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Abstract. This paper explores a hybrid approach combining the 

Dragonfly Algorithm (DA) and Firefly Algorithm (FA) to balance 

exploration and exploitation, avoiding local optima and refining 
solutions in promising areas. The hybrid achieved higher-quality 

solutions, faster convergence to optimal results, and adaptability 

to diverse optimization problems through complementary 
strategies. Additionally, the Cuckoo Search Algorithm (CS), 

known for its effectiveness in global optimization via random 

search and solution space exploitation, was integrated. To further 
enhance performance, Type-2 Fuzzy Logic was applied for 

parameter adaptation in the algorithms.  
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1 Introduction 
 

Bio-inspired optimization methods, such as the Dragonfly Algorithm (DA) (Wikelski et al., 2006; Mirjalili, 2016), Firefly 

Algorithm (FA) (Yang, 2010), and Cuckoo the Search (CS) Algorithm (Yang, 2014), have proven highly effective for tackling 

complex optimization problems. These algorithms, inspired by natural behaviors, perform exceptionally well in scenarios where 

exhaustive search methods are impractical and the likelihood of being trapped in local optima is significant. Their strength lies in 

combining in an appropriate fashion global exploration with local exploitation, allowing adaptability to dynamic and challenging 

problems. The Dragonfly Algorithm leverages the movement patterns of dragonflies to maintain a balance between exploration 

and exploitation, making it particularly suitable for both continuous and discrete optimization tasks while preserving diversity and 

avoiding local optima. In contrast, the Firefly Algorithm, inspired by bioluminescent attraction, enhances convergence toward 

global optima by selectively favoring solutions based on intensity, making it ideal for multi-peak and nonlinear problems. By 

integrating the strengths of DA and FA, a hybrid approach is proposed that balances exploration, adaptability, and convergence 

efficiency, making it robust for high-dimensional optimization challenges. Additionally, algorithms like Differential Evolution 

(DE) (Storn & Price, 1997), Particle Swarm Optimization (PSO) (Sengupta et al., 2018), and the Genetic Algorithm (GA) 

(Saophan et al., 2023), are recognized for their efficiency in speed and convergence. Finally, we got the cuckoo search algorithm, 

which is inspired by the nesting behavior of cuckoos, which lay their eggs in the nests of other birds. The algorithm combines 

random search with intensive exploitation of promising areas in the solution space. Tacking some examples of hybrid approaches 

(Barraza et al., 2018) those are robust and versatile strategies, ideal for addressing complex, high-dimensional problems where 

flexibility and precision are crucial. These strategies, when combined, leverage the individual algorithm strengths to improve 

solution quality and convergence speed. As studies suggest, systems modeled on natural behaviors of insects, such as dragonflies, 

fireflies, and damselflies, exhibit remarkable functional efficiency. Metaheuristic techniques skillfully integrate various strategies 

to navigate complex solution landscapes, optimizing objectives such as efficiency maximization or cost minimization. The 

incorporation of probabilistic and deterministic principles allows DA, FA, and DE to address real-world optimization problems 

effectively.  
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This article is organized as follows: Section 2 discusses nature-inspired optimization techniques; Section 3 reviews relevant 

literature about Fuzzy Logic (Zadeh, 1965; Kosko, 1992); Section 4 overviews Type-2 Fuzzy Logic (Carreon-Ortiz et al., 2023), 

Section 5 details the results and Section 6 provides the study's conclusions and summary. 

 

2 Nature Inspiration 

 
The inspiration for these algorithms began when some researchers started observing nature and that is how the Dragonfly, Firefly 

and Cuckoo Search algorithms were developed, and each of these algorithms has certain defining characteristics. Starting with the 

Dragonfly Algorithm, this one in particular has the following characteristics: separation, avoiding collisions between individuals 

in the swarm, alignment: maintaining a uniform direction with neighboring individuals, cohesion: attracting dragonflies to the 

center of the swarm, attraction to food sources: guiding the swarm toward desirable targets, and enemy repulsion: moving away 

from potential threats. This one presents the next advantages: Efficient balance between exploration and exploitation, a high 

adaptability to both continuous and discrete problems, and lastly maintains diversity of solutions to avoid local optima. 

