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Abstract. The autonomous construction of environment 

maps with the help of mobile robots is an important problem 

in modern robotics; because practically all tasks performed 

by robots require a representation of the working 

environment. Many solutions have been proposed to solve 

this problem known as SLAM (Simultaneous Localization 

and Mapping). The inclusion of a motion planner to the 

classical SLAM problem gives way to a new approach 

known as “Integrated Exploration”, in which a robot 

gradually builds a map while simultaneously localizing 

itself and making local decisions on where to go to 

maximize the acquisition of map information. In this paper 

we will analyze the proposals that have been developed in 

the last 20 years in this area, having as a primary interest to 

show the advances that have been made in the area of 

motion planning and the challenges presented by its 

integration and coordination with the SLAM problem.  
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1 Introduction 

 
A well-known topic in the field of robotics is motion planning, the main goal is to determine the best path for 

a robot to autonomously navigate a working environment. Research in this field has helped many areas of 

robotics, but one of the most recent is its application to the problem of autonomous construction of environment 

maps, also known as integrated exploration or active SLAM. The basic working principle of this problem is a 

mobile robot that must move through an unknown environment while creating an environment map of the 

environment. Many papers have been presented over the years to try to optimize motion planning in mobile 

robots and adapt them to the exploration of unknown environments. These proposals will be reviewed in the 

following sections, from the origins of the autonomous motion planning approach to its inclusion in the field of 

integrated exploration.  

 

1.1 Motion Planning, the First Steps 

 
Sampling-based motion planning methods (Figure 1), such as Probabilistic Motion Planning (PRM) methods 

or Rapidly Random exploring Trees (RRT) approaches, have proven to be very effective in robot motion 
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planning with a high degree of freedom. In recent years, the community has proposed interesting algorithms 

that contribute to the state of the art. For example, strategies have been proposed to redirect sampling to the 

most promising regions, improving efficiency and solving difficult motion planning problems. A summary of 

the most important ideas and proposals in the field up to 2008 is given in [1], specifically highlighting their 

theoretical and practical implications, as well as their application to other topics besides robotics. 

 

 
Figure 1. The basic motion planning problem.  

 

Probabilistic sampling-based planners are capable of successfully addressing a wide range of problems. The 

main function of these planners is to identify where the robot collides with obstacles in the environment. 

Effective collision detectors can perform this procedure. Samples and edges are generated to connect them, 

which are stored in a suitable data structure, to obtain information about the configuration space. Numerous 

algorithmic techniques based on this paradigm have been proposed, some of which are now widely accepted in 

the standard literature of the field. One promising direction for speeding up PRM-based planners is to create 

better sampling strategies (and possibly also connection strategies) by using partial knowledge gained during 

motion plan creation and applying this knowledge to adjust the online sampling measure to be more effective 

[2]. When important configurations are in and around narrow areas of the configuration space, sampling-based 

planners often have a narrow-passages problem. Concentrating samples in difficult areas and/or generating 

samples in large open areas can solve the narrow passages problem. The uniform sampling strategy is not a 

good option in environments with narrow passages. A more competent local planner is an additional strategy 

[3]. Although rarely used in real time, these algorithms are an important source of inspiration for learning mobile 

robotics because the working environment is controlled and not real. Motion planning applications will increase. 

New motion planning problems will be investigated simultaneously. It is very likely that the fundamental 

motion planning problem, which has been the focus of motion planning research for more than two decades, 

will soon disappear. There is no other problem; however, it seems fundamental enough to play the same role in 

the future. 

 

1.2 Motion Planning in Exploration Tasks 

 
One of the main functions of mobile robotics is the autonomous creation of maps. Many successful robotic 

systems use maps of the environment to perform their functions. Therefore, research on how to optimally 

traverse an unknown environment, also known as the environment exploration task, while simultaneously 

constructing a map of it, is ongoing [4]. In recent years, the RRT method, presented by S. LaValle [3], has 

become the most popular single-query motion planner. RRT-based algorithms were first developed for non-

holonomic and kinodynamic planning problems, where the space to be explored is the state space (i.e., a 

generalization of the configuration space that includes time). Another widely spread solution for the unknown 

environment exploration problem is the Sensor-based Random Tree (SRT) presented by Oriolo, Freda and 

Franchi in [5].  

