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1 Introduction 
 

Agricultural productivity is critical for global food security, and pest management plays a vital role in ensuring healthy crop yields. 

According to studies conducted in Mexico, there are a series of phytosanitary problems, including a complex group of pests such 

as the bean conchuela, the whitefly, and the leafhopper (Morales Galvez,2023). Additionally, there are other pests like Sclerotinia 

sclerotiorum de Bary, a pathogenic organism also known as Whetzelinia sclerotiorum Korf and Bumont, which is known in Mexico 

as white mold (Santos, A. M.,2023). 

   

At present, diverse technologies are used in precision agriculture for pest control tasks. Among them we can mention, for example, 

the creation of a protocol for extracting geometric and structural information from the foliar canopy of fruit plantations using 3D 

point clouds generated by LiDAR sensors and images acquired from unmanned aircraft systems (UASs) (Sandonís-Pozo, 2022). 

Other companies, such as DJI (DJI, 2020) have developed customized models for crop protection against insects or weeds by 

carrying out the integration of specific sensors such as high precision RTK GPS, multispectral, and high-resolution cameras. The 

Parrot Bluegrass Fields is a complete ready to fly UAS solution (Parrot, 2020) equipped with multispectral sensor processing 
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software, which is suitable for the entire crop analysis workflow. The Parrot Bluegrass Fields software provides farmers with 

information to maximize their yield and improve the quality of their crops (Del Cerro,2021).  

 

Technologies available for pest control tasks based on detection techniques use various computer vision methods. On one hand, 

traditional approaches involve the use of a series of image pre-processing operations, such as threshold segmentation, edge 

detection, and region growth, to extract features such as color, shape, texture, and size from an image. These features are used as a 

priori knowledge inputs in artificial intelligence algorithms, such as K-nearest neighbor and K-means clustering. In (Lee, 2020) all 

of the aforementioned studies were adopted for fruit detection of various applications following a pixel-level segmentation approach.  

 

On the other hand, the alternative to achieve detection is to apply recent techniques in artificial vision such as YOLO, which is a 

real-time object detection and image segmentation model using Artificial Neural Networks (ANNs) (Ultralytics, 2024), which are 

defined as mathematical models that try to emulate the natural behavior of biological Neural Networks (NNs) (Pascasio, J. 2022). 

This method allowed the development of more complex NNs with multiple layers of neurons (Jia, W.,2022). The NN architecture 

can have different configurations, such as Convolutional Neural Networks (CNNs) used for image processing, or Recurrent Neural 

Networks (RNNs) that are used for sequential tasks. The Convolutional Neural Support Vector Machines Hybrid Classifier 

(CNSVMHC) is a heterogeneous combination of CNNs and the Support Vector Machines (SVM), where the output layer of the 

CNN is replaced by an SVM. In (Anguraj, 2021) a scheme based on smart data mining is presented, which shows a solution of an 

automatic irrigation in agriculture area for water management. Unfortunately, this study does not propose a solution against pests 

and plant detection. In (Abdullahi, 2017) CNNs are applied for the recognition and classification of plant images, specifically 

focusing on corn plants. However, it is important to note that YOLO models were not employed, limiting the approach to 

conventional CNNs techniques for identifying and categorizing corn plants. 

 

This paper focuses on computer vision through implementing CNNs using YOLOv8, in order to perform real-time pest detection 

in bean plants. YOLOv8 is the latest iteration in the YOLO series of real-time object detectors, offering cutting-edge performance 

in terms of accuracy and speed. Building upon the advancements of previous YOLO versions, YOLOv8 introduces new features 

and optimizations that make it an ideal choice for various object detection tasks in a wide range of applications (Ultralytics, 2024). 

The main contributions of this article are twofold. On one side, we introduce the training methodology description of various CNNs 

models such as YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l and YOLOv8x. On the other side, we provide a performance and 

efficiency comparative analysis of models through obtaining parameters such as training time, frame rate, detection accuracy, and 

PC resource consumption. As a result, we are able to suggest the CNN model that best fits to solve the described problem.  

 

2     Convolutional Neural Networks (CNNs) 
 
A CNN or ConvNet is a network architecture for Deep Learning (DL) that learns directly from data. In a NN, see Fig. 1, the input 

layer receives data and has one neuron for each component of the data. This data is passed to one or more hidden layers, which are 

those layers that are neither the input nor the output layers in the network. It is in the hidden layers that all the processing happens, 

through a connection system characterized by weights (w) and biases (b). 

 
Fig. 1. Diagram to understand the structure of a CNN, showing the input layers, their specific weights, and how they link to the 

activation function. 