  

The Firefly Algorithm is inspired by the bioluminescent attraction behavior of fireflies. The algorithm leverages the concept that 

brighter fireflies attract others, simulating an optimization process guided by intensity. Fireflies are unisex and can attract others 

regardless of gender, the attraction between fireflies is proportional to their brightness; less bright fireflies move toward brighter 

ones, and the brightness of a firefly is determined by the quality of the solution it represents. This algorithm presents the next 

advantages a rapid convergence to global optima, effective in solving nonlinear and multi-modal problems, and simple 

implementation with few adjustable parameters.  

 

The last one is the Cuckoo Search Algorithm based on the nesting behavior of cuckoos, which lay their eggs in the nests of other 

birds. The algorithm combines random search with intensive exploitation of promising areas in the solution space. This one counts 

with the advantage of being highly efficient in global search tasks, it’s capable of escaping local optima through long exploratory 

steps, and minimal parameters, simplifying implementation.  

 

 
2.1 Dragonfly Algorithm 
 

The Dragonfly Algorithm presents the following mathematical representation. 

 

                                                                                    𝑆𝑗 = ∑ 𝑋 = 𝑋𝑗
𝑁

𝑗=1
                                                                       (1) 

 

Alignment: Individual velocity matched with neighbor individuals. 

 

                                                                                          𝐴𝑗 = ∑ 𝑉𝑗   
𝑁

𝐽=1
                                                                       (2) 

 

Cohesion: Individual tendency toward center of the herd. 

 

𝐶𝑗 =
∑ 𝑋𝑗

𝑁

𝑗=1

𝑁
  - X                                                                        (3) 

 

Attraction to food source is calculated. 

 

 

                                                                                        𝐹𝑗 = 𝑋+ − 𝑋                                                                     (4) 

 

 

Where: 

𝑋    Is the position of the current individual. 

𝑋+  Is the area of the food. 

 

Distraction from enemy is calculated: 
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                                                                                      𝐹𝑗 = 𝑋− + 𝑋                                                                              (5)                                                                            

Where:  

 𝑋+  Is the position of the current individual. 

  𝑋− Is the area of the enemy. 

 

2.2 Firefly Algorithm 

 
The firefly algorithm presents the following mathematical representations 

 

                                                         𝑋𝑝
𝑡 + 1 = 𝑋𝑝

𝑡 +  𝛽(𝑟)(𝑋𝑝 − 𝑋𝑞) + (𝑟𝑎𝑛𝑑 −
1

2
)                                                     (6)                 

 

2.3 Hybrid DA-FA Algorithm 

 
The Hybrid algorithm created with the Dragonfly and Firefly was constructed by combining the best characteristics of each of 

these two algorithms. For the Dragonfly we select exploration, which provides the ability to thoroughly search the solution space, 

avoiding local optima by balancing multiple dynamic forces. For the Firefly Algorithm we select the exploitation, which ensures 

a focused search around promising regions, improving convergence to high-quality solutions. Together, these principles can form 

a hybrid algorithm that leverages the strengths of both exploration and exploitation. The process begins by setting up the key 

parameters: alpha and gamma for the Firefly algorithm, which help control how fireflies move and attract each other, and W, C1, 

and C2 for the Dragonfly algorithm, which manage the balance between exploring new areas and focusing on promising ones. To 

make the algorithm more flexible and precise, Type 1 and Type 2 fuzzy logic systems were added. These systems allow the 

algorithm to adjust dynamically based on the situation, making it more responsive to changes. The real strength of DAFA lies in 

how it combines the best parts of the two algorithms. It uses the exploration phase from the Dragonfly algorithm to search broadly 

by updating the positions and velocities of the population. Then, it switches to the exploitation phase of the Firefly algorithm to 

fine-tune the search and zero in on the best possible solution. By blending these approaches, DAFA successfully finds the optimal 

solution, showing how effective this combination can be. The result is a balanced and powerful algorithm designed to handle even 

the most challenging optimization problems with ease. We can observe the algorithm in Figure 1. 