 

This method is based on the random generation of robot configurations within a local safety area detected by 

the robot sensors. From these configurations, a compact tree-like data structure representing the path of the 

explored area is created. The SRT method randomly chooses free boundaries at the robot's current position so 

that it can continue the exploration task. If it cannot find any, the robot will automatically return to its parent 

node to search for new areas with exploration possibility. When the backtracking behavior brings the robot to 

the root of the tree, the process ends. Each SRT node has a collision-free robot configuration, and its associated 

Local Safe Region (LSR), which is reconstructed in the perception system. The LSR is an estimate of the free 

space surrounding the robot in each configuration; its shape generally depends on the sensor characteristics but 
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may also reflect different attitudes towards perception. SRT-Ball and SRT-Star are two techniques developed, 

where the shape of the RSL depends more on the characteristics of the robot used in the sensing than on the 

characteristics of the perception system. The use of SRT-Radial (Figure 2) is recommended because it allows 

considering robots with non-holonomic constraints in a study suggested in [6]. 

 

 
Figure 2. Example with SRT-Radial: on the left the SRT and the sensed regions and on the right the safe 

region with its respective safety band.  

 

Despite its popularity, the SRT scheme presents some problems that must be considered. The first is that the 

state of the structure being built is not known, so full coverage of the environment cannot be guaranteed because 

it is not known whether the nodes of the structure left behind contain more areas available for exploration. The 

second problem is related to the first, as the robot must return to the parent nodes to determine if further 

exploration is possible, which requires the structure to be traversed twice and thus increases exploration time.  

 

Given the above, Franchi et al. [7] create a new approach for the multi-robot case called Sensor-based Random 

Graph (SRG) which is based on the exploration philosophy of SRT. When the robot finds a safe path to travel 

between two nodes, this method transforms the tree structure created by the SRT method into an exploration 

graph. This method uses a probability proportional to the arc length of the free edges at the node where the 

robot is located to determine which position to explore next. In addition, the way to verify the structure to 

establish already explored zones where the exploration can be continued is done by generating a minimum 

spanning tree with the adjacent nodes of the graph, choosing the one of the adjacent nodes with the highest 

weight with respect to the length of the free boundaries of the frontiers.  

 

The SRG method has similar problems as the SRT method in that, although the data structure is transformed 

into an exploration graph, the structure is not fully exploited to make the exploration more efficient because the 

method of revisiting nodes to verify unexplored areas creates a tree structure, which creates a discontinuous 

path that forces the robot to go through the parent nodes, ignoring the versatility of the graph. Moreover, as in 

the SRT method, the robot decides the next position to explore without considering that the random selection 

causes too many orientation changes, which directly affects the odometric system. 

 

2 Integrated Exploration for Unknown Environments 

 
Currently, the unknown environment exploration problem and the construction of environment maps are current 

due to their importance for mobile robotics. Classical exploration algorithms and SLAM algorithms are 

combined to achieve robust and efficient exploration algorithms [4]; however, although SLAM algorithms rely 

heavily on the trajectories performed by the robots, classical exploration algorithms do not take into account 

the uncertainty that the robot's movements generate about its location when it moves through unknown 

environments, which may result in partially constructed or low-quality maps. From the above, it is necessary to 

consider an integrated approach where the characteristics of the exploration algorithms are considered to 

explore the working environment efficiently, which gives way to the concept of “integrated exploration” or 

SPLAM (Simultaneous Planning Localization and Mapping), where the robot explores the environment 

efficiently considering the requirements of the SLAM algorithm [8], [9], [10].  

 

Considering the last paragraph, an integrated exploring method was presented in [8] to achieve the trade-off 

between exploring speed and map accuracy using a single robot, here, an occupancy grid and a sparse mark 

SLAM are used. A multi-objective function is proposed to account for the expected information gain in the 
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occupancy grid and SLAM system in a single action. A linear combination is used to evaluate and combine 

both information gains with predetermined values to be adapted to each situation.  

 

The proposed work in [10] shows a novel SLAM algorithm based on laser data using B-Splines as a way of 

representing features present in the map. The Extended Kalman filter (EKF) was used to ensure the robot 

localization in the proposed BS-SLAM algorithm and the state vector contains the current pose of the robot 

along with the spline control points. The observation model used for the EKF update is the intersections of the 

laser beams with the splines contained in the map. In this proposal, the authors use an integrated approach based 

on SRT exploration [5], called SRT-BSplines.  

