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Abstract. This paper explores the application of advanced deep 

learning models, particularly YOLOv7, for helmet detection in 

construction sites to enhance workplace safety. The study 

evaluates YOLOv7's performance using key metrics such as 

precision, recall, mean Average Precision (mAP), and F1 score, 

ensuring a comprehensive assessment of its detection accuracy 

and efficiency. A comparative analysis with YOLOv8 

highlights YOLOv7’s superior performance in detection 

accuracy and computational efficiency, making it a practical 

choice for resource-constrained environments. Despite 

challenges such as adapting to dynamic and complex 

construction site conditions, YOLOv7 proves to be a reliable 

and efficient tool in real-time safety monitoring. YOLOv7 

achieved a precision of 0.659 and a recall of 0.641, 

demonstrating strong detection capabilities while maintaining 

lower computational requirements compared to YOLOv8, 

which achieved a precision of 0.783 and a recall of 0.756. The 

findings suggest that YOLOv7-based helmet detection systems 

can significantly reduce human error, improve worker safety, 

and contribute to lowering incident rates. Thus, the results 

emphasize the potential of deep learning in transforming safety 

protocols, ensuring regulatory compliance, and fostering a 

culture of accountability in construction. 
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1  Introduction 

 

Occupational health and safety are critical concerns in industries such as construction, manufacturing, and 
mining, where workers are frequently exposed to hazardous conditions. Among the various safety measures, 

wearing a helmet is one of the most fundamental protections against head injuries [1]. Helmets play a vital 

role in reducing the impact of falling objects, collisions, and accidental slips, significantly lowering the risk 

of traumatic brain injuries [2, 3]. According to the Occupational Safety and Health Administration (OSHA), 

head injuries account for a considerable percentage of workplace fatalities and severe injuries [4]. Ensuring 

helmet compliance in such environments is essential for worker safety and regulatory adherence, making 

helmet detection an important aspect of occupational safety management. Effective helmet detection is 

crucial for ensuring worker safety, reducing workplace injuries, and complying with safety regulations. 

Manual monitoring methods are prone to human error and inefficiency, especially in large-scale 

construction sites where constant supervision is challenging. Automated helmet detection systems can 

address these limitations by providing real-time monitoring and compliance enforcement. By leveraging 
advanced image processing and artificial intelligence (AI) techniques, such systems can detect non-

compliance cases instantly and alert safety personnel, reducing the likelihood of accidents and enhancing 

overall workplace safety [5-8]. Additionally, automated helmet detection can aid in regulatory compliance, 

as many labor laws mandate strict adherence to personal protective equipment (PPE) protocols. 
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Deep learning has revolutionized the field of computer vision, particularly in object detection tasks [9-15]. 

Traditional computer vision techniques often struggle with varying lighting conditions, occlusions, and 

diverse object appearances, limiting their effectiveness in real-world applications [16, 17]. However, deep 

learning-based object detection models, especially convolutional neural networks (CNNs), have 

demonstrated superior accuracy and robustness [18-20]. These models automatically learn hierarchical 

features from images, enabling them to detect objects with high precision. State-of-the-art object detection 

architectures, such as Faster R-CNN, SSD, and YOLO (You Only Look Once), have significantly improved 

detection accuracy and speed [21-24]. Among these, YOLO-based models have gained widespread adoption 
due to their real-time processing capabilities, making them suitable for safety monitoring applications [25-

29]. The YOLO family of models has undergone several iterations, each introducing enhancements in 

accuracy, speed, and computational efficiency [30, 31]. YOLOv7, the latest in this series, offers significant 

improvements in object detection through innovative architectural modifications, including extended 

efficient layer aggregation networks (E-ELAN) and model scaling techniques. Unlike its predecessors, 

YOLOv7 achieves a better balance between detection accuracy and computational efficiency [21, 32], 

making it particularly suitable for real-time deployment in UAV-based safety systems, as confirmed in our 

computational tests. Evaluating YOLOv7’s effectiveness in helmet detection is crucial, particularly in 

resource-constrained environments where computational efficiency is a determining factor for deployment 

feasibility. 

