reductor of the high dimensionality of data.  Thus, the input  is mapped into 

a code , where represents meaningful features of . Furthermore,  is defined as the latent space. On the 

other hand, the decoder  maps   into , where . Therefore,  is defined as the 

reconstruction of  from    (Goodfellow et al., 2016).   

 

To measure the degree of mismatch between input  and its reconstruction , the weights  of the network are determined by 

minimizing an error function. In this work, we have used the average sum-of-square-errors, which has the form   

 

                      .                                                                              (1) 

 

Equation (1) is called the loss function.  is the difference between  and . It is desirable to avoid having an AE as an 

identity mapping, which maps  to  such that . Alternatively, one approach is to force the model to extract important 

and meaningful features from input data . In this way, a useful model is a denoising autoencoder (DAE). If so, before training a 

DAE, input data  is altered with some kind of noise to give a modified input data . In consequence, the output  

depends on  and  (Vincent et al., 2008).  Similarly, the degree of mismatch is given by the adjusted error function:  

 

                     .                                                          (2)   
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Notice from Equation (2) that   depends on  and Image denoising is considered an ill-posed problem. Owing to the 

difficulties in finding a unique solution, some techniques have been developed. A very simple and intuitive mathematical 

definition for noise on images is stated as follows:  

 

                                                                        ,                                                                                 (3)  

                           

where    is the distorted image,  is some additive noise added to  .  Equation (3) represents the transformation of  into , 

which are in the same Euclidean space. In a practical sense, denoising  implies to process  to obtain  , which is the best 

estimation of . Such conceptualization is a starting point for understanding and dealing with structural modifications in images 

as a relevant fact among different study fields. According to  Ilesanmi & Ilesanmi (2021), the most discussed types of noise are 

Gaussian noise, impulse noise, quantization noise, Poisson noise, speckle noise and salt-pepper noise. The presence of noise in 

images and its dealing with implies areas like medical imaging, remote sensing, military surveillance, biometrics and forensics, 

industrial, agricultural automation and many others. Denoising methods are classified as spatial domain methods, transform 

domain methods and CNN-based denoising methods. Spatial domain methods are divided into spatial domain filtering and 

variational denoising methods, which aim is to remove noise by calculating the gray value of each pixel based on the correlation 

between pixels/image patches in the original image. In contrast, transform domain methods include Fourier transform, cosine 

transform, wavelet domain, block-matching and 3D filtering. In general, with these methods, the characteristics of image 

information and noise are different in the transformation domain. CNN-based methods attempt to learn a mapping function by 

optimizing a loss function on a training set that contains distorted images (Fan et al., 2019).  In a detailed way, CNN methods 

are described as more flexible and with more capacity respect to spatial and transform domain methods. CNN methods are 

divided into two approaches: the first one, for denoising general images; and the second one, for denoising specific images. In 

previous works, authors refer to general images which represent general purpose and for specific images that were created in 

specific fields like medicine, remote sensing, infrared sensing, etc. According to the authors, they concluded that different 

techniques related to CNN methods can remove all king of noise from images, and additionally, CNN architecture can be 

modified to remove bottleneck of vanish gradient  (Ilesanmi & Ilesanmi, 2021). According to Venkataraman, (2022) and   

Zhang, (2018) two different models were used for denoising and compressing images. In both mentioned publications, a simple 

fully connected autoencoder (SAE) and a CAE were proposed as DAE. Both concluded that CAE had better performance than 

SAE. Inspired by these efforts, we have proposed CAE architecture with the aim of considering denoising images to generate 

novel images. Also, we focused on the performance of the CAE in the light of induced noise patterns.     

 

In fact, according to consulted literature reviews on methods for image denoising using CNN architectures, it is possible to set 

up experimental work with simple CNN models, or even with implementing more advanced CNN models reported in the 

literature. Furthermore, there are different CNN architectures for different applications, e.g., classification (Navarro-Solís et al., 

2024), denoising information, generative modeling, anomaly detection in medicine (López-Betancur et al., 2021), missing value 

imputation, image compression, dimensionality reduction, and so forth. So far, most of the ideas cited in the state of the art have 

proven useful.  