 

With this integrated exploration approach, interesting results were obtained at simulation and real time level, it 

can be mentioned that the approach is not limited to environments with linear features. Also, the localization 

method is perfectly adapted to the new curves that can be seen more and more in everyday life. The theory and 

implementation of B-splines was a powerful tool in the approach and can be adapted to environments where 

previous methods considered only simple descriptions.  

 

Toriz et al. in [11], presented a new method called Random Exploration Graph (REG), which maximizes the 

map coverage during the exploration process. This method adapts the working principle of the SRT method to 

create an exploration graph structure. Although this method has a probabilistic nature that may result in 

excessive robot movements to complete the task and prolong the exploration time, one of its main advantages 

is the accumulation of knowledge through the concept of frontier control, which stores information about the 

areas that the robot left behind in the exploration process and needs to revisit to complete the exploration.  

 

The relevance of frontier control lies in identifying only the information of the nodes not fully explored during 

the development of the exploration, saving the unanalyzed free frontiers contained in the nodes. This concept 

allows the systematic exploration of the acquired knowledge, allowing the REG method to plan paths towards 

well-identified zones that need to be explored. 

 

The REG method works without the need to go back and physically verify each of the nodes within the structure, 

as required by the SRT method. Using REG, there is also no need to perform a complete analysis of the 

exploration structure generated during the execution of the task every time there is a need to find a new area 

with possibilities to be explored, as required by the SRG method. These differences with SRT and SRG 

represent a substantial computational improvement of REG in terms of execution time.  

 

Motion planning is executed with a bidirectional A* method, using the graph structure created by planning the 

path from the current node to the nodes contained in the frontier control and from the nodes in the frontier 

control to the current node, ending when the path is between the current node and any node in the list. The use 

of the bidirectional A* algorithm extends the path from the initial position or the desired position to the final 

position reached by the opposite side, ending when both paths are at the same node.  

 

This strategy is used simultaneously in our method, with all nodes contained in the list and terminates when a 

path is found. The reason for looking for individual paths from the current position to each node with the 

possibility of exploration, rather than simply a Euclidean distance to the nearest node, is the existence of 

inaccessible spaces, one might think that the distance to the node is short, but perhaps the distance to reach it 

could be very large.  

 

Once a path is obtained, the control method will allow the movement of the robot from the current node to the 

node that will allow the robot to continue with the exploration Finally, the index of the selected node is removed 

from the list of nodes that can be explored. With the new node to be explored, the method will continue with 

the same process described above until there is no unexplored frontier.  

 

Figure 3 shows an example obtained with REG, in an office-garden environment (widely used in testing SLAM 

algorithms). 
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Figure 3. Graph structure and path followed by the REG approach.  

 

This figure shows the algorithm monitor and the execution is in real time, a Pioneer P3DX robot equipped with 

a laser sensor was used. We can also comment that we do not include more real tests due to the space we have, 

and it would be interesting for the reader to review the suggested bibliography. It would be important to include 

comparative tables, but in themselves, these proposals are not feasible for such comparisons, since they have 

been developed with different approaches and although we can use the same robot, the working environments 

change significantly. Given that one of the fundamental objectives of the different proposed works is the 

consideration of complex environments, environments that are out of consideration in many works of the state 

of the art that only consider representations based on points and lines.  

 

The extended REG method was designed to be integrated as part of the SLAM method, facilitating the 

construction of maps in complex environments. As can be seen, the methods shown use randomness to 

determine the next position to explore. The problems with these algorithms are the number of movements 

required to traverse the work environment, the time required to complete the task, and in some cases as in the 

SRT and SRG methods, the uncertainty about the total coverage of the exploration area.  

 

Given these limitations, in [12] a new Deterministic Exploration Graph strategy known as the DEG method is 

presented, which results from a modification to the REG method, where the main difference lies in how the 

robot will plan the exploration path by performing a deterministic analysis of the next position to be explored. 

