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Abstract. Residue Number System (RNS) allows performing computation more efficiently. Natural 

parallelism of representation and processing of numbers makes this number system suitable for applying 

to high performance computing. We address the main features of application of RNS to high-performance 

parallel computing. We consider and analyze different stages of data processing in RNS. Based on this 

analysis, we describe the process of decomposition of algorithms using RNS 
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1 Introduction 
 

High-performance computing has become an important field in modern world. The fact that the volume of data to be processed 

continuously grows and demands for speed and computing resources are becoming stricter should be taken into account. At the 

same time, to achieve the maximum efficiency, often, problem-oriented approaches are used. This paper analyzes the features of 

the implementation of high-performance computing algorithms using a special method of data representation in Residue 

Number System [1, 2]. 

 

Residue Number System (RNS) is a non-positional number system, with the absence of carries between the digits in arithmetic 

operations. Thus, RNS allows to use parallel computing due to the independence of the computing process for each digit. 

However, it should be taken into account that such a representation of data requires large amount of additional operations related 

to the conversion to and from RNS, and a number of other complex operations. 

 

All operations in RNS can be divided into two classes: non-positional (modular) operations, allowing parallelism and non-

modular operations related to the need to compute a positional characteristic of a number. The first class includes multiplication 

and addition. The second class of operations complicates the high-performance computing in RNS. The most important 

operations of this class are magnitude comparison of numbers and division. In this context, RNS is most often used to solve a 

certain class of problems in which the number of non-modular operations is minimized. Examples of such problems are digital 

filters of different nature [3], image processing [4], and big numbers processing [1, 2]. 

 

 

 

2 Computations in RNS 
 

RNS is based on modular non-positional representation of numbers. Each digit in RNS is a residue of the division by a number 

called a base. All bases for each digit are form a moduli set. The uniqueness of the representation of numbers in RNS is only 

guaranteed under the condition that all moduli are pairwise coprime. Let  – be a given moduli set. It determines 

a unique RNS. A number  in this RNS can be represented as follows: , where  for all 

. Note that according to Chinese Remainder Theorem  should belong to the interval , where 

 is dynamic range of the RNS. 
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With such a representation, addition and multiplication can be done in parallel. Let  and  

be numbers in RNS then their sum  and product  can be computed using 

following formulas  and , for all . These operations do not require carries between 

digits as in positional number systems. This property allows to perform these operations independently.  

 

 

 
Fig. 1. – Model of computations in RNS 

 

However, computations in RNS require a number of specific operations, without which it is impossible to represent numbers in 

RNS [3], Figure 1 shows the general model of computations in RNS. It includes the steps of the conversion to RNS and 

positional notation back from RNS. In addition, class of non-modular operations can be represented as a separate computational 

structure. These operations require special approaches associated with the estimation of the result. Computations for each digit 

can be done independently and in parallel. The highest performance is achieved for algorithms, which are based on addition and 

multiplication. 

 

An example of computational algorithms in which RNS can be applied to dramatically improve performance is linear system 

solvers that are used for instance in digital filtering [3]. They commonly use operations called accumulation represented in the 

following form: 

 

 
 

where  – is a system constant,  – system input.. If each numbers  and  are represented in RNS, the computational time 

decreases. 

 

Another important application is a cryptographic transformation. Most cryptographic operations are based on computations over 

a large modulus. They lead to rather complicated operations (finding the residue of division) with big numbers, exceeding the 

standard size of 64 bits. As studies in [2] show, in some cases, these operations can be efficiently implemented using residue 

number system. 

 

In general, RNS is very efficient in tasks that require computation with big numbers. However, it is necessary to take into 

account the features of this number system. For example, problems, in which there are many non-modular operations, obviously, 

cannot be effectively implemented in RNS. Selecting RNS parameters is one of the most difficult and important issues of the 

development of problem solvers based on RNS. 

 

 

3 Analysis of the structure of algorithms in RNS 
 

In this section, we discuss the main features of the implementation of RNS systems, based on the model presented in Figure 1. 

All operations can be divided into forward conversion of Weighted Number System (WNS) to RNS, and inverse conversion, 

computations in each digit and non-modular operations. We consider each type of operations separately. 
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3.1. Parallel operations in RNS and selection of moduli set 

 

The main advantage of RNS in the context of high performance computing is the opportunity to do some operations in parallel.  