 

With the input value received by the neuron, a weighted sum is calculated by also adding the bias and according to the result and a 

preset activation function, as follows:  

∑ 𝜔𝑖𝑥𝑖 + 𝑏⬚
⬚          (1) 
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such expression would be the body of the neuron, and then release the activation function as follows:  

𝑓 (∑𝜔𝑖𝑥𝐼 + 𝑏

⬚

⬚

) 

   (2) 

Equation (2) is a mathematical function of the form f(x), and then is added to an ANN to help the network learn complex patterns 

as follows: 

    𝑦 = 𝑓(∑ 𝜔𝑛𝑥𝑛 + 𝑏𝑛
1 )    (3) 

The result's value, if not constrained, can reach substantial magnitudes, especially in deep neural networks with millions of 

parameters. This scenario will lead to calculation problems. Therefore, to solve this a sigmoid function  is used: 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

   (4) 

This feature works especially for models where there is a need to predict probability as an outcome. Since the probability of 

anything exists only between the range of 0 and 1 as shown in Fig. 2, the detection would be faster and the data would be easier to 

read to collect data. 

 
Fig. 2. Plot of the sigmoid function applied as an activation function within the neural network for data reduction, taken values 

from 0 to 1. 

 

3   Experimental implementations 

 
In (Ultralytics, 2024) several YOLO models are shown, ranging from YOLOv3 to YOLOv10. The models 9 and 10 are models that 

are still in process, so this work focuses on implementing and analyzing the last one functional version, i.e., the YOLOv8 model. 

The YOLOv8 series offers a wide range of models, each specialized for specific tasks in machine vision. These models are designed 

to meet a variety of requirements, from object detection to more complex tasks such as instance segmentation, pose/keypoint 

detection, oriented object detection, and classification. These models are denoted as follows: 

⚫ YOLOv8: Deteccion 

⚫ YOLOv8-seg: Instance Segmentation 

⚫ YOLOv8-pose: Pose/Keypoints 

⚫ YOLOv8-obb: Oriented Detection 

⚫ YOLOv8-cls: Classification 

 

In this work, the YOLOv8 model for detection is addressed. For this model there are five subversion files, which are differentiated 

by the termination and they will be compared in terms of performance for pest detection in bean plants. 
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⚫ YOLOv8n 

⚫ YOLOv8s 

⚫ YOLOv8m 

⚫ YOLOv8l 

⚫ YOLOv8x 

 

The methodology carried out in this research starts from the selection of images and their labeling, and ends with the performance 

comparison of each CNN model under equal conditions. In the following sections the stages involved are described. 

 

 

3.1   Selection and Labeling 
 

At this stage, photos were taken and images were selected, with exactly 800 RGB images of 640 x 480 pixels to be labeled according 

to the plant conditions. Fig. 3 presents some examples of these acquired images.     

 

 
Fig. 3. Example of the type of images that were selected and labeled ROI (Region Of Interest) for neural network training. 

 

3.2   Training Models 
 

All networks were trained with the same rules and under equal conditions. The following hyperparameters were used for training 

stage: 

⚫ Data labeled: It is the number of labeled objects of a class that will be processed in training. 

⚫ Number of epochs: An epoch is a complete pass back and forth of all training examples. 

⚫ Batch: Number of images processed simultaneously in a forward pass. 

 

For all the models, i.e., YOLOv8n, YOLOv8m, YOLO8s, YOLOv8l, and YOLOv8x, 800 labeled data were specified with a single 

class, a training of 100 epochs, and a batch of 2 images. 

 

In this stage, the training time parameter of each model was taken in order to initialize the model’s comparison. Fig. 4 shows all 

the obtained results. At this point, the training time parameter of each network gives us an approach about how complex each model 

is, and an expectation about its operation. It is possible to observe a shorter time for the YOLOv8n model and a longer time for the 

YOLOv8x model. 

 
Fig. 4. Training time required in hours for different YOLOv8 models which increase progressively with the complexity of the 

model. 
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It is important to mention that for these and the following measurements of NN models parameters, a mid-range laptop with the 

following features was used: 

⚫ Model: Dell G15 5510 

⚫ Graphics card: Nvidia 3050 RTX 

⚫ Processor: 1ntel(R) Core(TM) i7-10870H CPU @ 2.20GHz[Cores 8] [Logical processors 16] 

⚫ RAM: 8Gb  

⚫ Display Memory (Vram): 8Gb  

⚫ DirectX 12  

 

3.3   Running Models Metrics 

 

The same video of a plant was used for analyzing all the CNNs models. The first aspect to measure is about performance, i.e., the 

Frames per second (FPS) achieved when the network is running and the resources used by the computer within the video. The 

specific parameters to be analyzed are the consumption of the CPU, GPU, Vram, and RAM. The second aspect to measure is the 

detection operation of the networks through the following parameters: Precision, Accuracy, Completeness, Confidence Detection, 

and the True Detection Distance before the network starts to fail. 