 

 

3 Models and Methods 
 

3.1 Dataset description and preprocessing  

 

Initially, the CIFAR-10 dataset was downloaded from https://www.cs.toronto.edu/~kriz/cifar.htm. The CIFAR-10 dataset 

consists of 60,000 32x32 color images in 10 different classes, with 6000 images per class: airplane, automobile, bird, cat, deer, 

dog, frog, horse, ship and truck. The CIFAR-10 dataset is subdivide into two subsets: one with 50,000  for training  a model,  

and a  second one with 10,000 for validating it (CIFAR-10 and CIFAR-100 datasets, 2025). The dataset was saved in a CPU 

directory folder. Subsequently, each image was altered by randomly modifying pixel values in proportions of 30% (307 pixels), 

60% (641 pixels), and 90% (912 pixels), respectively. The alteration process involved replacing proportions of pixels with 

completely black ([0, 0, 0]) or white ([255, 255, 255]) pixels. This process generated three distinct datasets, each containing 

60,000 new images and subdivided similarly to the CIFAR-10 dataset.  Fig. 1 presents one element from the validation subset of 

CIFAR-10 and its altered versions for validation, respectively.  

 

https://www.cs.toronto.edu/~kriz/cifar.htm
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Fig. 1.  Visual distortion in CIFAR-10: from 0% (original data from CIFAR-10) to 30%, 60% and 90% altered pixels. 

 

3.2 Distortion levels on CIFAR-10 dataset 

 

After the distortion process of CIFAR-10 dataset with three different levels, the resulting datasets were saved and labeled as 

follows: DL-1 for 30 % (307 of 1024 pixels), DL-2 for 30 % (614 of 1024 pixels) and DL-3 for 90% (912 of 1024 pixels).   

   

3.3 The model architecture 

 

Mostly, a CAE is structured in two basic parts: the first one, an encoder, which extracts features from input data and generates a 

representation into lower dimensions space (latent space); the second one, a decoder, that will take the latent representation to 

reconstruct the input data. In Fig. 2, a representation of the CAE architecture model is shown.  

 

 
Fig. 2.  CAE architecture model. 

 

A detailed description is given below:    

a) The encoder, which takes input color images of size 32x32x3 elements   of  , processes  through 4 

convolutional layers and 3 max pooling layers, mapping them into a latent space of dimension 4x4x8 =128. 

Encoder maps  into an element of  .  Notice that after each convolutional layer there is a rectified linear 

layer (ReLU).   

b) The decoder takes the code (latent value) and processes them through 3 convolutional layers and 3 transposed 

convolutional layers to reconstruct the original image. The resulting outputs are images with dimensions of 

32x32x3.     

 

The model was designed to generate new images with minimal alterations, aiming to match CIFAR-10 images as closely as 

possible. For that reason, the model was cloned and saved separately three times with different names; it guarantees that the 

weights of each version of the model are adjusted according to the distortion levels during training stage.  Table 1.  presents in 

more detail the type of layer and its output dimensions as the number of learnable parameters.    
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Table 1. CAE layer details. 

Layer Output Learnable Parameters 

conv2d (Conv2D) [(None, 32, 32, 32)] 896 

max_pooling2d 

(MaxPooling2D) 

 

[(None, 16, 16, 32)] 

 

0 

conv2d (Conv2D) [(None, 16, 16, 8)] 2312 

max_pooling2d 

(MaxPooling2D) 

 

[(None, 8, 8, 8)] 

0 

conv2d (Conv2D) [(None, 4, 4, 8)] 584 

max_pooling2d 

(MaxPooling2D) 

 

[(None, 4, 4, 8)] 