 

 
Fig. 1. Represents the Hybrid DAFA Algorithm. 
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2.4 Cuckoo Search 
 

The Cuckoo Search (CS) (Yang, 2014) Algorithm presents the next mathematical representations for nesting parasitism. The 

principle of nesting parasitism is modeled by generating new solutions   𝑥𝑖
(𝑡+1)

 and replacing the worst-performing ones based 

on fitness. This can be expressed as: 

 

                                                                              𝑋𝑖
(𝑡+1)

= 𝑋𝑡
(𝑥)

+ 𝛼 . (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖
(𝑥)

)                                                   (7)                 

 

Where: 

𝑥𝑖
(𝑡)

 : The current solution in the 𝑖 − 𝑡ℎ  psoition at iteration 𝑡.  

𝑥𝑏𝑒𝑠𝑡  : The best solution found so far. 

α:A step-size scaling parameter(controls the learning rate). 

If 𝑥𝑖
(𝑡+1)

  outperforms the current worst solution, it replaces it. 

 

The worst-performing solutions are determined by their fitness values, and the algorithm keeps the best-performing solution to 

guide the search process. 

 

                                                                                              𝑥𝐼
(𝑡+1)

= 𝑥𝐼
𝑡 +  𝛼 . 𝐿(𝑠)                                                       (8) 

 

Where: 

𝑥𝐼
(𝑡+1)

: the updated solution for the 𝑖 − 𝑡ℎ position at iteration 𝑡 + 1. 

α: A scaling parameter controlling the step size. 

𝐿(𝑠): A levy floght step, defined as: 

 

                                                                              𝐿(𝑠)~
1

|𝑠|𝜆′  1 < 𝜆 ≤ 3                                                          (9)                                                  

 

To approximate Levy flights in computational implementations, 𝐿(𝑠) can be generated using Mantegna’s algorithm: 

 

                                                                                                  𝐿(𝑠) =
𝑢

|𝑢|
1
𝜆 

                                                                     (10) 

 

𝑢 and 𝑣 are drawn from normal distributions: 

 

                                                                                         𝑢~𝑁(0, 𝜎𝑢
2), 𝑣~𝑁(0, 𝜎𝑢

2)                                                        (11) 

 

These steps enable CS to effectively explore the search space while maintaining diversity and avoiding local optima. 

 

3 Fuzzy Logic 
 

As we know, fuzzy logic (Zadeh, 1965; Kosko, 1992), mimics human reasoning to handle uncertainty and imprecision. Unlike 

classical logic, which operates with binary values (true or false, 0 or 1), with fuzzy logic we have the particularity of applying 

degrees of truth or memberships, ranging from 0 to 1 (Klir & Yuan, 1995). Using this theory, we have applied Type-1 fuzzy logic 

to the DA-FA algorithm for adapting 2 and beta parameters with the following characteristics: Input as “iteration” and the output 

as w or beta depending the case. We select 3 membership functions in the input and 3 membership functions in the output, and 

we apply three fuzzy rules: if iteration is low, then 2 and beta will be high, if iteration is medium, then w and beta will be medium, 

and if iteration is high, then w and beta will be low. Figure 2 depicts the fuzzy system for the w parameter specifying the interaction 

as input with the 3 membership functions, the w as output with 3 membership functions and the fuzzy rules that explain the final 

results. Figures 3 exhibits the Beta parameter that explain the input with 3 membership functions the output with the same amount 

of membership functions and the fuzzy rules applied to the Beta parameters, Figure 4 illustrates the membership functions in 

which the colors indicate the fuzzy rule if the color is blue the rule will be low, if the color is red the rule will be medium and 

finally if the color is yellow the rule will be high. 

