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Abstract. The software industry is increasingly competitive 

and demands rapid adaptation and reduced delivery times 

for success. Strategic team composition emerges as a 

fundamental path to contribute to the success of software 

products and companies. Due to the importance of team 

composition in software engineering and the existence of 

various methods for building these teams in the literature, it 

is essential to understand the current trends and areas for 

advances in the state of the art on this topic.  

Although the literature has extensively examined team 

composition in software engineering, there is still a 

significant knowledge gap, particularly regarding the 

composition throughout various development phases. To 

address this gap, we conducted a systematic literature 

review (SLR) focusing on teams built for specific 

development phases. Our analysis encompasses team 

composing methods, metrics, size, member characteristics, 

required skills, and experimental settings.  
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1 Introduction 

The software industry places a higher value on human capital than physical capital, thus highlighting the 

importance of investing resources in recruiting highly competent personnel [1]. Team composition becomes a 

crucial process to contribute to the company’s success and distinguish itself from the competence in a highly 

competitive market [2], [3].  

In the field of team composition in software engineering, numerous studies have been conducted to experiment 

with different methodologies for building software products. One of these methodologies is Agile [4], as 

evidenced by secondary literature studies. For example, Lenberg P. et al. [5] conducted a literature review on 

behaviour-based software engineering, an area proposed by them, their work focused on finding articles on 

building software development teams using Agile methodologies. Similarly, Aryanee D. et al. [6] investigated 

the state of the art of team composition in agile methodologies. Another of the methodologies studied (for 

software construction, in the context of team composition), is the Waterfall Software Development Life Cycle 

[7]; as seen in secondary studies. For example, Restrepo L. et al. [8], conducted a literature review on effective 

team building, focusing on role assignment and highlighting the life cycle model used, whether agile, traditional 

[9] or hybrid [10]. 
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On the other hand, some researchers have focused on team building for software development phases rather 

than considering software development as a whole, as described in the aforementioned methodologies for 

software development. For instance, Aguilar R. et al. [11] experimented in the requirements phase in an 

educational context, where teams were formed according to Belbin's roles to build the requirements document. 

Similarly, Aguileta A. et al. [12] studied the implementation phase in an educational context, also using Belbin's 

roles. The researchers instructed the teams to create software components (requirements and code) to compare 

the quality. 

Despite the relevance of this topic and as demonstrated above, several models for team building have been 

suggested, to our knowledge, no systematic literature review (SLR) has been carried out that has identified 

patterns and potential areas of improvement on team composition for different phases of software development, 

using the Waterfall Model as a reference.  

Therefore, this work will conduct a systematic literature review in team composition in software engineering, 

through the distinct phases of software development, based on the waterfall model. We selected the Waterfall 

Model since it shares characteristics with other life cycle models [13], such as spiral [14]and iterative [14]. In 

addition, it has been used as a basis for the creation of other models [15]. To avoid biases towards any particular 

methodology and enable its application in any methodology or phase required. Particularly, this systematic 

literature review examines the team composing methods, metrics used to measure the performance of the 

method, software development team size, characteristics of team members, the necessary skill sets for team 

members (hard and soft skills), as well as the experimental settings employed. 

The paper is structured as follows: Firstly, the research method is described, followed by the planning and 

execution process. Finally, the results and conclusions of the research are presented. 

2 Research Method 

To analyse and review the existing literature on team composition in software engineering, this work conducted 

a systematic literature review (SLR) [16]. The SLR can consist of three distinct phases [17]. The Planning Phase 

established the objective, research questions, search string, inclusion and exclusion criteria, and information 

sources. The Execution Phase involves the search and selection of relevant papers, using the search string and 

applying the previously defined inclusion and exclusion criteria. In the Reporting Phase, the results derived 

from the analysis of the relevant articles obtained in the previous phases are presented. 

3 Planning 
 

3.1. Systematic Literature Review General Objective 

The main objective of this systematic literature review is to identify literature on team composition in software 

engineering, focusing on the various stages of software development according to the Waterfall Model. The 

analysis covers team composing methods, metrics used to measure the performance of the method, software 

development team size, characteristics of team members, the necessary skill sets for team members (hard and 

soft skills), as well as the experimental settings employed. 

3.2. Research Question Definition 

The research questions will address the overall objective of this systematic literature review. To answer these 

questions, the articles were classified into two groups: those that focus on building teams for a specific phase 

of development, classified according to the phases defined by Bassil in [5], and those that address the complete 

construction of a software product without reference to specific phases, classified under the category of 

"Software Development." From this point on, we will refer to "development phases," instead of using the term 

"phases defined by Bassil." 

RQ1 What are the similarities, and differences of commonly used methods in software engineering for team 

composition by development phases? 