 
Unmanned Aerial Vehicles (UAVs) have emerged as powerful tools for safety monitoring, surveillance, and 

inspection in hazardous environments [33]. UAVs offer the advantage of mobility, allowing for efficient 

monitoring of large-scale construction sites without the need for constant human supervision [34]. Equipped 

with high-resolution cameras and AI-based object detection models, UAVs can be deployed to inspect 

construction sites, detect non-compliance with safety regulations, and enhance overall workplace safety [35-

37]. The integration of UAVs with automated helmet detection systems presents an opportunity to improve 

safety enforcement while minimizing the need for manual intervention. Integrating object detection models 

with UAVs requires the consideration of various factors, including camera resolution, real-time processing 

capabilities, and system compatibility with embedded computing platforms. UAVs must be equipped with 

onboard computing systems capable of running deep learning models efficiently while maintaining real-

time processing speeds. Edge computing devices, such as NVIDIA Jetson boards, offer a practical solution 
by enabling AI-powered object detection directly on UAVs [38]. This integration allows for real-time helmet 

detection, instant alerts, and data logging, facilitating proactive safety management in dynamic construction 

environments. 

 

In this study, we explore the application of YOLOv7 for helmet detection in construction sites using UAV-

based monitoring. By leveraging the high-speed detection capabilities of YOLOv7, our approach aims to 

provide an efficient and scalable solution for workplace safety enforcement. The UAV-mounted system 

captures real-time video footage of construction sites, processes the images using YOLOv7, and identifies 

instances of non-compliance with helmet-wearing regulations. The results are analyzed to assess the 

accuracy, efficiency, and feasibility of deploying such a system in real-world conditions. Our study also 

compares YOLOv7’s performance with previous YOLO versions to evaluate its advantages and limitations 

in helmet detection tasks. Conclusively, this paper presents a structured evaluation of UAV-based helmet 
detection using YOLOv7, addressing the need for efficient safety monitoring solutions in construction 

environments. The study examines the integration of deep learning-based object detection with UAVs, 

evaluates the computational efficiency of YOLOv7, and provides insights into the feasibility of deploying 

such a system for real-time safety compliance monitoring. The findings contribute to the ongoing 

development of AI-driven safety solutions, offering practical implications for improving occupational health 

and safety enforcement in high-risk industries. 

 

 

 

 

 

 

 



Salem Jassim et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 16(3) 2025, 323-333. 

325 

 

2 Experimental Procedures 
 

2.1 YOLOv7 Detection Algorithm 

 

This study utilizes YOLOv7, a single-shot detection algorithm widely recognized for its modular and 

innovative architecture as well as its high accuracy and efficiency in real-time object detection. As a single-

stage object detection model, YOLOv7 analyzes an input image just once to perform both classification and 

localization tasks simultaneously [39]. Thanks to its enhanced network architecture and optimizations 

compared to earlier YOLO models, YOLOv7 delivers superior performance with high accuracy, speed, and 

efficiency. It excels in real-time applications with minimal hardware requirements. Its ability to detect both 

small and large objects simultaneously makes it a versatile algorithm, distinguishing it from others. 

Innovative features like the Extended Efficient Layer Aggregation Network (E-ELAN) [40] allow the model 
to learn deeper and more complex features, while scaling methods enable precise adjustments to depth and 

width. 

 

As illustrated in Figure 1, the YOLOv7 architecture comprises three primary components: Backbone, Neck, 

and Head [41]. The Backbone component is responsible for extracting meaningful features from the input 

image, generating valuable data fragments from raw, low-resolution pixel information. This process is 

achieved using a CNN architecture [42]. The Backbone processes the low-level pixel data to derive higher-

level features, enabling accurate object differentiation. YOLOv7’s Backbone is reinforced with components 

like CBS (Convolution – BatchNorm – SiLU) and E-ELAN. E-ELAN enhances the network’s learning 

capacity and optimizes gradient paths, facilitating the learning of deeper and more complex features. The 

CBS module streamlines feature extraction and learning processes, increasing the model’s stability while 
ensuring efficient performance. It is an integral component of modern learning networks, contributing to 

their effectiveness and reliability. The ELAN structure strengthens information flow across layers in the 

YOLOv7 architecture, increasing both the width and depth of the network for more detailed feature 

extraction. By optimizing and aggregating information from multiple layers, ELAN enhances the model's 

ability to recognize and detect complex objects at varying resolutions. The Backbone’s MaxPooling1 block 

reduces the spatial resolution of the input while retaining critical features, filtering out noise, and reducing 

computational load for improved efficiency. 

