
© International Journal of Combinatorial Optimization Problems and Informatics, Vol. 9, No. 1, Jan-April

2018, pp. 3-11. ISSN: 2007-1558.

Received Dec 2, 2017 / Accepted Jan 22, 2018

 Editorial Académica Dragón Azteca (EDITADA.ORG)

A GPU Parallel Finite Volume Method for a 3D Poisson Equation on

Arbitrary Geometries

M. A. Uh Zapata, F. J. Hernandez-Lopez

Consejo Nacional de Ciencia y Tecnología (CONACYT),

Centro de Investigación en Matemáticas A.C (CIMAT), Unidad Mérida, PCTY, 97302

Sierra Papacal, Merida, Yucatan, México

angeluh@cimat.mx; fcoj23@cimat.mx

Abstract. In this paper, we present a parallelization technique developed to solve an unstructured-grid

based Poisson equation on arbitrary three-dimensional geometries using CUDA over a GPU. The Poisson

problem discretization is based on a second-order finite-volume technique on prisms elements, consisting

of triangular grids in the horizontal direction and bounded by an irregular free surface and bottom in the

vertical direction. The resulting linear system is solved using the Jacobi method, and the parallelization is

designed by using different GPU memory management as shared, texture and managed memory.

Numerical experiments are conducted to test and compare the performance of the proposed parallel

technique.

Keywords: GPU computing, PGI CUDA Fortran, 3D Poisson equation, Unstructured grid, σ

transformation.

1 Introduction

Fast and accurate numerical solutions of the Poisson equation are important parts for the resolution of many computational

physics problems. Typically, the CPU (Central Processing Unit) is used to perform sequential and parallel simulations [1, 2];

however, the current trend is to perform parallel computations using GPUs (Graphics Processing Unit) due to their increasing

computational power and low cost. In this paper, a GPU-CUDA (Compute Unified Device Architecture) parallel solver is

presented for the finite volume (FV) discretization of the 3D Poisson equation on arbitrary geometries.

Many methods exist to solve linear systems associated with the discretization of the 3D Poisson equation for both structured and

unstructured meshes [3–5], but there are few works using parallel methods with a finite volume approach on 3D irregular

domains [6–9]. Traditionally, large linear systems are solved using iterative solvers. The Generalized Minimal Residual method

and the Conjugate Gradient are popular methods; however, classical stationary iterative methods such as Jacobi, Gauss-Seidel,

and Successive Over-Relaxation (SOR) methods have shown stability and high efficiency for this kind of problem [10].

Although the Jacobi method has slow convergence, the simplicity of its algorithm allows us to parallelize the program without

any changes.

There are several techniques used to parallelize the iterative linear solver such as GPU-CUDA, MPI, OpenMP, hybrid methods,

etc. As an initial parallel approach, in this paper, we propose a Jacobi method in which all the calculations were performed using

several kernels in a GPU-CUDA platform. For each kernel, we are allowed to configure several aspects of the grid, including

the number of threads per block, as well as the number of blocks. In the proposed algorithm, control volumes are processed in

rectangular blocks of data assigned to threads whose configuration was chosen to take advantage of the element distribution of

the problem and easy implementation of the code. Therefore, the novelty of this work is to present a strategy and the results of

our effort to exploit the computational capabilities of GPUs under the CUDA environment in order to solve the 3D Poisson

equation using a finite volume method on arbitrary geometries.

This paper is organized as follows. The second section presents the Poisson equation in the σ-coordinate system, the FV

discretization, and the Jacobi linear solver. The third section deals with the parallelization method using GPUs. The fourth

section is devoted to numerical examples. Finally, the last section includes the conclusions and future work.

Uh Zapata and Hernández-Lopez / A GPU Parallel Finite Volume Method for a 3D Poisson Equation on

Arbitrary Geometries. IJCOPI Vol. 9, No. 1, Jan-April 2018, pp. 3-11. EDITADA. ISSN: 2007-1558.

4

2 The Finite Volume Discretization

Let us consider a Poisson equation in a 3D irregular domain (1) of the form

 (1)

where Γ is the dispersion coefficient. The free surface elevation and the irregular bottom of the domain are changed to a new

coordinate using the σ-coordinate transformation (1). It is given by x∗ = x, y∗ = y, and σ = (z +h)/H (x, y), where H = h + η is

the total depth with h being a reference depth and η the free surface [11]. Thus, the 3D Poisson equation in σ-coordinates

domain Ω∗ is

(2)

where σx, σy , σz are the partial derivatives of the transformation.