 

A confusion matrix was used to analyze detection effectiveness, this matrix is shown in Table 1 and is defined as follows:  

 

TP: When it detects and if it is correct  

FP: When it detects and should not detect  

TN: When it does not detect and if it is correct  

FN: When it does not detect and should detect 

 

Table 1. Definition of a confusion matrix for detection effectiveness, where the rows represent predicted values and the 

columns represent actual values. 

 POSITIVE NEGATIVE 

POSITIVE TRUE POSITIVE: TP FALSE POSITIVE: FP 

NEGATIVE FALSE NEGATIVE: FN TRUE NEGATIVE: TN 

 

To extract the above information, the video was analyzed every two frames, counting the detections, TP, TN, FP and FN, and also 

the precision, accuracy and completeness were calculated with the following formulas: 

 

 

Accuracy: Metric that allows to calculate the overall performance of the class: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                       (5)                                      

Precision: Metric that quantifies the number of correct predictions made: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                              (6)  

Completeness: Metric that quantifies the number of correct predictions that could have made: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                        (7)  

The last two parameters were measured with the same video, taking them out of the same network and measuring the distance at 

which the network was still detecting in an efficient way. 
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Confidence Detection: An amount between 0 and 1 that represents the security of the same network when detecting the 

desired object as can be seen in Fig. 5. 

 

  
Fig.5. Confidence detection score of 0.93, indicating the model's high confidence in its prediction. 

4   Results and Comparative Analysis 
 

4.1   Results about performance aspect 
 

To see the fluidity of the video, FPS were measured during the test. This parameter can be associated with the detection of each 

model. The higher the FPS are, the faster the detection. This helps to have a faster and more efficient future diagnosis. Results in 

Fig. 6. show that YOLOv8n is faster than all of the others. 

 
Fig. 6. Average frames per second (FPS) performance comparison which demonstrates the computational efficiency of each 

model variant. 

 

 

The results of the complementary performance parameters can be seen in Fig. 7. These values show the consumption of computer 

resources while each model is running. As observed, the RAM, VRAM, and GPU usage increase with the model version. This 

indicates that as the network models advance, more video and graphics resources are required for detection, which is the reason for 

the decrease in FPS 
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Fig. 7. Computer resources consumed (%) when testing each neural network during the test. 

 

4.2   Results about detection operation aspect 

 
The following results are about the detection efficiency of each NN. Table 2 shows the confusion matrix corresponding to each 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Confusion matrix showing the accuracy and reliability of each YOLOv8 model in detecting positive and negative cases, 

highlighting the differences in detection performance across the models. 

 

 

The parameter quantified for detection is distance. This involves running the video and recording the data on the point at which the 

neural network begins to fail. The results are shown in meters and percentages, where one meter equals one hundred percent. Based 

on this, the parameter could be called the maximum prediction or detection distance. Figure 8 shows the results for distance, as 

well as accuracy, precision, and completeness.  

 

 

YOLO MODEL POSITIVE NEGATIVE 

POSITIVE YOLOv8n  

YOLOv8s 

YOLOv8m 

YOLOv8l 

YOLOv8x 

1781 

2028 

1768 

1828 

1801 

81 

2 

23 

102 

160 

NEGATIVE YOLOv8n 

YOLOv8s 

YOLOv8m 

YOLOv8l  

YOLOv8x 

709 

1326 

876 

684 

594 

686 

686 

686 

686 

636 
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Fig.  8. Confusion Matrix Results, Precision, Accuracy, Completeness, and Detection distance (%) for each CNN model. 

 

 

 

4.3   Comparative Analysis 

 
To determine which model is the best in terms of confidence detection, several tests were performed using videos with healthy and 

infected leaves.  

 

The parameter that indicates the certainty of the detected element is the Confidence. Results of confidence percentages when 

applying the different YOLOv8 models are presented in Figure 9. These tests were obtained from a video of two healthy bean plant 

leaves. The video used to collect these data is available at: 

https://drive.google.com/file/d/1f7_7JUG94NpE50xfb5bcYSk8ItKTcZMs/view?usp=sharing 

 
Fig. 9 .Results of the detection confidence parameter for each model when implementing YOLOv8 models. 

 

 

As can be seen in Figure 9, all models have a confidence percentage between 70% and 96%. However, it is clear that the S model 

and the M model demonstrate greater stability in their parameters. Specifically, the S model in the graph for the first leaf shows 

accuracy between 94.6% and 96.6%. 