In the algorithm, the start and end node will be the start and end node. As in REG method, the exploration 

structure will include a position of the robot reached, as well as a representation of the local safety region (LSR), 

where the robot can navigate without risk of colliding with any obstacle. The cycle controls the exploration 

process with this created node. Then, at each iteration of the algorithm, the frontiers of the adjacent nodes to 

the current node are evaluated to determine which free frontier segments with the possibility to explore belong 

to the current LSR. To avoid considering these intersections in a possible return of the robot for further 

exploration, the free frontier segments of the neighboring node and the current node will be removed. In 

addition, intersection checking between nodes is used to modify the structure of the exploration graph by adding 

edges between non-adjacent nodes if there are safe paths to travel between them.  

 

After analyzing the frontiers of neighboring nodes covered by the new LSR and modifying the exploration 

structure with new edges, the next step is to identify the remaining free frontiers of the current position. An 

approximation point will be determined for each of the frontiers found, if any, which will serve to prioritize the 

free frontiers, ranking them according to the effort required to reach them and selecting a new frontier that has 

the highest hierarchy. The approach point is defined as the midpoint of the arc segment formed by the frontiers, 

if these can be covered in their entirety by the threshold defined by the LSR area. If the criterion for choosing 

the approach point is not met, it will be redefined by taking the midpoint of the arc length proportional to the 

area that can be covered by the LSR, from the initial end of the frontier. With this new point selected to continue 

the exploration, the frontier or a segment of the frontier is removed from the group of free frontiers found.  

 

When the robot does not find a new position to explore at the current node, i.e. there are no more free frontiers, 

the robot will choose one of the nodes contained in the frontier control to continue the exploration. The choice 
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of the position will be determined by the bidirectional A* search algorithm, which will extend a path from the 

current node to the nodes of the frontier control and from the nodes of the frontier control to the current position. 

At this point, the frontier control will remove the index of the node where the path was found. In this way, the 

method will continue executing the described process, until there are no more free frontiers at the current node, 

and the frontier control list is empty; at this point, the robot will search for a path to return to the initial node 

from where the exploration process starts. Figure 4 shows the result of the application of the DEG algorithm in 

the exploration of an unknown environment. 

 

 
Figure 4. Graph structure and path followed by the DEG approach.  

 

3 Tests and Results 

 
Numerous experiments were performed with the intention of evaluating the accuracy and consistency of the 

integrated exploration proposals analyzed in this article; in addition, quantitative variables used in the field of 

exploration methods, such as exploration time, odometric error, and total environment coverage, were analyzed 

and compared with data obtained by the SRT (Sensor-based Random Tree) [5], SRG (Sensor-based Random 

Graph) [7], REG (Random Exploration Graph) [11], and DEG (Deterministic Exploration Graph) [12] methods, 

which allows explaining the characteristics of the methods.  

 

With respect to the integrated exploration paradigm, the exploration methods were adapted to work with the 

idea of any SLAM method; however, the tests performed opted to use the method presented in [13] due to the 

comprehensive way of data exploitation of the working environment.  

 

The P3DX pioneer differential robot, equipped with a Hokuyo URG-04LX range sensor with a sensing range 

of 4 meters, an angular resolution of 0.360° and a sweep angle of 240°, was used to perform the tests using 

simulated data. The experiments used a modified environment of the corridors of the Laboratory of Informatics, 

Robotics and Microelectronics (LIRMM) in Montpellier - France (see Figure 5). 

 

 
Figure 5. Example of an environment where we performed experimental tests with the developed algorithms. 

 

Table 1 shows the comparative results of the variable time required by the SRT, SRG, REG and DEG 

exploration methods to complete the exploration of the environment map, the results were obtained from 30 
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trials. In this table, it is easy to observe that the DEG method requires approximately 25% less time than the 

best mean time of the other three methods. In addition, it is possible to observe that the standard deviation for 

the DEG method is very low compared to the other methods due to the deterministic way of choosing the next 

position to explore. By brevity of the table, we only show the first 10 results, without forgetting that 30 

executions of each proposed method were carried out. 

 

Table 1. Time required for the DEG, REG, SRG an SRT exploration methods to explore the LIRM 

environment based on 30 tests. 

 

Test number Total time 

required to 

complete the 

exploration with 

DEG. 