Fig. 1. Example of a physical domain in the Cartesian and σ-coordinate system.

A FV method is chosen to discretize the Poisson problem (2) using a cell- center collocated grid. Thus, the domain Ω∗ is

discretized using prism-shaped control volumes: triangular cells in the horizontal domain and a rectangular grid in the vertical

domain, see Fig. 2 (b). Following a standard FV scheme, we can write the Poisson equation (2) as a balance equation and apply

Green’s theorem as follow

(3)

This discretization involves the knowledge of derivatives at the boundary ∂b (consisting of the five faces of a prism) which are

approximated as

where Ai is the area of the interface region Si, ni is the outward normal unit vector and the (Γ K φ)i approximate the functions

over the interface between two neighboring control volumes. The approximation of Γi and Ki can be calculated averaging the

two neighbors. However, there is no way to directly calculate the numerical flux φi in terms of the cell-center values. In this

paper, we approximate the gradient as an average over a new 3D region delimited by the two cell-centered points and the

vertices of the interface as shown in Fig. 2 (b) [10].

Uh Zapata and Hernández-Lopez / A GPU Parallel Finite Volume Method for a 3D Poisson Equation on

Arbitrary Geometries. IJCOPI Vol. 9, No. 1, Jan-April 2018, pp. 3-11. EDITADA. ISSN: 2007-1558.

5

j

Fig. 2. (a) 3D control volume and (b) region to approximate the interface gradient.

The FV discretization results in a linear system Aφc = f where an unknown value φc0 is related to the surrounding cell-

centered values φcj
(j = 1, 5) and auxiliary vertex values φv (j = 1, 6) of a control volume by

(4)

where aj (j = 1, 5) and bj (j = 1, 6) are the FV coefficients relating the cell- centered and vertex values, respectively.

The value at any vertex is obtained by averaging over all surrounding cell-centered nodal values as

(5)

with ωs = 1/Ls as weighting value, where Ls is the distance between the vertex and the cell-centered node. The number of

values of s depends on each vertex. Finally, Dirichlet conditions are imposed at the boundary, and they are included in the

problem as updates of ghost cell-centered values.

As was mentioned before, we find the solution of the resulting linear system by the Jacobi method. In this study, we consider the

vertex values as a part of the right-hand side of our problem. However, these values are not fully considered as a fixed term as

was the case for the vector f. It should be updated at each iteration using interpolation (5) of the previous iteration unknowns.

Thus, the Jacobi method solves the new iteration as:

(6)

where Nc is the total number of cell-centered points and r is the residual given by

(7)

The (m + 1) values are from the current iteration, and (m) values are from the previous iteration. The iteration will be stopped

only when the convergence is obtained. In this iterative solver, each component at the new iteration depends on only previously

computed components from the same iteration. It has slow convergence; however, it offers a simple parallel implementation

Uh Zapata and Hernández-Lopez / A GPU Parallel Finite Volume Method for a 3D Poisson Equation on

Arbitrary Geometries. IJCOPI Vol. 9, No. 1, Jan-April 2018, pp. 3-11. EDITADA. ISSN: 2007-1558.

6

3 The Finite Volume Discretization

Now we discuss the parallel implementation of iterative solver (6)-(7) using GPU-CUDA. In order to enable CUDA

programming directly in Fortran using a GPU, NVIDIA and Portland Group, Inc. (PGI) created CUDA Fortran [12]. A GPU

contains multiple transistors for the arithmetic logic unit, which is exploited when multiple data are managed from one simple

instruction in parallel. Typical GPU processing involves first transferring the input data from CPU memory to GPU memory;

next the data are processed into a kernel function, and then the output data are transferred from GPU memory to CPU memory.

The CUDA programming model can run thousands of threads that are grouped into blocks; threads in each block cooperate in an

organized way by using the shared memory and can be synchronized into the kernel function. For this particular problem,

elements are processed in rectangular blocks of data assigned to threads as shown in Fig. 3. This configuration was chosen to

take advantage of the element distribution of the problem and allow for easy code implementation.

Fig. 3. Mapping of a 3D computational domain to a 2D matrix for the topological distribution of the blocks and threats in the

CUDA parallelization.

An essential part of maximizing the performance of our parallel implementation is the GPU memory management (Fig. 4).