 

On the other hand, Figure 10 presents the confidence percentages when the models are implemented for detecting a leaf infested 

with the red spider mite, where necrosis is observed. The video used to perform this test is available at: 

https://drive.google.com/file/d/16MCeMD07TO4jwJAGYNDgcbmFBuLu8dE0/view?usp=sharing 

https://www.youtube.com/watch?v=S5y2sRvLvp0
https://www.youtube.com/watch?v=S5y2sRvLvp0
https://drive.google.com/file/d/1f7_7JUG94NpE50xfb5bcYSk8ItKTcZMs/view?usp=sharing
https://www.youtube.com/watch?v=S5y2sRvLvp0
https://www.youtube.com/watch?v=S5y2sRvLvp0
https://drive.google.com/file/d/16MCeMD07TO4jwJAGYNDgcbmFBuLu8dE0/view?usp=sharing
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Fig.  10.Results of the detection confidence parameter for each model on an infested leaf. 

 

According to Figure 10, the S and M models are more stable. The S model shows values between 84% and 94%, and the M model 

shows values between 88% and 93%. In contrast, the X and N models have the lowest average confidence parameters, although 

they do show some stability in parts of the graph. 

 

 

5   Discussions 

 

To determine which model is the best in terms of video speed and detection accuracy, we will evaluate the models using the 

following parameter summary: 

 

Frames per Second (FPS): Measures the model's processing speed. 

Precision: Indicates the proportion of true positives over the total number of positive predictions. 

Accuracy: Reflects the proportion of true positives and true negatives over the total number of cases. 

Completeness: Indicates the proportion of true positives over the total number of actual positive cases. 

Maximum Detection Distance: Indicates the model's ability to detect objects at a certain distance. 

Highlighting the following points: 

 

Model n has a higher FPS (3.8) and also provides good precision (95%), accuracy (75%) and completeness (71%), making it a 

strong contender for scenarios where speed is more critical, though it has slightly lower precision and a shorter detection range (0.5 

m). 

 

Model m offers high precision (98%) and a decent detection range (0.7 m) with an accuracy (73%) and completeness (66%) but 

has a lower FPS (0.8), making it less suitable for applications where both high speed and precision are needed. 

 

Model l has a respectable precision (94%) and the highest accuracy (76%) and recall (72%), with a good detection distance (0.8 

m). However, its FPS (0.46) is lower, which might impact its performance in real-time applications. 

 

Model x has the lowest FPS (0.3) and precision (91%), but excels in accuracy (76%) and recall (75%), along with the best detection 

range (0.9 m). Despite its strong performance in other areas, its low FPS may limit its effectiveness in scenarios requiring faster 

processing. 

 

Models thus emerges as the most balanced option, offering the highest precision (99%), without compromising too much on speed 

FPS (2), accuracy (67%) and completeness (60%), making it ideal for applications that require both high detection accuracy and 

reasonable processing speed, although it has a good detection distance (0.7 m). 

 

On the other hand, the most stable models in terms of confidence parameters are the "m" and "s" models. These models also have 

the best average parameters, making them important to consider. It is worth noting that the remaining models produced confidence 

parameters that are still workable, even though they are lower. 
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Finally, considering the most balanced option in terms of performance and detection aspects, the CNN model suggested for pest 

detection in bean plants is YOLOv8s.  
 

6   Conclusions and future work 

 

Determining which neural network is the most efficient based on speed, precision, accuracy, completeness, and detection distance 

is crucial to optimizing its implementation in specific applications. Evaluating these factors helps identify the model that offers the 

best performance where one or more of these criteria are a priority. 

 

In this paper, the comparison of parameters between YOLOv8 versions proves that YOLOv8 models achieves the highest precision 

at 99%, making it reliable for accurate object detection. Its speed is relatively low at 2 FPS, which is slower compared to other 

models, such as model n (3.8 FPS) so models is 47.2% slower than model n. The Accuracy of YOLOv8s is moderate at 67%, and 

its Completeness is slightly lower at 60%. However, it compensates for these limitations with a strong detection distance of 0.7 

meters, which is noteworthy for applications requiring reliable range detection. 

 

Despite its lower speed, YOLOv8s’s exceptional precision makes it ideal for tasks where accurate identification is critical. The 

slight reduction in speed does not significantly hinder its overall performance in contexts where precision and detection distance 

are prioritized. 

 

YOLOv8s model offers a well-rounded performance when balancing speed, precision, accuracy, completeness, and detection 

distance. Its selection as the ideal model will ultimately depend on the specific requirements of the application, prioritizing one or 

more of these evaluation criteria. 

 

As future work, evaluation of the model's performance under various environmental conditions, including different lighting 

scenarios and weather conditions (rain, fog, snow), is proposed to ensure robust operation across diverse operational settings. The 

study will also explore the adaptation of the best performing model through transfer learning techniques, enabling detection over 

different types of ground vehicles in order to obtain major mobility of the system.   
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