 

 

 



Guajardo et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 17(2) 2026, 275-282. 

279 

 

 

 
Fig. 2. Represents the specifications of the W Parameter. 

 

 
Fig. 3. Represent the specifications of Beta parameter. 

 

 
Fig. 4. Type-1 Membership functions. 

 

4 Fuzzy Logic 

 
Type-2 fuzzy logic (T2FL) (Yang, 2014), is an advanced form of fuzzy logic designed to handle higher levels of uncertainty and 

imprecision. While traditional Type-1 fuzzy logic uses precise membership functions, Type-2 fuzzy logic extends this by 

incorporating a degree of uncertainty into the membership functions themselves. Applying the aforementioned framework, we 
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applied Type-2 Fuzzy Logic to the DA-FA and Cuckoo Search algorithms, with the next characteristics: Gaussian input as 

“iteration” and output as w or beta depending the case. We select 3 membership functions in the input, and 3 membership functions 

in the output and we apply three fuzzy rules: if iteration is low, then w and beta will be high, if iteration is medium, then w and 

beta will be medium, and if iteration is high, then w and beta will be low. 

  

4.1 Mamdani Centroid Defuzzifier 
 

The centroid defuzzifier combines the type-1 fired-rule output fuzzy sets using union, and then finds the centroid, 𝑦𝑐(𝑥′).  

 

                                                                               𝑦𝑐(𝑥) =
∑ 𝑦𝑖µ𝛽(𝑦𝑖|𝑥1) 𝑁

𝑖=1

∑ 𝜇𝛽(𝑦𝑖|𝑥1)𝑁
𝑖=1

                                                                     (12) 

 

4.2 Type-2 Fuzzy Sets 
 

A type-2 fuzzy set can be postulated as follows: 

 

                                                               𝐴~ = {((𝑥, 𝑢), 𝜇𝐴
−(𝑥, 𝑢)|𝑥 ∈ 𝑋, 𝑢 ∈≡ [0,1])}                                                  (13) 

 

A type-2 fuzzy sets (Mendel, 2017) (also called general type-2 fuzzy set), denoted ~A, is the graph of a bivariate function called 

the MF of ~A on the Cartesian product X [0,1] into [0,1], where X is the universe for the primary variable of ~A, x. The MF of 

~A is denoted 𝜇𝐴
−(𝑥, 𝑢), or 𝜇𝐴

− for short, and is called a type-2, the red color indicates the upper limit meantime the blue color 

indicates the lower limit and the gray color indicates the footprint of uncertainty, we can review this in Figure 5.  

 

 
Fig. 5. Type-2 membership functions. 

 

 

 

 

5 Results 

 
The experiments were performed under uniform conditions and applied to the first 5 functions in the case of DA-FA, and the 

original CS, both with type 2 fuzzy logic. The DA-FA algorithm demonstrated the following specifications when applied to the 

five mathematical functions: a population size of 40 agents, a maximum of 500 iterations, and a problem dimensionality of 1000. 

Similarly, the CS algorithm exhibited these characteristics: a population size of 40 agents, a maximum of 500 iterations, and a 

problem dimensionality of 100. A comparative analysis between DA-FA and the CS algorithm, both incorporating Type-2 Fuzzy 

Logic, is summarized in Table 1. 
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Table 1. Results of comparison from DAFA with Type-2 and Cuckoo Search with Type-2 with 100 dimensions. 