Kernel functions can read and write in the GPU device global memory using a controller integrated into the GPU. Each thread

block has a limited shared memory space (16 to 48 KB) which can be read and written only inside of the block, and is 10 times

faster than accesses to global memory [13]. The texture is a read-only cache, which is basically a reference to a CUDA array

and contains information on how the array should be interpreted. On the other hand, the unified memory defines a managed

memory space in which all CPU and GPU processors see a single coherent memory image with a common address space. Note

that for using the unified memory it is not necessary to transfer data from CPU memory to GPU global memory and vice-versa.

Fig. 4. Memory management between CPU and GPU

We develop three versions of the parallel Jacobi method according to the type of memory used. In the first version (CUDA D),

we only use the device global memory, in the second version (CUDA DT), we use texture memory and device global memory,

and in the third version (CUDA DTM), we use managed memory in addition to texture and device global memory.

The following three kernels are used for each iteration:

Uh Zapata and Hernández-Lopez / A GPU Parallel Finite Volume Method for a 3D Poisson Equation on

Arbitrary Geometries. IJCOPI Vol. 9, No. 1, Jan-April 2018, pp. 3-11. EDITADA. ISSN: 2007-1558.

7

1. k_JacobiMethod. Used to implement all calculations for a single iteration of Jacobi method and to implement one of the

most complicated tasks in the code, the calculation of the error. The proposed parallel versions are as follows:

 In the CUDA D version, the values cj (m+1), cj (m), vj , ɑij, ƅij and ƒci required in (6), reside in matrices loaded in the GPU

device global memory. The error is calculated as the sum of residuals (7) of all elements. We calculate part of this sum using

a variable in the shared memory space, computing partial reductions in each thread block. Then, we transfer the partial

reductions to the CPU memory and the rest of the sum is computed by the CPU.

 In the CUDA DT version, we are using texture memory for cj (m), vj , ɑij, ƅij and ƒci values because are not modified inside

the kernel, i.e. they can be managed as read-only memory. The values cj (m+1) are used as GPU device global memory and

the errors are calculated as in the CUDA D version.

 In the CUDA DTM version, the iteration update is calculated the same as in the CUDA DT version; however, the

calculation of the error differs. In previous versions, the rest of the sum is computed by the CPU. Meanwhile, in our new

version, we are using managed memory for saving the partial reductions. Then the rest of the sum is computed by the GPU

in the unified memory, taking advantage of the fact that the host intrinsic function “sum” is overloaded to accept device or

managed arrays, when the CUDA for the module in PGI Fortran is used.

2. k_BoundaryCondition. Used to compute the boundary conditions. The Dirichlet condition is applied at all boundaries using

a ghost element technique. First, we compute the vertical bounded conditions over φc. Next, the threads are synchronized

inside the kernel, in order to compute the horizontal bounded conditions. Here, we are using a pre-computed function for

the boundary cell center points. In our CUDA DT and DTM versions, this function is loaded in texture memory.

3. k_Interpolation. Used to compute the interpolation technique from the cell-centered values to the vertex values. The

calculation effort to obtain the vertex values is comparable with the update solution per computed element. For computing

the interpolation of the vertex values φv (5) in each call center, we fix the maximum number of surrounding neighborhoods

(nine in our experiments). In this way, we unroll the loop which traverses the surrounding neighborhoods, considering

weighting value ωs = 0 when there is not a surrounding neighbor. In this kernel we also apply the boundary conditions over

the vertexes, using a pre-computed function which can be loaded in texture memory as in the previous kernel

k_BoundaryCondition.

Algorithm 1 shows a PGI CUDA Fortran code excerpt from the CUDA DTM version of the parallelized Jacobi method, where

we specify the type of memory to use and the kernel calls. Note that the thread block size tBlock is the same for all launched

kernels. The size is fixed according to the best performance found in our numerical experiments. The grid size grid is calculated

by dividing the number of cell-centered points by the block size in x and y dimensions, while the grid size gridv is calculated by

dividing the number of vertex points by the block size (Fig. 3).