0 

conv2d (Conv2D) [(None, 4, 4, 8)] 584 

Up_Sampling2D [(None, 8, 8, 8)] 0 

conv2d (Conv2D) [(None, 8, 8, 32)] 2336 

Up_Sampling2D [(None, 16, 16, 32)] 0 

conv2d (Conv2D) [(None,16, 16, 32)] 9,248 

Up_Sampling2D [(None,32, 32, 32)] 0 

conv2d (Conv2D) [(None,32, 32, 3)] 867 

Total of learnable parameters:                                       16827 

 

 

3.4 Experiment setup 

 

The model was programmed using Python version 3.11.7, TensorFlow and Keras libraries. Table 2. presents the characteristics 

of the computer resources implemented for this experiment.  

 

Table 2.  Specifications and setup. 

Specifications 

Memory RAM 16 GB 

Processor   13th Gen Intel(R) Core (TM) i7-13650HX   2.60 GHz 

Graphics  NVIDIA GeForce RTX 4050 Laptop GPU 

Operating Systems  Windows 11 Home Single Language 

 

3.5 Training details  

 

For the created datasets DL-1, DL-2, DL-3, the same hyperparameters values for each version model were set up for training 

stages. Each training phase took 500 epochs with the following hyperparameters values: learning-rate = 0.001, Adam optimizer 

parameters ,  and . The key optimizer parameters are set for default on Keras API. For the 

random initialization of weights was using a random seed equal to 42 (seed = 42).  The Adam optimizer was implemented in 

this work following the descriptions provided by its creators (Kingma & Ba, 2017) and examples from https://keras.io.  

 

 

4 Evaluation metrics 

 
4.1 Performing Evaluation  

 

Evaluating model performance was done in three steps: the first one, was through the estimation of loss function MSE which 

calculated the average of the squared difference errors between images from CIFAR-10 validation subsets and the outcome 

images after processing altered images from DL-1, DL-2, DL-3 validation subsets, respectively. The second step was through 

the implementation of three metrics: SSIM, PCC and PSNR which are useful for quality assessment of the new generated 

images, respect to CIFAR-10 images.  Finally, the third step was through the application of the Shannon metric which measures 

the randomness of pixel values.  

 

 

 

https://keras.io/
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4.1.1 Structural Similarity Index Metric  

 

 The SSIM is an algorithm that captures from two images   and  three aspects: luminance  contrast   and 

structure . These three aspects are combined as follows:  

 

                                                                    (4) 

 

where   and  are discrete signals,  and  are the respective mean intensity.   and  are estimations of the signals 

contrast, respectively.    is the correlation coefficient between  and   The constants  and   in Equation (4) are included 

to avoid instability when  and  are close to cero.  SSIM index ranges from -1 to 1. If the score is close to 1, 

that indicates that similarly is almost total. If it is close to 0, then similarity is low. And for negative values there is not any 

structural similarity (Wang et al., 2004; Nilsson & Akenine-Möller, 2020). In this generation process of images, the outcomes 

from CAE and the corresponding ones from CIFAR-10 must be compared one-to-one to evaluate the model performance, but 

basically the structural similarity of them, i.e., the quality of the outcomes.  

 

4.1.2 Pearson Correlation Coefficient  

                 

Similarly, in this work the PCC ( )  measures the linear relationship between two random vectors (images)   

and , ranging from -1 to 1.   is defined as follows: 

 

                                                                  ,                                                          (5) 

 

where  and  are the means of  and , and  is the length of the vectors.  The coefficient   is interpreted  

as follows: 

• If  ,  there is a perfect linear correlation. As one variable increases, the other increases  

proportionally. 

• If ,  there is a positive correlation. A higher   indicates higher linear correlation.  

• If  ,  there is no linear correlation.   

• If ,  negative linear correlation. A lower  indicates a stronger negative relationship.  

• If ,  there is a perfect negative linear correlation. As one variable increases, the other  

decreases proportionally. 

 

In this work PCC is applied over all pixel images. Also, this metric is known as Correlation Criteria (CC) or     Dependency 

Measure (DM) that is based on relevance (predictive power) of feature image. The predictive power is  

               computed by finding the correlation between features of two variables (Ghojogh et al., 2019).          