 
 DAFA CS 

 Type-2 F1 Type-2 F2 Type-2 F3 Type-2 F4 Type-2 F5 Type-2 OG 

 Agents: 40 Agents: 40 Agents: 40 Agents: 40 Agents: 40 Agents: 40 

 Iterations:500 Iterations:500 Iterations:500 Iterations:500 Iterations:500 Iterations:500 

 1000 Dim 1000 Dim 1000 Dim 1000 Dim 1000 Dim 100 Dim 

  

AVG 
2.64E+06 2.63E+147 9.66E+199 7.27E+01 5.30E+08 8.69E-06 

STD 1.10E+06 8.29E+147  3.69E+00 3.16E+08 1.41E-06 

  

The experiments were performed under the same conditions for consistency. The DAFA algorithm, was evaluated using five 

mathematical functions, with a setup consisting in 40 agents in the population, a limit of 500 iterations, and a problem 

dimensionality set to 1000. In parallel, the CS algorithm was tested under similar parameters: a population size of 40 agent, a 

maximum of 500 iterations, and a dimensionality of 1000. Table 2 highlights the comparison between the DAFA and the CS, both 

of which incorporate Type-2 Fuzzy Logic. 

 

Table 2. Results of comparison from DAFA with Type-2 and Cuckoo Search with Type-2 with 1000 Dimensions. 

 
 DAFA CS 

 Type-2 F1 Type-2 F2 Type-2 F3 Type-2 F4 Type-2 F5 Type-2 OG 

 Agents: 40 Agents: 40 Agents: 40 Agents: 40 Agents: 40 Agents: 40 

 iterations:500 iterations:500 iterations:500 iterations:500 iterations:500 iterations:500 

 1000 Dim 1000 Dim 1000 Dim 1000 Dim 1000 Dim 1000 Dim 

AVG 2.64E+06 2.63E+147 9.66E+199 7.27E+01 5.30E+08 3.30E-12 

STD 1.10E+06 8.29E+147  3.69E+00 3.16E+08 2.96E-12 

 

 

The experiments were executed under consistent conditions, regarding the DAFA algorithm, it has the following characteristics 

when applied to the 5 mathematical functions: involving a population of 40 agents, a maximum of 500 iterations, and a problem 

dimensionality of 1000. Regarding the CS algorithm, it has the following characteristic: involving a population of 40 agents, a 

maximum of 500 iterations, and a problem dimensionality of 2000.  Table 3 presents the comparisons between DAFA and CS, 

both with Type-2 Fuzzy Logic. 

 

Table 3. Results of comparison from DAFA with Type-2 and Cuckoo Search with Type-2 with 2000 Dimensions. 

 
 DAFA CS 

 Type-2 F1 Type-2 F2 Type-2 F3 Type-2 F4 Type-2 F5 Type-2 OG 

 Agents: 40 Agents: 40 Agents: 40 Agents: 40 Agents: 40 Agents: 40 

 iterations:500 iterations:500 iterations:500 iterations:500 iterations:500 iterations:500 

 1000 Dim 1000 Dim 1000 Dim 1000 Dim 1000 Dim 2000 Dim 

AVG 2.64E+06 2.63E+147 9.66E+199 7.27E+01 5.30E+08 2.63E-25 

STD 1.10E+06 8.29E+147  3.69E+00 3.16E+08 2.94E-25 
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6 Conclusions 
 

After designing and implementing the hybrid algorithm, the next step involved integrating Y2FL for adaptation of parameters. 

This enhancement aimed to improve the algorithm’s performance by addressing uncertainties in the parameter space. 

Subsequently, a comprehensive set of experiments was conducted using benchmark functions labeled F1 through F5. These 

functions are widely recognized in optimization research for evaluation algorithmic efficiency and effectiveness. The data 

collected from these experiments provided insights into the algorithm’s behavior across various optimization scenarios. 

 

To assess the effectiveness of the proposed approach, the performance of the hybrid algorithm with T2FL was systematically 

compared to that of the original CS algorithm. This comparison specifically focused on the impact of parameter adaptation using 

T2FL in achieving better convergence and solution quality, highlighting the advantages of the enhanced method over its baseline 

counterpart. As a preliminary conclusion, based on the experiments conducted so far using benchmark functions F1 through F5, 

the CS algorithm with the application of T2FL demonstrates superior performance when compared to the hybrid DA-FA algorithm 

also enhanced with T2FL. The results indicate that the CS algorithm achieves better outcomes, reinforcing its potential 

effectiveness and reliability in addressing optimization challenges. 
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