Algorithm 1. CUDA DTM version for the Jacobi parallel implementation

use cu d af o r
real ∗ 8 , dimension (:) , allocatable : : h p hi real ∗
8 , dimension (:) , device , target , allocatable : : d p hi real ∗ 8 ,
dimension (:) , device , target , allocatable : : d phiNew real ∗ 8 , te
xtu re , pointer : : t p h i (:)
real ∗ 8 , dimension (: , :) , managed , allocatable : : m error

d p hi = h p hi ! Copy memory from CPU to GPU t p
h i => d p hi ! Texture p o i n t s to the d e v i c e

500 continue
e r r o r = 0 . 0 d0
c a l l k Jacobi Method <<<g rid , t Block , shared mem >>>()
c a l l k Boundary Condition <<<g rid , t Block >>>()
c a l l k I n t e r p o l a t i o n <<<g ridv , t Block >>>() d p
hi = d phiNew
e r r o r = sum(m error)

i f (e r r o r . gt . 1 e −6) goto 500

h p hi = d p hi ! Copy memory from GPU to CPU

Uh Zapata and Hernández-Lopez / A GPU Parallel Finite Volume Method for a 3D Poisson Equation on

Arbitrary Geometries. IJCOPI Vol. 9, No. 1, Jan-April 2018, pp. 3-11. EDITADA. ISSN: 2007-1558.

8

4 Numerical Experiments and Results

In this section, we discuss various numerical experiments comparing our solver in sequence and parallel. We report the results

of the examples on a twenty-core 3.0 GHz Intel Xeon server with a Tesla K40 and Ubuntu 14.04 (64-bits). CUDA kernels were

compiled using the pgf90 compiler from PGI CUDA Fortran 2016. The results have been obtained after averaging over several

simulations of the same cases. The Jacobi method is used with a tolerance value of ε = 10−6.

For validation and comparison purposes we applied our parallel solvers to an example with a known analytical solution. We

solve the Poisson problem (1) with diffusive coefficient Γ = 1. The right-hand side forcing function and its corresponding

analytical solution are given by the functions.

f (x, y, z) = −3π2 sin(πx) sin(πy) sin(πz),

φ (x, y, z) = sin(πx) sin(πy) sin(πz).

The domain is designed to test the numerical approximation over an irregular configuration. In this example, we
consider the domain as shown in Fig. 5. The horizontal domain consists of a curvilinear section of the rectangular
domain [0, 1]x[0, 1]. The irregular bottom and the free surface were chosen using H(x, y) = 0.1[sin(π(x+y))+(x+y) -

3.5], and η(x, y) = 0.05[sin(2πx) sin(4πy)+ 5], respectively.

Fig. 5. Domain with irregular free surface and bottom using different viewpoints.

The numerical simulations were performed using different mesh resolutions in the horizontal direction and different divisions of

the vertical direction. Details of the horizontal meshes are given in Table 1 and Fig. 6. In this table, we do not include the

number of ghost cells added to the domain to deal with the boundary conditions. The finest resolution (Mesh 3 and Nz = 128)

has approximately 12 million cell-centered points and 6 million vertices.

Table 1. Size of the 3D control volumes used in the numerical experiments.

 Vertex Cell-centers

 Vertical (Nz)

 Vertical (Nz - 1)

Mesh 2D 32 64 128 2D 31 63 127

1 526 16,832 33,664 67,328 922 28,582 58,086 117,094

2 12,246 391,872 783,744 1,567,488 23,801 737,831 1,499,463 3,022,727

3 48,050 1,537,600 3,075,200 6,150,400 94,699 2,935,669 5,966,037 12,026,773

Uh Zapata and Hernández-Lopez / A GPU Parallel Finite Volume Method for a 3D Poisson Equation on

Arbitrary Geometries. IJCOPI Vol. 9, No. 1, Jan-April 2018, pp. 3-11. EDITADA. ISSN: 2007-1558.

9

Fig. 6. Different mesh resolutions used in the horizontal coordinate.

The FV approximation, the analytical solution and the absolute errors of the solution of the Poisson equation using Mesh 1 and

Nz = 32 are shown in Fig. 7. The numerical results show that the proposed method approximates very well the solution. Precise

results are also obtained using different mesh resolutions.

Fig. 7. Numerical approximation, analytical solution and absolute errors for the solution of the Poisson equation using Mesh 1

and Nz = 32.