Total time 

required to 

complete the 

exploration 

with REG 

Total time 

required to 

complete the 

exploration 

with SRG 

Total time 

required to 

complete the 

exploration 

with SRT  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

Average 

Standard 

deviation 

214.72 

206.95 

218.46 

219.97 

227.20 

207.81 

212.47 

202.14 

209.30 

203.5 

 

215.16 

 

7.94 

261.83 

299.34 

312.00 

275.01 

302.86 

264.34 

293.49 

315.21 

320.43 

313.92 

 

287.95 

 

23.77 

590.81 

426.42 

492.87 

611.48 

572.78 

485.68 

452.87 

601.09 

450.02 

544.92 

 

521.70 

 

58.45 

691.36 

417.04 

548.34 

559.18 

590.68 

788.16 

587.40 

560.75 

751.03 

592.65 

 

596.32 

 

108.72 

 

In addition, tables 2, 3 and 4 show the odometric errors in the X-axis, Y-axis and in the orientation θ obtained 

after performing the exploration of the environment by each of the methods. In these tables it can be observed 

that the odometric error is lower in the case of the DEG method because it does not require too many orientation 

changes to perform the exploration of the environment, a characteristic that is not shared by the REG, SRG and 

SRT methods due to their random nature. Once again, not to use much space, only the first 10 tests are reported. 

 

Table 2. Odometric error in the X-axis reported by DEG, REG, SRG an SRT exploration methods to explore 

the LIRM environment based on 30 tests. 

 

Test number Maximum 

accumulated 

odometric error 

in the y-axis 

obtained by 

DEG. 

Maximum 

accumulated 

odometric error 

in the y-axis 

obtained by 

REG 

Maximum 

accumulated 

odometric 

error in the y-

axis obtained 

by SRG 

Maximum 

accumulated 

odometric 

error in the y-

axis obtained 

by SRT  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

Average 

Standard 

deviation 

1.2201 

1.0918 

1.9713 

1.7877 

1.3591 

1.8465 

1.8850 

1.4895 

1.2506 

1.1168 

 

1.5172 

 

0.3169 

5.2554 

6.2265 

6.3740 

5.7652 

6.0856 

5.7474 

6.7594 

6.3329 

5.1962 

4.1123 

 

5.7558 

 

0.7847 

7.1789 

5.9925 

7.3390 

5.4158 

6.4277 

5.5948 

5.0442 

4.1114 

5.1091 

5.2357 

 

6.2200 

 

1.4181 

8.0055 

9.9349 

4.7194 

4.3211 

6.1871 

6.4377 

7.2604 

6.7849 

8.7728 

4.9936 

 

8.1979 

 

2.3366 
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Table 3. Odometric error in the Y-axis reported by DEG, REG, SRG an SRT exploration methods to explore 

the LIRM environment based on 30 tests. 

 

Test number Maximum 

accumulated 

odometric error 

in the y-axis 

obtained by 

DEG. 

Maximum 

accumulated 

odometric error 

in the y-axis 

obtained by 

REG 

Maximum 

accumulated 

odometric 

error in the y-

axis obtained 

by SRG 

Maximum 

accumulated 

odometric 

error in the y-

axis obtained 

by SRT  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

Average 

Standard 

deviation 

1.0510 

1.5145 

1.1518 

1.2032 

1.8662 

1.5301 

1.8517 

1.4147 

1.8892 

1.9341 

 

1.5085 

 

0.3416 

5.7380 

6.6229 

6.6694 

4.8037 

7.1203 

6.1926 

5.4546 

5.1956 

4.9849 

6.1731 

 

6.1873 

 

0.9353 

7.4345 

8.4326 

8.6794 

9.9912 

8.7447 

8.0771 

9.5684 

7.9154 

9.9837 

7.2319 

 

8.4668 

 

1.2185 

8.3685 

10.3981 

6.8330 

8.4258 

6.9073 

9.2429 

13.7404 

9.0708 

11.0256 

 

 

9.6757 

 

2.3434 

 

 

Table 4. Odometric error in orientation θ reported by DEG, REG, SRG an SRT exploration methods to 

explore the LIRM environment based on 30 tests. 