Criteria considered for analysis: description, method of team building, number of team members, 

perspective, metrics, experimental subjects, scope, and characteristics considered. 
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RQ2 What are the experimental settings commonly used by development phases for team composition in 

the field of software engineering? 

Criteria considered for analysis: scope, setting (education, industrial or N/A). 

RQ3 What are the characteristics of team members by development phases for team composition in the field 

of software engineering? 

Criteria considered for analysis: method, scope, seven categories: age range, country of origin, Gender, 

level of expertise, role performed, previous experience, language. 

RQ4 What are the hard and soft skills of the team members by development phases for team composition 

in the field of software engineering? 

Criteria considered for analysis: hard and soft skills considered. 

RQ5 What are the commonly used team sizes by development phases for team composition in the field of 

software engineering? 

Criteria considered for analysis: number of people considered to form a team. 

 

3.3. Identification and Selection of Sources 

The search engine of choice for the implementation phase was Scopus [18]. Scopus provides a comprehensive 

search of academic literature [19], enabling the compilation of the largest number of research articles available. 

 

3.4. Inclusion and Exclusion Criteria 

We defined the inclusion and exclusion criteria to select research articles relevant to this study. For more 

detailed information, see Table 1. 

Table 1. Description of inclusion and exclusion criteria 

 
Inclusion Criteria (IC)  Exclusion Criteria (EC)  

IC1. Research articles in the English language EC1. Research articles published in conference 

reviews 

IC2. Research articles that fall within the time window 2000-

2023 

EC2. Books or book chapters 

IC3. Research articles related to the composition of equipment 

in the field of software engineering 

EC3. Literature reviews or systematic mapping 

studies 

 

3.5. Search String 

The purpose of the search string is to collect relevant research articles for this systematic literature review in 

the Scopus database. According to the Scopus search engine, we configured the search string. For more specific 

details, please refer to Table 2. 

 

Table 2. Description of the search string 

 
(TITLE-ABS-KEY (("team composition" OR "team building" OR "building teams" OR "composing teams") AND 

("requirements specification" OR "requirement elicitation" OR "analysis" OR "design" OR "development" OR "coding" 

OR "test" OR "testing" OR "implementation" OR "deployment" OR "operation" OR "maintenance") AND ("software 

engineer" OR "software engineering")  

 

4 Execution 

In June 2023, we conducted a search for academic literature in Scopus using the search string defined above 

and covering the period from 2000 to June 2023. The search produced a total of ninety-eight research articles. 

Subsequently, we performed an exhaustive analysis of the obtained research articles. We identified thirty-three 

research articles by applying the inclusion criteria. After applying the exclusion criteria, for this systematic 

literature review were considered relevant twenty-seven articles.  
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5 Reporting and Discussion 

RQ1 What are the similarities, and differences of commonly used methods in software engineering for team 

composition by development phases? 

 

A previous study [20] (see Figure 1 and Figure 2 in the Appendix for further illustration.) analysed the 

distribution of team composition methods employed to build teams by development phase from a quantitative 

point of view: Constructive Cost Model (COCOMO) [21] employed in one paper [22], Myers Briggs Type 

Indicator (MBTI) [23] employed in nine papers across all phases ([24], [25], [26], [27], [28], [29], [30], [31], 

[32]), “Experimental Team-Building Program” [33] employed in one paper [33], Big Five Model [34] employed 

in two papers across all phases ([35], [36]).  

The Decision Tree [37] was used in three papers across all phases ([24], [28], [32]). The Johnson Algorithm 

[38] was used in three papers across all phases ([25], [29], [32]). The Genetic Algorithm [39] was used in four 

papers across all phases ([25], [30], [32], [40]), Belbin’s Roles [41] were employed in two papers ([42], [43]) 

and Keirsey’s Personality Type [44] employed in one paper [43]. While IBM Watson Personality Insights [45], 

Twitpersonality [46], LIWC (Linguistic Inquiry and Word Count) [47], and Personality Recognizer [48] were 

employed in one paper [36].  

Other methods were employed for team composition across all phases such as Team Roles, Gender, and the 

Umbrella Traversal Model [49], used in four, five, and one paper ([29], [27],[28], [30], [32],[27],[28],[29],[30], 

and [49], respectively. Conversely, algorithms like principal component regression [50] were employed in one 

paper [51], logistic regression [52] was employed in one paper [28], shortest path [53] was used in one paper 

[40], rule-based model [54] in one paper [29], Naïve Bayes Classification [55] was employed in one paper [25], 

and two papers ([25], [30]) standard voting [56] and voting with object tracking [56]. 

Similarly, proposed methods like the “Role Assignment Methodology for Software Engineering Teams” were 

employed in one paper [26]. “Saicho” was employed in one paper [57], and “DELPHI” [58] was also employed 

in one paper. Therefore, this question will address a deeper analysis, covering aspects such as identifying 

similarities and differences between methods employed by research papers. 