Table 2 shows the comparison between the analytical solution, Jacobi iterative solver proposed in this paper. In these

simulations, the analysis of the error have been performed using the L∞-norm and L2-norm [14]. For comparison, the sequential

SOR method (with relaxation parameter ω = 1.1) is also calculated. The number of iterations and simulation time is also

displayed in Table 2. It is important to remark that exactly the same errors were obtained for both sequential and parallel

programs. It can be noticed that the accuracy increases as finer meshes are used. However, the number of iterations increases as

the number of control volumes of the unstructured grid is increased; consequently, more simulation time is required. For

example, the Jacobi simulation with the finest resolution required 60135.84 seconds (about 17 hours) to converge to the

solution. We can also notice in Table 2 that the number of iterations of the Jacobi and SOR method is quite different. As we

expected, the Jacobi method takes many more iterations for the same residual. However, the GPU-CUDA parallel version of the

Jacobi method works so fast that it becomes attractive for applications.

Table 2. Norms of the error, simulation time and iterations of the different solvers for the solution of the Poisson equation.

Mesh Nz
Error

L∞-norm L2-norm
Jacobi

Time (s) Iter.
SOR

Time (s) Iter.
1 32
2 64
3 128

1.02 × 10−2 1.50 × 10−3

3.12 × 10−3 3.08 × 10−4

1.40 × 10−3 1.52 × 10−4

4.52 3,360
1738.82 25,409

60135.84 107,730

0.97 738
726.93 11,288

24,625.36 46,971

The performance of the Jacobi method is investigated in terms of the total time simulation and speedup. We have analyzed the

behavior of the Jacobi algorithm with respect to the number of threads in each block. The influence of the number of threads in

each block is significant but not critical, the best performance is obtained using 2 threads in x dimension and Nz threads in

y dimension for each block (2 × Nz threads in each block). Note that this number is lower than the total number of threads

allowed in a GPU (512 or 1024 depending on the GPU architecture).

Uh Zapata and Hernández-Lopez / A GPU Parallel Finite Volume Method for a 3D Poisson Equation on

Arbitrary Geometries. IJCOPI Vol. 9, No. 1, Jan-April 2018, pp. 3-11. EDITADA. ISSN: 2007-1558.

10

Time and speedup of the Jacobi method for different mesh sizes are shown in Table 3. We can see the same qualitative behavior

for each version of our method: the speedup improves with the size of the problem and it is within the same order of magnitude

with respect to the Nz chosen. The best results are obtained using Mesh 3 with Nz = 128 (the finest mesh). The problem can be

solved more than 35× faster than its sequential version. Notice that the speedup of Mesh 2 with Nz = 128 is similar to the

speedup of Mesh 3 with Nz = 32 ( 18×) because the total number of control volumes in both cases is of the same order.

We analyze the use of texture (CUDA DT) and managed memory (CUDA DTM) separately. The performance improvement

obtained with texture memory is significant compared with the use of device global memory, since almost all the values

required in the kernel k_JacobiMethod are loaded into read-only texture memory, and these values are accessed for a large

number of iterations. Note that the speedup of the problem can be increased by 10 times. On the other hand, when we use

managed memory for the total error computation, the results are worse than employing the shared memory for partial reductions

and the CPU to reduce the rest of the sum (simulations are not shown here). In contrast, the use of managed memory only to

reduce the remainder sum leads to a slight improvement (CUDA DTM).

Table 3. Performance of the GPU-CUDA Jacobi method using different grids.

Mesh

Nz
Sequential

Time (s)
CUDA D

Time (s) Speedup
CUDA

Time (s)
DT

Speedup
CUDA

Time (s)
DTM

Speedup
1

1

1

32

64

128

4.52

27.33

193.37

0.60

3.56

35.42

7.53

7.67

5.45

×
×
×

0.54

3.21

30.75

8.37

8.51

6.29

×
×
×

0.53

3.19

30.14

8.53

8.57

6.42

×
×
×

2

2

2

32

64

128

743.19

1,738.82

5,018.89

41.83

91.78

277.83

17.76

18.94

18.06

×
×
×

26.50

55.30

163.56

28.04

31.44

30.69

×
×
×

25.03

53.82

161.47

29.69

32.31

31.08

×
×
×

3

3

3

32

64

128

11,734.84

25,511.24

60,135.84

626.34

1276.06

2934.38

18.74

20.00

20.49

×
×
×

384.01

756.57

1708.39

30.56

33.72

35.20

×
×
×

364.93

737.09

1681.11

32.16

34.61

35.77

×
×
×

In figure 8 shows the results of the three CUDA parallel versions using Mesh 2 and varying Nz values from 32 to 128. We

notice that the vertical size initially is not a significant factor that influences parallel performance. The reason is that the gap

between the number of control volumes of two resolutions is not so large. However, if more vertical points are used, then there

is a slight improvement in the speedup.

