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Abstract  

A lot of machine learning algorithms are based on metric functions, which good functions lead to better 

results. Distance metric learning has been widely attracted by researchers in last decade. Kernel matrix is 

somehow a distance function which indicates the similarity between two instances in the feature space which 

contains high dimensions. Traditional distance metric learning approaches are based on Mahanalobis distance 

which result in optimizing a positive semi definite problem. This kind of approaches need high computational 

time and do not work well in the case of data with high dimensions. Another filed which is involved by 

researchers in last decade is building a good kernel matrix which separate non separable data best. This paper 

proposed a new algorithm in order to learn kernel matrix which is based on distance metric learning. It is 
implemented and applied to several standard data sets and the results are shown.   
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1. Introduction 

Metric functions play key role in a wide machine learning application such as classification, 

clustering, object recognition, data retrieval, etc. Hence; it has been particularly attracted recently. 

The performance of some traditional clustering or classification algorithms such as k-NN or k-means 

extremely depends upon a metric which calculates the distance between samples. In the last few years 

researcher interested in DML algorithm optimizing cost function under several type of constraints. 

[13] However recent results demonstrate that the proper distance metric can be learned using some 

side information identifying some similar or dissimilar pairs. Traditional works concentrate on 

Mahanalobis distance represented by: 

d(x, y) = ‖x − y‖A = (x − y)TA(x − y) 

Specifying some similar and dissimilar pairs a semi definite optimization problem was defined and 

the best matrix A is achieved [11][12][17]. Large Margin Nearest Neighbor (LMNN)  [6]  [7]  is an 

approach relied on Mahanalobis distance trying to make instances in the same class closer and those 

in different classes separate by a margin. Xing [8] proposed a method based on Mahanalobis distance. 

This method minimizes the sum square of similar pairs subjected to keep sum square of dissimilar 

pairs larger than predefined threshold. Schultz organized a method [5] to learn a distance metric from 

relative comparison such as “A is closer to B than A is closer to C” by solving a quadratic 

optimization problem. Davis proposed [1] an information-theoretic approach to learn a Mahalanobis 

distance Metric. The problem has been expressed as the minimization of the relative differential 

entropy between two multivariate Gaussians constrained on the distance function. Bar-Hillel [2] 

expressed Relevant Component Analysis (RCA) algorithm in order to learn a Mahalanobis metric 

based on information theory. Liu Yang [9] presented a Bayesian framework for distance metric 

learning by estimating a posterior distribution from the pairwise labels. [10] In [14] generalization 

error of DML formulation which is not depends on data dimensions is minimized and the metric is 

investigated.   

 

Some other researches concentrate on risk minimization, the metric is learnt by Empirical Risk 

Minimization (ERM) framework. [15][16] 

Solving the semi positive definite problem and the high computation complexity is the weakness of 

the earlier works; hence, the distance metric learning cannot be applied to data with high dimensions.  
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The other field that attracted researcher is Kernel function. Generally, kernel functions are used in 

order to separate the non-separable data. Some works are performed on Distance Metric Learning in 

feature space. Jain [3] produced a novel approach to learn a semi definite matrix from side 

information in feature space. He as a first pioneer discovered the relation between distance learning 

and Kernel Learning via linear transformation by minimizing the LogDet divergence, subject to some 

constrains. [18] 

Researchers are interested in finding the kernel that separates the data best. One possible way is to 

apply several kernels for which the best one is dominated by using cross validation technique, which 

is very time consuming. The other way which some researchers followed, is composite kernel. Based 

on given side information, Yan [4] proposed an approach to combine multiple kernels. In this paper a 

kernel function such as RBF is used, and the kernel matrix (gram matrix) is generated. The 

coefficients are learned using distance metric learning approach.  

In section II distance metric learning approach are briefly described. Section III contains the proposed 

work in detail. Experimental result are illustrated in section IV and conclusion and future work are 

enclosed in section V. 

 

2. Distance Metric Learning 

Initially, the metric is briefly explained. In mathematics function d: Rk × Rk → R.  d is metric where 

for all x, y, z ∈ Rk following conditions are satisfied: 

1- d(x, y) ≥ 0 

2- d(x, y) = 0 ⇒ x = y 

3- d(x, y) = d(y, x) 

4- d(x, z) ≤ d(x, y) + d(y, z) 

Euclidean distance is one of the function satisfying above conditions.  

dEuc = ‖x − y‖2 

The distance also satisfies the conditions for which is defined as: 

dMaha = ‖x − y‖Σ = (x − y)TM(x − y) 

If M be the inverse of covariance matrix, the distance is named Mahalanobis, But M can also be a 

semi definite matrix which satisfies the: 

M = LTL 

The Mahalanobis distance satisfies conditions 1, 3 and 4 but not 2; hence it is named as pseudometric. 

If M be identity matrix the distance will be Euclidean distance.  