Each number  from the interval  is substituted by  numbers , each of which belongs to the interval , for 

. Since  is the product of all , then  is larger then each . If  is of  bit length then each  (under the 

condition of balanced moduli set ) is of  bit length.  

 

Addition and multiplication have asymptotical complexity  and  respectively. In the best case multiplication has 

complexity  [5]. Using this property and combining addition and multiplication, we can achieve a 

dramatic increase in speed of computations, which are done in parallel in RNS.  

 

It is worth mentioning that arithmetic operations in positional (binary) number system are done by modulo , where  is the 

number of binary digits. Since 2 is the base of the number system, than finding residue modulo  can be seen as reduction of 

higher bits. Due to the fact that  should be pairwise coprime, only one of them can be the power of two. Consequently, 

computations over any other module from the moduli set require special methods that include finding residue. Requirement of 

additional resources for non-modular operations influences the performance of the system. 

 

In practice, to deal with this problem, special kind of moduli sets are used. For example, numbers of the form , where  

and  – are natural numbers. There are effective algorithms of performing non-modular operations over such kind of moduli set 

[6]. 

 

There are many different options for a moduli set, each of them may be used for certain applications.  

In the selection of a moduli set, a number of factors should be taken into account. This factors will influence the further 

computations in RNS. For a given platform for the implementation, concurrency and independence of computations over each 

modulus, it is necessary to: 

 

• Select the modules with a minimum computational cost for the given problem, taking into account the implementation 

of modular operations and considering the difficulty of forward and reverse RNS conversions. 

• Select balanced moduli set with respect to their magnitude and complexity of computations. If the moduli set is 

unbalanced, it may lead to long waiting time for some threads (nodes). 

• Minimize the redundancy of RNS representation. If  is the number of bits of a number in WNS, and  is 

number of bits required to represent that number in RNS, then, obviously, . Different moduli sets have 

different redundancy. It should be taken into account that redundancy leads to additional storage, transmitting and 

processing costs.  

 

Based on the analysis above, we can conclude that only a few algorithms can be effectively implemented in RNS. At the same 

time, for those algorithms for which RNS is applicable, the benefit from using RNS is essential because it utilizes the special 

kind of parallel computing parallelism at the level of data representation and arithmetic operations. This is very important under 

the conditions of development of modern computers with parallel structure such as the GPU and FPGA. 

 

 

3.1. WNS to RNS and reverse conversion 

 

WNS to RNS and RNS to WNS conversions are crucial to the performance of the system [2]. Moduli sets of special form allow 

to utilize useful properties of numbers contained in the moduli set, and construct effective algorithms for conversion between 

number systems.  

 

WNS to RNS conversion comes down to finding residues over each module from the moduli set. There are different approaches 

to do this depending on the module. It is worth mentioning that  is a constant that simplifies the algorithms. For example, a 

number  can be divided in  parts of  bit length each. In this case, we can use the following formula to find the residue: 
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This  formula allows to substitute the operation with  modular multiplications by a constant  and  modular 

additions. Moreover, the optimal choice of  implies that the results of partial products can be stored in look-up tables, which 

simplifies the process.  

 

To achieve maximum efficiency in computations of moduli of special form  can be used. For some moduli of that form, 

there are special methods to compute the residue of division [7]. Thus, due to special adders and periodicity of computations in 

the ring of residues, very efficient residue generators can be obtained. 

 

Since computation of residue for each modulus is independent, RNS conversion is one of the parallel operations. However, in 

spite of this fact and that there are effective approaches for computing residue of the division for some kinds of moduli, the 

conversion has a significant impact on the performance of the whole system. Unlike RNS, in WNS, there is no need for forward 

and reverse conversion. Therefore, when using the RNS to obtain efficiency in computations, it is essential to consider what 

computational costs the conversion requires and how it affects the performance of the algorithm. 

 

Influence of reverse conversion is even more significant due to the fact that unlike forward conversion it is non-modular and 

requires synchronization of parallel computations. This operation is considered to be the most challenging and important in 

RNS. A variety of methods are developed to implement it. 

 

Chinese Remainder Theorem (CRT) or its corollaries are usually applied to RNS to WNS conversion. There is a simple 

algorithm based on CRT which utilizes the formula 

 

 
 

 

(1) 

In this formula,  is represented as  in RNS with moduli set , and , , are 

constants of the system. The obvious disadvantage of this conversion method is that  is large. Even with proposed above 

improvements, it would require much computational resources to find residue over such a large module.  