 

 
Figure 1. The overall architecture and key components of YOLOv7. 

 

The Neck component utilizes the features extracted by the Backbone to create feature pyramids, enabling 

the detection of objects at different scales within the image [43]. By combining feature maps from various 

layers at different resolutions, YOLOv7 ensures effective detection of objects regardless of their size. This 
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integration of features from different resolutions facilitates the simultaneous detection of small, medium, 

and large objects. Advanced operations such as linking and rearranging further enhance the algorithm’s 

learning capacity. Moreover, the High-Level Efficient Layer Aggregation Network (ELAN-H) used in the 

Neck delivers exceptional performance in multi-scale object detection tasks, optimizing information flow. 

With its multi-input and multi-output structure, ELAN-H efficiently resizes low-resolution data features, 

providing a significant advantage for detecting smaller objects. The SPPFCSPC block, a powerful module 

within YOLOv7’s Backbone, combines Spatial Pyramid Pooling Fast (SPPF) and Cross Stage Partial 

Network (CSPNet) structures [44]. SPPF applies pooling operations of varying sizes (e.g., 1x1, 5x5, 9x9) 
to aggregate spatial information at different scales, enabling better detection of large and small objects while 

minimizing spatial information loss. 

 

UpSample modules scale low-resolution feature maps to higher resolutions for detailed and high-resolution 

analysis, enabling multi-scale predictions for improved detection of smaller objects. MaxPooling2 (MP2) 

resizes resolution to merge feature maps from different scales, summarizing information from deeper layers 

and enhancing the model’s multi-scale detection capability. By emphasizing distinct data features, MP2 

facilitates better focus and learning for YOLOv7, minimizing information loss by selecting the maximum 

value from specific regions of the feature map. The RepConv module introduces a significant update to 

YOLOv7’s architecture, distinguishing it from previous YOLO family members. RepConv enhances model 

speed by reorganizing and merging parameters from multiple layers in earlier convolutional networks. It 
uses 1x1 convolution to enable stronger feature extraction, accommodating the complex structure of 

convolutional layers. 

 

The Head component of YOLOv7 generates the final detection results, leveraging features extracted by the 

Backbone and Neck to classify objects and position bounding boxes. At this stage, the model predicts object 

classes and locations, completing the inference process. Innovative modules like Conv1x1 play a critical 

role in YOLOv7’s Head, offering efficient and rapid predictions without altering resolution. Each grid cell 

processes only its pixel channel data independently of neighboring pixels, making it vital for outputting 

results for each grid cell in the image. YOLOv7’s Conv1x1 module extracts both bounding box coordinates 

and class predictions for each grid cell. Despite maintaining resolution, 1x1 convolutions significantly 

increase information density, contributing to YOLOv7’s speed and efficiency. Additionally, for a more 
comprehensive comparison, Table 1 summarizes the key differences between YOLOv7 and YOLOv8. The 

table focuses on several important factors, such as the architecture, detection accuracy, inference speed, and 

computational efficiency of each model. 

 

Table 1. Key difference between YOLOv7 and YOLOv8. 

Feature YOLOv7 YOLOv8 

Model 
Architecture 

Utilizes a slightly older backbone with 
traditional convolutional layers and network 
design. 

Features an improved backbone with more 
efficient convolutional operations and 
optimized layers. 

Detection 
Accuracy 

Good accuracy, but can struggle with smaller 
or occluded objects in certain settings. 

Enhanced accuracy, especially for small or 
occluded objects, due to improvements in 
feature extraction and loss functions. 

Inference Speed 
Faster inference compared to previous 
YOLO versions, but slightly slower than 
YOLOv8. 

Faster inference, thanks to optimizations in 
both the backbone and detection head, 
enabling more efficient real-time 
applications. 

Computational 
Efficiency 

More resource-intensive, requiring higher 
computational resources for optimal 
performance. 

More optimized for low-resource 
environments (e.g., UAVs), offering better 
computational efficiency. 

Model Size 
Larger model size with more parameters, 
making it more computationally demanding. 

Smaller, more compact model size that 
allows for better performance on embedded 
systems with limited resources. 

Loss Function 
and Training 

Standard loss function, with some limitations 
in handling large datasets. 