Fig. 8. (a) Simulation times and (b) speedups of the Jacobi method for different CUDA parallel versions.

Although the discussion presented so far reveals the advantages of using the parallel versus the sequential version of the Jacobi

method, the proposed parallel algorithm is also competitive with the sequential SOR method. For example using Mesh 3 and Nz

Nz = 128, the SOR method takes 24,625.36 seconds (almost 7 hours) to perform 46,971 iterations, only the 40% of the Jacobi

sequential simulation time; however, the parallel CUDA DTM version takes only 1681.11 seconds (i.e., 14.6× faster than the

sequential SOR method).

Uh Zapata and Hernández-Lopez / A GPU Parallel Finite Volume Method for a 3D Poisson Equation on

Arbitrary Geometries. IJCOPI Vol. 9, No. 1, Jan-April 2018, pp. 3-11. EDITADA. ISSN: 2007-1558.

11

5 Conclusions

In this paper, we have presented results for parallelized Jacobi iterations applied to solve a finite volume discretization of the

Poisson equation. Such a method provides an attractive way to obtain fast simulations for 3D irregular domains. Code written in

Fortran was run for both sequential and parallel cases employing a GPU-CUDA code. Although the parallel algorithm is

straightforward, GPU memory management was used to maximize the performance of our parallel implementation. The results

were tested in different mesh sizes in the horizontal and vertical directions. Results are extremely promising. By numerical

experiments, it was found that the final parallel method has a high speedup, being more than 35 times faster than its sequential

version in fine grids and more than 15 times faster than the (sequential) SOR method. Further work will involve optimization

techniques in the code to obtain faster simulations. The number of iterations of the Jacobi method is reduced by considering the

SOR method, but this method is not well-suited to straightforward parallel implementation because residual values depend on

the previous iteration. In future work, we plan to develop a GPU parallel implementation of the multi-color SOR method for

unstructured grids.

References

1. H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. Chapman (2011). High performance computing using MPI and OpenMP

on multi-core parallel sys- tems. Parallel Computing, 37(9): 562-575.

2. M. Uh Zapata, D. P. Van Bang and K. D. Nguyen (2016). Parallel SOR methods with a parabolic-diffusion acceleration technique for

solving an unstructured-grid Poisson equation on 3D arbitrary geometries. International Journal of Computational Fluid Dynamics, 30(5):

370-385.

3. Y. Notay, A. Napov (2015). A massively parallel solver for discrete Poisson-like problems. Journal of Computational Physics, 281: 237-

250.

4. T. Tang, W. Liu and J. M McDonough (2013). Parallelization of linear iterative methods for solving the 3-D pressure Poisson equation

using various programming languages. Procedia Engineering, 61:136-143.

5. O. B. Fringer, M. Gerritsen, & R. L. Street (2006). An unstructured-grid, finite- volume, non-hydrostatic, parallel coastal ocean simulator.

Ocean Modelling, 14(3): 139-173.

6. Y. Sato, T. Hino, K. Ohashi, (2013). Parallelization of an unstructured NavierStokes solver using a multi-color ordering method for

OpenMP. Computers & Fluids, 88: 496-509.

7. M. Cheng, G. Wang, H. Hameed Mian, (2014). Reordering of hybrid unstructured grids for an implicit NavierStokes solver based on

OpenMP parallelization, Computers & Fluids.

8. M. Su, J.-D. Yu, (2012). A parallel large eddy simulation with unstructured meshes applied to turbulent flow around car side mirror,

Computers & Fluids, 55: 24-28.

9. J. Waltz (2004). Parallel adaptive refinement for unsteady flow calculations on 3D unstructured grids. International journal for numerical

methods in fluids, 46(1): 37-57.

10. M. Uh Zapata, D. P. Van Bang and K. D. Nguyen (2014). An unstructured finite volume technique for the 3D Poisson equation on

arbitrary geometry using a - coordinate system. Int J Numer Meth Fluid, 76(10): 611-631.

11. N. A. Phillips (1957). A coordinate system having some special advantages for numerical forecasting, J. Meteor., 14: 184-185.

12. PGI CUDA Fortran Compiler (2016, December 09), https://www.pgroup.com/ resources/cudafortran.htm.

13. N. Wilt (2013). The cuda handbook: A comprehensive guide to gpu programming. Pearson Education.

14. M. Zlhmal (1978). Superconvergence and reduce integration in the finite element method, Math. Comp., 32 (663).