 

To decrease the computational complexity of CRT, the following approach can be used [8]. Instead of modulus , that is rather 

large, we can use the modulus , for which, obviously, computations can be carried out more efficiently. In this case, we 

compute the value of  in 2 phases. In the first phase, we approximately estimate the weighted value , and, in the 

second phase, we represent  as . In order to make this conversion, we need to change the form of (1), taking into 

account the number of bits of the number required to do the rounding. Let the rounding be precise  decimals. Then, if we 

divide each constant by , we obtain the formula to compute the exact value of  from (1). If we multiply each constant by 

, and ceil, we obtain constants that are rounded by  decimals precise, and they are integers. Computations modulo  in the 

same order as in (1) allows to estimate first  decimals of : 

 

 
 

 

(2) 

Taking into account the error that occurs due to rounding of constants, the selection of  to obtain the exact value of  is an 

important problem. According to [8], the minimal  that is required for conversion for any moduli set can be calculated by the 

following formula: 
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where . 

 

Selection of moduli set can be done with various methods. Depending on the moduli set, different RNS to WNS conversion 

methods may be effective. 

 

There are several methods used in practice. The one of them uses mixed radix system (MRS) [9]. This system is weighted and 

weights are not numbers of the form  and so on, but arbitrary numbers. It is easy to show that, if we take RNS moduli 

set as weights, the dynamic ranges of RNS and mixed radix system are the same. This fact can be used for RNS to WNS 

conversion in 2 phases: conversion to MRS, and conversion to binary system. This method is called Mixed Radix Conversion 

(MRC). However, in a general case, this method is not the most efficient because it leads to modular computations and increase 

a number of operations. Nevertheless, with special kinds of moduli sets, MRC can be more efficient than earlier proposed 

approaches.  

 

Another important method is based on a recursive splitting of the RNS moduli set into two subsets [10]. The recursion is 

continued while a set contains more than two moduli. Thus the conversion is divided into a series of small steps, in which the 

number must be converted from 2-moduli RNS, with a significantly lower range then , and the moduli are partial products of a 

combination of RNS moduli set. This approach also increases the amount of computation, but can be very effective when the 

right moduli set and right partition are selected. Some of the moduli in combination may give new moduli, for which 

computations are effective. 

 

3.2. Non-modular operations 

 

One example of non-modular operations is magnitude comparison of numbers. Obviously, non-positional nature of RNS does 

not allow to determine which number is less or larger from its representation. Algorithms that imply large number of 

comparisons or similar operations are not suitable for implementation with RNS. Another example is division of numbers in 

RNS, which comes down to comparison of numbers. In a general case, to perform non-modular operations, it is necessary to 

estimate the position of the number represented in RNS compared to other numbers. The direct approach is to convert the 

numbers to WNS and compare them. But this approach is not effective.  

 

The simpler approach uses positional characteristics [11]. Positional characteristic of a number  in RNS is a value 

, for which  if . The main positional characteristics are: 

 

• The value of  represented in mixed radix system. This system is positional and has all the necessary properties what 

allows to estimate the positions of numbers.  

• Particular cases of core function [12], e.g. diagonal function [13]. Computation of core function is similar to a 

computation of  with (1). The difference is that the modulus is smaller than . However, in a general case, the 

efficiency of using core function is the same as in case of using CRT [14].  

• The value  estimated by (2). This approach is very efficient since it comes down to small amount of operations done 

modulo . 

 

However, non-modular operations are making computations in RNS difficult. The complexity of computing any positional 

characteristic is of the same order as reverse conversion. Most efficiency from RNS can be obtained in the case when the 

implemented algorithms have small number of non-modular operations.  

 

 

4 Conclusion 
 

Residue Number System is a numeral system that has parallel operations. Despite the obvious advantages of RNS as a method 

to improve the performance of computing, it has limitations. The above analysis does not cover all features of using RNS, but 

serve as the main base for any algorithm. From the performed analysis, we can conclude that in order to get maximum use of 

RNS, it is necessary to minimize the number of conversions, reduce non-modular operations, and make an optimal choice of 

moduli set. Parallel computing in RNS is different from parallel computing in WNS because after the conversion all operations 

become modular and require the implementation of special algorithms for addition and multiplication. 
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