Improved loss functions that provide better 
stability during training and improved 
convergence for large datasets. 
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2.2 Dataset and Experimental Platform 

 

A comprehensive dataset was created for helmet detection using YOLOv7, especially considering the 

construction industry’s need for minimal error tolerance. The dataset was expanded using images obtained 

from UAV flights and web-based resources. Particular attention was given to capturing images from various 
heights and angles. Additionally, images taken at different times of the day ensured the algorithm’s 

robustness under variable lighting conditions. Figure 2 presents sample images from the dataset used in this 

study, which includes aerial imagery captured by UAVs under various environmental conditions. The 

dataset was collected under diverse environmental conditions, including varying lighting scenarios, different 

times of the day, and multiple weather conditions such as cloudy, sunny, and partially shaded environments. 

The UAVs were flown at different altitudes and angles to capture a range of perspectives, ensuring 

robustness in detection performance. These variations allow for a comprehensive evaluation of the model's 

ability to generalize across real-world construction site conditions. These images serve as the foundation for 

training the YOLO-based detection models. To further improve detection accuracy, several data 

enhancement techniques were applied to the dataset, as illustrated in Figure 3. These enhancements include 

adjustments to brightness and contrast, as well as the application of filtering techniques to improve image 

clarity and robustness under diverse lighting conditions. In the figure, the first image is the original image, 
while the others are new images obtained through various filtering and enhancement techniques. The images 

on the top row are those obtained with sharpness and contrast adjustments, while the ones on the bottom 

row are the new images produced through filtering. By incorporating such augmentations, the dataset 

becomes more representative of real-world scenarios, thereby enhancing the generalization ability of the 

detection models. 

 

 
Figure 2. Sample images from the UAV-captured dataset used for helmet detection. (a) Clear daylight 

image from a high altitude. (b) Early morning image with low-light conditions. (c) Image under partial 

shadow and cloudy weather. (d) Mid-day image with glare and high contrast. (e) Close-range image with 

complex object occlusion. 

 
The UAVs utilized in this study are modified commercial-grade rotary-wing UAVs, equipped with high-

resolution cameras, advanced gimbals for image stabilization, high-precision GPS modules, extended-

capacity batteries, and large-capacity data storage units. These UAVs are designed for urban environments, 

offering the flexibility to adjust flight parameters such as altitude and speed. Additionally, they are outfitted 

with Jetson Xavier NX hardware, which facilitates real-time processing and efficient object detection during 

aerial flights. This combination of modifications ensures optimal performance in capturing high-quality 

images suitable for vehicle detection and enhances the overall robustness of the system in dynamic urban 

settings. However, deploying UAV-based helmet detection systems in real-world environments presents 

several challenges, particularly due to variations in lighting and weather conditions. Low-light scenarios, 

such as early morning or nighttime operations, can reduce image clarity, while direct sunlight can cause 

glare and overexposed regions, leading to false detections. Additionally, adverse weather conditions, 

including fog, rain, and dust, can obscure objects and degrade image quality, affecting detection accuracy. 
To mitigate these challenges, the dataset used for training incorporates data augmentation techniques such 

as brightness normalization, contrast enhancement, and synthetic shadowing to improve model robustness. 

Furthermore, adaptive exposure correction is applied during image preprocessing to optimize visibility 

under different lighting conditions. 
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Figure 3. Examples of data enhancement. The first image is the original image, while the others are new 

images obtained through various filtering and enhancement techniques. The images on the top row are 
those obtained with sharpness and contrast adjustments, while the ones on the bottom row are the new 

images produced through filtering. 

 

3 Test Results 
 

The computational tests were conducted on a dataset of 3505 high-resolution construction site images 

captured from a UAV during multiple flight sessions across different times of the day. The images 
composing the dataset were collected under varying lighting conditions, including bright daylight, overcast 

skies, and low-light environments, to simulate real-world monitoring scenarios. The dataset also included 

images taken in different weather conditions and with minor obstructions, ensuring that the models were 

evaluated under diverse environmental factors. The data was split into a 65% training set, a 15% validation 

set, and a 20% testing set, allowing for an assessment of the models' performance and robustness in a variety 

of conditions. This comprehensive testing environment reflects the real-world challenges of deploying 

object detection algorithms in aerial monitoring applications.  