In distance metric learning given n instance X = {x1, x2, … , xn} where xi ∈ Rd, aimed to learn the 

semi definite matrix M ≽ 0 subject to reserving sum of dissimilarity pairwise distances. The instances 

in the same class are considered as similar and in the different classes as dissimilar. Considering two 

bounds l < u  the pairs xi, xj are found as similar if d(xi, xj) < u and they are considered as dissimilar 

if d(xi, xj) > l. 

3. The Proposed algorithm 

In the proposed algorithm the similar and dissimilar pairs are identified in the original space. 

S = {(xi, xj)|xi ∈ X and xj ∈ X known as similar pair} 

D = {(xi, xj)|xi ∈ X and xj ∈ X known as dissimilar pair} 
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Next, using a kernel function, data are mapped to a Hilbert space which is named also the feature 

space. The kernel function which is used should satisfy several conditions known as Mercer's 

conditions. 

Kij = ϕ(xi)
Tϕ(xj) 

Matrix K is symmetric semi positive definite. K can be decomposed as: 

Kvi = λivi 

K[v1, v2, … , vd] = [

λ1

λ2

⋱
λd

] [v1, v2, … , vd] 

⇒ K = ∑ λivivi
T

d

i=1

 

Let Ri = vivi
Twhich is a matrix with n × n dimensions. K can be written as K = ∑ λiRi

d
i=1 . It means K 

is equal to sum of weighted Ri.   

Since K is semi positive definite then λi ≥ 0 for all 1 ≤ i ≤ d. The Euclidean distance between x and 

y in the feature space can be written as: 

d(xi, xj) = ‖ϕ(xi) − ϕ(xj)‖
2

2
= Kii

2 − 2Kij
2 + Kjj

2 = ∑ λi((Rk)ii − 2(Rk)ij + (Rk)jj)

n

i=1

 

Distance metric learning approaches are aimed to learn a metric to make similar pairs closer and 

dissimilar pairs further apart. The goal function can be written like: 

J = min ∑ d(xi, xj) − ∑ d(xi, xj)

(xi,xj)∈D(xi,xj)∈S

 

Sum of dissimilar pairs are added to the subject function with negative coefficient, which causes sum 

of similar pairs to be minimized and dissimilar pairs maximized.    

K can be regarded as K = ∑ αiRi, αi ≥ 0d
i=1  and the problem is to find αi  in order to minimize the 

cost function. 

 

P = min ∑ αk 

d

k=1

∑ ((Rk)ii − 2(Rk)ij + (Rk)jj) − ∑ αk

d

k=1

∑ ((Rk)ii − 2(Rk)ij + (Rk)jj)

(xi,xj)∈D(xi,xj)∈S

 

After minimizing the subject function, αi would be zero. Hence the constraint ∑ αi = cd
i=1  is added, 

where c is a constant given by the user.  

Sk = ∑ ((Rk)ii − 2(Rk)ij + (Rk)jj)
(i,j)∈S

 

Dk = ∑ ((Rk)ii − 2(Rk)ij + (Rk)jj)
(i,j)∈D
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The cost function can be written as:  

P = min ∑ αk(Sk − Dk)

d

k=1

 

s. t. ∑ αk = c

d

i=1

 

, αk ≥ 0 

By giving 

Α = [

α1

⋮
αd

] , Xk = Sk − Dk, X = [
X1

⋮
Xd

] 

The cost function can be written as: 

LP = min XT × A 

s. t. A × 1 = c, 

A > 0 

 

The LP is a kind of linear programming and can be solved by traditional Simplex.  

 

4. Experimental results 

The proposed metric learning approach explained in previous section in details. The constrained 

optimization problem lead to a linear optimization; hence, the Simlpex can solve it. Consequently the 

computational time of the proposed algorithm is extremely low in comparison with the traditional 

ones. It can be done by O(n).  

The data is divided into two groups: training data and test one. The training data is used to extract the 

kernel matrix, then in order to classify test data, the 1NN algorithm is applied. The data set used for 

this reason is Iris data set. The iris database are demonstrated in figure 1.  

Table 1 data set's propoerties 

Data set Samples Dimensions Number of classes 

Iris 150 4 3 
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Figure 1 Iris data set presented separately per class. 

Data divided into third partition, one of them are considered as training and the remaining part as test 

data. First the 1NN algorithm are applied to original data, the number of misclassifies are shown in 

table 1. Then the 1NN classify is applied to the kernel matrix attained by proposed distance metric 

algorithm. The results are shown in table 2 expressing the proposed algorithm decreases the number 

of misclassifies.  

Table 2 the results obtained by proposed algorithm and are compared with original one.   

 Original data Proposed  Metric 

learning 

Number of misclassify 

in 1NN 

4 2 

Number of misclassify 

in 5NN 

3 0 

Number of misclassify 

in kMeans clustering 

16  5 
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