                  

 4.1.3 Peak Signal-to-Noise Ratio 

 

As third metric option for quality is PSNR. Given a ground truth image  ,  the PSNR of a generated image  is defined by  

 

                                                                                      ,                                                    (6) 

 

               where 255 is maximum pixel value in images.  In the preprocessing stage of the CIFAR-10 dataset, all  

               images were normalized from 0 to 1. For that reason, the   Equation (6) takes the form:       

            

                                                                                      .                                                      (7) 

 

The PSNR metric values are given in decibels (dB). 
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• From 40 to higher, the new image is indistinguishable from the original. 

• From 30 to 40, the new image is a very good quality image. 

• From 20 to 30, the new image has an acceptable quality, with visible distortions. 

• Below 20 the new image is of very poor quality, with significant distortions. 

 

To see more about these metric and its applications  refer to other works (Fan et al., 2019; Ilesanmi & Ilesanmi, 2021; Nilsson & 

Akenine-Möller, 2020).   

 

 

4.1.4 The Shannon metric 

                

It is important to have insights into the complexity, randomness, and informational content of data.  In particular,  

randomness of pixel values in a generated image is compared with that in the original one. A low entropy indicates low 

variability. A high entropy means that an image has uniform pixel values, and it suggests high variability for noise or texture. 

The Shannon entropy  is defined as follows: 

 

                                                                 ,                                                                                  (8)      

                                    

where  is random image,    is a pixel value of ,  is the probability associated with  and   

is entropy in bits. Also, this metric is known as Mutual Information (MI) or Information Gain (IG) and is the measure  

of dependence or shared information between two random variables (Ghojogh et al., 2019).  

                

 

5 Results and Discussions 
 

In this work, we confirm that CNN-based models have demonstrated potential for generating information. In some works, 

Venkataraman, (2022) and  Zhang, (2018), proposals of  CAE and a full-connected autoencoder were compared on denoising 

images. CAE was better than fully connected. According to Venkataraman, (2022) in 20 epochs for training, the CAE reached a 

validation loss of 0.0871, and the fully connected autoencoder reached a validation loss of 0.2305 in a training time of 100 

seconds. In this sense, for this work, MSE loss function (left graph) over 500 epochs tended to decline slowly for higher 

distortion levels. This fact confirms that higher distortion levels make it more difficult to adjust model weights.  

 
Fig. 3.  MSE and accuracy metrics were applied over 500 epochs for DL-1, DL-2 and DL-3. 

 

 

Table 3. presents the model performance trained independently on the three datasets: DL-1, DL-2 and DL-3. According to the 

first row, MSE function declined more slowly during training and validation stages for DL-2 and DL-3 than for DL-1.  
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Similarly, the second row presents challenging improvements for accuracy metric with validation images from DL-3. In 

contrast, for DL-1 and DL-2 it appears to reach a higher value over 500 epochs. With respect to time for training and validation, 

it increases with higher levels of distortion. The training and validations times, in seconds, for each model amounted as follows: 

6113.49 and 1.48 for DL-1, 6826.38 and 1.58 for DL-2, and finally, 7890.34 and 1.60 for DL-3.   

 

 

Table 3.  Validation loss and Accuracy. 

CAE metrics DL-1 DL-2 DL-3 

Validation Loss 0.0095 0.0117 0.0134 

Validation Accuracy 0.7549 0.7486 0.7359 

 

 

Table 4. Experimental results of SSIM, PCC, and PSNR on four randomly generated images after denoising, with their versions 

from the validation subsets of DL-1, DL-2, and DL-3, compared with the version from the CIFAR-10 validation subset. 