 

To evaluate the performance of YOLOv7 in helmet detection, a comprehensive comparison was conducted 

using four key metrics: Precision, Recall, mAP (mean Average Precision), and F1 Score [5]. These metrics 

provide insights into the accuracy, consistency, and overall effectiveness of the models, shedding light on 
which one delivers superior performance. To offer a relative perspective on YOLOv7's performance, the 

same detection tests were also conducted using YOLOv8 [21]. Compared to YOLOv7, YOLOv8 strikes a 

better balance between accuracy and real-time speed, making it particularly well-suited for deployment on 

UAVs and other resource-constrained platforms, as demonstrated in this study's aerial monitoring 

applications. Some visual examples of helmet detection using YOLOv7 are provided in Figure 4. 
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Figure 4. Some visual examples of helmet detection performed with YOLOv7. The examples are 

specifically chosen from situations where the algorithm achieved successful detection. 

 

The performance results obtained from both algorithms are summarized in Table 2. Precision measures the 

model's ability to produce correct results in helmet detection. In other words, it evaluates how often the 

model's "helmet detected" predictions are accurate [5]. In the construction sector, precision is a critical 

metric because false positives can lead to significant issues. For example, if the model mistakenly identifies 

a worker without a helmet as wearing one, it might trigger unnecessary safety alerts. Mathematically, 

precision is calculated by dividing the number of true positives by the sum of true positives and false 

positives. According to test results, YOLOv7 achieved a precision score of 0.659, while YOLOv8 achieved 
0.783. YOLOv8's higher precision indicates fewer false positives, which is vital for minimizing unnecessary 

warnings in construction environments. High precision ensures that safety managers can focus on accurate 

detections, improving the reliability of safety measures. 

 

Table 2. Comparison of the performance of both algorithms in helmet detection. 

 Performance Metrics 

Model Precision Recall mAP F1-Score 

YOLOv7 0.659 0.641 0.650 0.650 

YOLOv8 0.783 0.756 0.748 0.769 

 

Recall evaluates the model's ability to correctly identify all helmeted workers. Essentially, it measures the 

success of the model in detecting helmeted workers without missing any [5]. In hazardous environments 

like construction sites, low recall (indicating a high false-negative rate) poses serious safety risks. If the 

model fails to detect a worker wearing a helmet (false negative), that worker might remain outside the scope 

of safety measures, increasing accident risks. Recall is calculated by dividing the number of true positives 

by the sum of true positives and false negatives. YOLOv7 achieved a recall score of 0.641, while YOLOv8 
scored 0.756. YOLOv8's higher recall demonstrates its superior ability to identify helmeted workers 

effectively, reducing the likelihood of safety gaps and preventing potential accidents. 

 

mAP (mean Average Precision) is a summary metric that combines precision and recall to evaluate the 

model's overall detection performance across all classes (in this case, helmets and other objects) [5]. A high 

mAP value indicates that the model consistently produces accurate results across all object classes. 

Mathematically, mAP is expressed as 1/𝑁∑ 𝐴𝑃𝑖
𝑁
𝑖=1 , where AP (Average Precision) is the precision for each 

class, and N is the total number of classes. YOLOv7 achieved a mAP of 0.650, while YOLOv8 scored 0.748. 

YOLOv8's superior mAP underscores its enhanced overall detection accuracy and consistency, making it 

more reliable for safety-critical tasks like helmet detection. A high mAP ensures that the model contributes 

significantly to improving construction site safety. 
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F1 Score balances precision and recall, offering a comprehensive measure of the model's performance [5]. 

In the construction industry, both false positives and false negatives are undesirable. The F1 score evaluates 

the model's ability to achieve a balance between accurate detections and avoiding missed detections. 

Mathematically, Mathematically, F1 Score is obtained by dividing twice the product of precision and recall 

values by the sum of precision and recall values. YOLOv7 achieved an F1 score of 0.650, while YOLOv8 

achieved 0.769. YOLOv8's higher F1 score demonstrates its balanced performance, making it more effective 

and reliable for ensuring safety in construction environments. A high F1 score indicates that the model 
minimizes safety gaps while maintaining accurate detection. 

 

To support the claim that YOLOv7 may be more suitable for resource-constrained environments, we 

conducted a comparative analysis of the computational performance of YOLOv7 and YOLOv8. This 

includes inference time per frame and GPU memory consumption using an NVIDIA Jetson Xavier NX. As 

shown in Table 3, YOLOv7 demonstrated a slightly faster inference time and lower memory consumption 

than YOLOv8. While the difference in speed is marginal, the reduced memory usage could be critical in 

real-time UAV applications with limited hardware resources. These findings validate the assertion that 

YOLOv7, despite having marginally lower detection accuracy, remains a suitable choice for deployment in 

computationally constrained environments. 