 

Test number Maximum 

accumulated 

odometric error 

obtained by 

DEG 

(radians) 

Maximum 

accumulated 

odometric error 

obtained by 

REG 

(radians) 

Maximum 

accumulated 

odometric 

error obtained 

by SRG 

(radians) 

Maximum 

accumulated 

odometric 

error obtained 

by SRT  

(radians) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

Average 

Standard 

deviation 

0.1407 

0.1271 

0.1305 

0.1143 

0.1373 

0.1485 

0.1563 

0.1596 

0.1156 

0.1349 

 

0.1329 

 

0.0153 

0.5770 

0.4539 

0.6855 

0.5256 

0.6538 

0.5075 

0.6985 

0.4655 

0.6029 

0.6725 

 

0.5600 

 

0.1013 

0.8508 

0.8036 

0.8122 

0.8206 

0.8080 

0.8225 

0.7495 

0.6619 

0.6313 

0.6725 

 

0.7638 

 

0.0884 

1.0046 

0.9469 

1.0275 

0.9315 

0.8406 

0.9286 

1.0209 

0.9663 

0.9568 

0.9402 

 

0.9320 

 

0.0688 

 

 

Another important factor to be considered by the methods is the coverage of the environment during exploration. 

Thus, to determine the percentage of exploration of the environment by the methods, the environment was 

divided into grids to determine which had been explored.  

 

Table 5 shows that both the DEG method and the REG method achieved 100% coverage of the environment in 

all tests, thanks to the integrated boundary control in both methods, which allows constant knowledge of the 

unexplored areas of the environment. On the other hand, both the SRT and SRG methods cannot guarantee full 

coverage, as their randomness may omit unexplored areas during the exploration. 
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Table 5. Explored surface of the LIRM environment for DEG, REG and SRG exploration methods based on 

30 tests. 

 

Test number Map coverage 

obtained by 

DEG 

Map coverage 

obtained by 

REG 

Map coverage 

obtained by 

SRG 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

Average 

Standard 

deviation 

100 % 

100 % 

100 % 

100 % 

100 % 

100 % 

100 % 

100 % 

100 % 

100 % 

 

100 % 

 

0% 

100 % 

100 % 

100 % 

100 % 

100 % 

100 % 

100 % 

100 % 

100 % 

100 % 

 

100 % 

 

0 % 

96 % 

91 % 

96 % 

96 % 

93 % 

91 % 

90 % 

90 % 

97 % 

92 % 

 

94 % 

 

3 % 

 

4 Conclusions and Future Work 

 
In the works on the subject of exploration and map creation in robotics, many authors emphasize that the 

odometry is one of the most important aspects in a navigation system and that it is important that the accuracy 

of the odometry is a point to be improved [15], which would help significantly in selecting the marks that will 

be used in the localization of the robot [14]. It is important to emphasize an important detail of most of the 

works published in recent years, the reduction of the odometric error is performed with different algorithms and 

often omits the consequences of the robot motion control [12].  

 

As an important conclusion, we can state that the way of exploring environments has a strong impact on the 

correctness of the odometry of the mobile robot and this has important effects on the localization and the 

construction of the map. And perhaps the most catastrophic effect of this, is the association of the data, which 

would lead to a proposal of an incorrect SLAM algorithm and not applicable to real problems.  

 

We can affirm that this new way of exploring unknown environments (the REG and DEG methods) minimizes 

the time required to perform this task, but above all it significantly minimizes the accumulated odometric error 

on the robot system. 

 

For many years, one of the important goals for the mobile robotics community is to have truly autonomous 

robotic systems in acquiring maps of unknown environments to perform their tasks, i.e. to have robust 

algorithms to solve the SLAM problem. And by way of conclusion, the reader will find in many references 

interesting proposals to solve the SLAM problem, however, there is little literature and therefore proposals for 

integrated exploration, i.e. SLAM plus motion control. What we have developed for 20 years has been 

evolutionary and we continue to improve aspects that are emphasized in different academic forums when we 

present papers on the subject.  

 

It is clear that further detailing the work that we as a team have done since the beginning of this century, would 

be long and tedious. The interesting thing in this work is to show how step by step we have reached a point 

where integrated exploration can be an interesting solution that can be adopted to other classic robotics 

problems. As future work we could mention: the famous robot abduction problem (while the robot is performing 

exploration, it is abducted and moved elsewhere, the robot must detect this abduction situation and perform a 

global location in order to return to its local exploration situation) and the multi-robot version of DEG. 

 

It should be noted that recent work on integrated exploration continues to use the methods proposed at the 

beginning of the 2000s and that it is interesting to emphasize that they are the ones that we use as a basis at the 

beginning of our research, it is clear that many recent methods highlight the good results obtained with 
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topological methods [16], [17] y [18] and this is where the most recent contributions we have made to the state 

of the art are located. 
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