Image * SSIM PCC PSNR in dB 

330 0.6830 0.6351 0.6044 0.9235 0.9073 0.8966 20.08    19.25 18.77 

8551 0.6146 0.5545 0.6044 0.9358 0.9168 0.9005 20.54 19.49 18.63 

5555 0.4148 0.3939 0.3251 0.6259 0.5790 0.5034 24.62 23.94 23.71 

70 0.6753 0.5869 0.4697 0.8998 0.8597 0.8109 26.04 24.67 23.77 

 

*Four images (item numbers in the first column) were randomly selected from validation subset from CIFAR-10.  The metrics 

were applied to compare them with the three generated images (middle columns for each metric) resulting from applying the 

CEA to the altered images from the validation subsets from DL-1, DL-2 and DL-3, respectively.   

 

5.1 Quality assessment for generated images: performance insights 

 

To assess objectively the quality for generated images by the CAE respect to those from CIFAR-10, three metrics were applied: 

SSIM, PCC and PSNR. Table 4. presents the results of applying these metrics to 330th, 8551st, 5555th, and 70th images, which 

were randomly selected from the validation subsets of the CIFAR-10, DL-1, DL-2, and DL-3, respectively.    Because of 10,000 

images in validation subsets from CIFAR-10, refer to Fig. 4. to see image 8551 (a ship) with its altered versions.  

 
Fig. 4. Items 8551 randomly selected from validation subsets: CIFAR-10, DL1-, DL-2 and DL-3, respectively. 

 

In Table 4, SSIM index score describes moderate structural similarity between 330, 8551 and 70 compared to the generated 

images. In contrast, item 5555 has significant structural differences with the CAE outcomes. Refer to Fig. 5. to have a visual 

comparison between item 5555 and the outcomes of the model.  

 
Fig. 5. Item 5555 from CIFAR-10 and the model outputs. 
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According to the PCC, for items 330, 8551 and 70 measured a strength linear correlation with the CAE outcomes. So, notice 

that  is close to 1. In contrast, PCC for item 5555 indicates a weak linear correlation. Finally, PSNR indicates respect to 

generated outcomes, particularly about the 330 and 8551 items, a more degradation or less quality. In contrast, with respect to 

items 5555 and 70, PSNR shows more quality in the generated images. Refer to Fig. 6. to have a visual comparison between 

item 8551 and the generated ones.   

   

 

Fig. 6.  Images generated (second row) with CAE using items no. 8551 from validation datasets DL-1, DL-2 and DL-3. 

 

SSIM index as a popular measure in many different scientific projects for almost two decades (Nilsson & Akenine-Möller, 

2020). However, in Старовойтов  (2019) authors demonstrated that SSIM index or any linear transformation of it is not a 

metric in the mathematical sense. Additionally, in this work, it was discussed that SSIM cannot correctly determine the 

similarity between two images, just only similarity of visually close images of the same scene. Finally, authors concluded that 

PCC is a more accurate measure of similarity and dissimilarity of the compared images than the SSIM. As a factual element for 

discussion about using SSIM, in Fan et al. (2019) implemented SSIM  and  PSNR  metrics to evaluate  the denoising results on 

Lena image that was corrupted with  Gaussian noise with  and filtered with the methods:  Weiner filtering (PSNR = 

27.81 dB;  SSIM= 0.707); Bilateral filtering (PSNR = 27.88 dB;  SSIM= 0.712); PCA method (PSNR = 26.68 dB;  SSIM= 

0.596); Wavelet  transform domain method (PSNR = 21.74 dB;  SSIM= 0.316); Collaborative filtering: BM3D (PSNR = 31.26 

dB;  SSIM= 0.845). Hint: dB for decibels. The previous work, based on the PSNR and PCC values, concluded that 3D Filtering 

(BM3D) method is better than the other ones, and with a big potential for noise reduction and edge protection. In this sense, the 

assessment results in Table 4. obtained in this work, SSIM and PCC values are lower for image 5555, but with a larger value for 

PSNR. Particularly, that indicates less structural similarities, but with a higher quality.  It is noticeable about metrics values, that 

for some generated images, there is not a linear correlation. However, to have general conclusions about the model, it is 

necessary to estimate ranges of values based on the Table 4: SSIM [0.3251, 0.6830], PCC [0.5034, 0.9358], and PSNR [18.63 

dB, 26.04 dB], respectively.   