 
Table 3. Computational efficiency comparison between YOLOv7 and YOLOv8. 

Model Inference Time (ms/frame) Peak GPU Memory Usage (MB) 

YOLOv7 38.6 1290 

YOLOv8 42.1 1510 
 

Conclusively, the test results show that YOLOv8 outperforms YOLOv7, providing more reliable and 

accurate results for helmet detection tasks. Its higher precision and recall values indicate fewer false alarms 

and more accurate detection of helmeted workers, critical for improving workplace safety. The improvement 

in mAP highlights YOLOv8's consistent performance across various detection scenarios, while the higher 

F1 score reflects its ability to maintain a balance between accuracy and sensitivity. Overall, YOLOv8 

emerges as a more dependable and effective solution, particularly for the construction sector, where high 

accuracy and reliability are essential for safety-critical tasks. 
 

Both YOLOv7 and YOLOv8 perform well in various object detection tasks, but they have limitations when 

it comes to helmet detection. The challenges include the small size and scale variability of helmets, which 

may make them difficult to detect, especially when individuals are distant or partially obscured. 

Additionally, helmets can be occluded by other objects in the scene, reducing detection accuracy in crowded 

or complex environments. Lighting conditions, shadows, and glare may further hinder detection, and the 

class imbalance between helmets and larger objects in real-world images can lead to reduced detection 

reliability. To address these issues, a more specialized training dataset focusing on helmets, including 

diverse poses and occlusion scenarios, would be needed for more robust detection performance. 

 

 

4 Conclusion 
 

This study evaluated the performance of YOLOv7 in helmet detection tasks using high-resolution UAV-

captured construction site images under diverse environmental conditions. To provide a comparative 

analysis, YOLOv8 was also tested on the same dataset, and its performance was assessed against YOLOv7 

using four key evaluation metrics: Precision, Recall, mAP, and F1 Score. The results indicate that YOLOv8 

consistently outperformed YOLOv7 across all metrics, demonstrating higher detection accuracy, improved 
recall, and better overall reliability in safety-critical applications. Despite these findings, YOLOv7 remains 

a strong and viable option for helmet detection. While it exhibited slightly lower performance metrics 

compared to YOLOv8, it still achieved competitive results, proving its capability in real-world monitoring 

scenarios. Notably, YOLOv7's precision and F1 score values suggest that it can still effectively contribute 

to helmet detection tasks, particularly in applications where computational efficiency and model 

interpretability are important considerations. Given that YOLOv7 has a relatively streamlined architecture 
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compared to YOLOv8, it may still be advantageous in scenarios requiring rapid processing with limited 

computational resources, such as real-time monitoring on UAVs with hardware constraints. 

 

Furthermore, both models faced challenges related to small object detection, occlusions, lighting variations, 

and class imbalances within the dataset. Moreover, in real construction environments, YOLOv7 faces 

several challenges that can impact its detection performance. These challenges include the cluttered and 

dynamic nature of construction sites, where numerous objects, such as machinery, vehicles, and workers, 

are often in close proximity and may overlap or occlude each other. Additionally, fluctuating lighting 
conditions and environmental variability, such as shadows or sudden brightness changes, can hinder 

YOLOv7's ability to detect objects accurately. Small object detection also becomes a challenge in 

construction sites, where tools and debris may be difficult to detect, especially when they are partially visible 

or at a distance. These challenges highlight the need for specific optimizations and enhancements to improve 

YOLOv7’s performance in such complex environments. 

 

These limitations highlight the need for further research into optimizing deep learning-based object 

detection algorithms for helmet detection in complex environments. Future improvements could include 

augmenting training datasets with a broader range of helmet appearances, utilizing advanced data 

augmentation techniques, and integrating hybrid detection approaches to enhance robustness under 

challenging conditions. Conclusively, while YOLOv8 proves to be the superior model in terms of accuracy 
and detection reliability, YOLOv7 remains a practical and effective alternative. Its demonstrated 

performance affirms its suitability for UAV-based helmet detection applications, particularly where 

computational efficiency is a priority. Future research should explore enhancements tailored specifically to 

helmet detection, ensuring even greater reliability in workplace safety monitoring. 
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