 

5.2 Performance: randomness assessment with Shannon entropy 

 

The randomness assessment of pixel values is another important aspect of the generated images with CAE. It is important to 

know that this assessment of entropy is applied just to one individual image. In this work we calculated separately the LAE by 

local regions of 4x4 pixels, TE of each selected randomly image.  According to this metric, a higher value indicates higher 

uncertainty on information.  In this sense, entropy is an inherent property of pixel values, and it is not dependent on external 

factors. Nevertheless, in this experimental work, the entropy values are very similar to each other, which could suggest a 

potential relationship between them. The resulting values ranged as follows: [1.25 bits, 2.49 bits] for local regions, and [6.61 

bits, 9.71 bits] for the total image, respectively. Refer to Table 5.  
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Table 5. LAE of 64 local 4x4 pixel regions and the TE of the entire validation image from CIFAR-10 and the corresponding 

generated ones. 

Validation images versus 

generated ones. 

 

Local Average Entropy 

 

Total Entropy Image 

Image 330 2.49 9.12 

Image generated from DL-1 2.18 9.04 

Image generated from DL-2 2.17 8.92 

Image generated from DL-3 2.03 8.75 

Image 8551 2.43 9.71 

Image generated from DL-1 2.19 9.40 

Image generated from DL-2 2.19 9.61 

Image generated from DL-3 2.22 9.68 

Image 5555 2.28 7.79 

Image generated from DL-1 1.44 7.86 

Image generated from DL-2 1.43 8.36 

Image generated from DL-3 1.25 7.91 

Image 70 1.69 6.61 

Image generated from DL-1 1.51 7.44 

Image generated from DL-2 1.44 7.61 

Image generated from DL-3 1.31 7.55 

 

In Table 5 LAE in most cases is higher for validation images than that from generated images, and that indicates a higher 

uncertainty of pixel values. The validations images are in their original condition.  In this sense, generated images have less 

randomness. In contrast, TE shows a little lower value for images of 70 and 5555 for validation images than that for generated 

images.  

 
               Fig. 7. The LAE map is shown for image 8551 from the validation subset of CIFAR-10 and for the  

               corresponding generated images.  

 

Fig. 7. presents the distribution of local average entropy (second row) in 4x4 pixel regions. For yellow color  

regions LE values are higher and gradually decreased values for the other colors.  Also, Fig. 7 presents a visual  

patterns of the colors according with higher and lower intensity.  

 

5.3 Conclusions 

 

According to the results obtained in this experiment, we have concluded that:   

• Despite its simplicity, the CAE effectively learns meaningful features from corrupted images with a relatively 

small number of parameters. The ratio of trainable parameters to validation images highlights its efficiency; 

16827 learnable parameters to 10,000 validation images. 

• The study avoids relying on subjective human evaluation and instead emphasizes objective metrics to analyze 

image quality and structural information. 
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• The study measures image similarity using SSIM and PCC, showing moderate structural resemblance and 

strong linear correlation between generated and original images. 

• Lower Shannon entropy in generated images suggests that the CAE may not fully preserve the original 

dataset’s complexity, indicating a need for architectural adjustments 

 

 5.4 Future Work 

 

The CAE model coded 60,000 vectors from a 3072-dimensional to a 128-dimensional vector space.  Future work could 

investigate the characteristics of 128-dimensional latent space. Furthermore, it is a high dimensionality reduction problem. 

Additionally, the datasets generated for altering the pixel values and the outputs images after feeding the CAE give a suitable 

opportunity for applying stochastic embedding methods to understand about feature extraction and data visualization: Stochastic 

Neighbor Embedding (SNE), Student’s t-Distributed Stochastic Method (t-SNE) and Uniform Manifold Approximation 

Projection (UMAP).  
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