In the analysis of software development phases, specifically in the context of team building, let us start with the 

requirements phase. The methods employed in this phase were MBTI and COCOMO. The MBTI is a model 

for identifying personality types based on basic preferences. Personality types include Extraverted, Introverted, 

Sensing, Intuition, Thinking, Feeling, Judging, and Perceiving. On the other hand, the COCOMO is a model 

for estimating effort through a series of steps (1. size, 2. effort, 3. duration and  4. cost estimation), where the 

project size is measured in thousands of delivered lines of code (KDL). For instance, Iqbal M. et al. [59] utilised 

MBTI to forecast the personality traits of requirements elicitation team members, based on job descriptions for 

requirements engineers, the study mapped the desired personality traits of a requirements analyst onto the 

personality traits defined in the MBTI. In contrast, Gulzar W. [22] used COCOMO to determine the optimal 

size for each phase of software development. The calculation was based on effort and duration estimates for 

each phase, including the requirements phase.  

However, the two studies differ in the number of team members. While Iqbal M. et al. [59] did not mention the 

number of team members required, Gulzar W. [22] calculated a requirements team of three people. Similarly, 

Gulzar W. [22] built the requirements team by calculating the necessary number of team members based on the 

effort and duration estimate of the requirements phase. In contrast, Iqbal M. et al. [59] considered both the 

personality of the team members and their alignment with the job descriptions. Finally, both researchers 

proposed models for building teams without using metrics to assess team performance requirements.  

Iqbal M. et al. [59] and Gulzar W. [22] have differing perspectives on team construction during the requirements 

phase. However, these studies only share the characteristic of not using experimental subjects and therefore 

lack evaluation metrics for the formed teams. It is suggested that there is potential for employing and adapting 

the proposed models in various contexts to determine their effectiveness in real-world scenarios. In the context 

of the Design Phase, two different methods were employed without a tendency towards one [20]: COCOMO, 

the same procedure in the requirements phase applies to the design phase “Experimental Team-Building 

Program,” a proposed method by Hunter K. et al. [33]. The “Experimental Team-Building Program” is a method 

where team members were randomly assigned to teams, aiming to guide these teams through the initial forming 

and storming stages of team development [60], and consisted of three components: a fifty-minute lecture 
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covering fundamental teamwork concepts, a workshop, and a series of follow-up activities over the next three 

classes. The workshop itself included three activities: Socialization, Team Charter Activity, and Team Initiative: 

Big Business.  

The contrast between these two methods starts with their approach. Gulzar W. [22] used the COCOMO model 

to determine the necessary number of members based on effort and duration estimates during the design phase. 

In contrast, Hunter K. et al. [33] aimed to establish whether integrating a team-building programme enhanced 

course outputs, measured by student development in teamwork knowledge, attitudes towards teamwork, and 

the quality of the design product. Regarding the optimal team size in the design phase, Gulzar W. [22] found 

that five-point-one people were required, whereas Hunter K. et al. [33] assigned subjects to teams of eight. 

The methods used to construct the teams also differed. Gulzar W. [22] considered both the effort and duration 

of the design phase when forming the design team, while Hunter K. et al. [33] chose to form teams randomly. 

The evaluation of team performance was approached differently by Gulzar W. [22] and Hunter K. et al. [33]. 

Gulzar W. [22] proposed a method to determine the required number of team members for each development 

phase but did not use any measures to evaluate the performance of the teams formed, while Hunter K. et al. 

measured the improvement of course outputs. Gulzar W. [22] and Hunter K. et al. [33] have different 

perspectives on team building in the design phase. The authors select the number of members and evaluation 

methods based on their research focus. These differences between research works enrich the landscape in 

different sectors of software engineering. This highlights the importance of considering different contexts in 

which the design phase takes place. It also opens new fields for adapting and improving design team-building 

methods. 

During the Implementation phase several methods were employed, to classify them we propose four categories: 

personality models, algorithms, tools, and others. The personality model category involves methods that 

consider the personalities of team members. Likewise, the algorithm category includes methods based on 

algorithms for building teams, while the tools category includes approaches that use external tools or methods 

for building teams. Lastly, the other category refers to methods of building teams that do not fit into any of the 

categories. 

Personality Category 

The Personality category includes MBTI and the Big Five Model [34] (see Table 1 in the Appendix for further 

illustration.). The Big Five Model is a taxonomy that arranges individual personalities into a hierarchical 

structure, categorized according to five dimensions: Extraversion, Agreeableness, Conscientiousness, 

Neuroticism, and Openness to Experience. The research papers ([36], [24], [32]) had different scopes. For 

example, Calefato et al. [36] evaluated automatic personality detectors based on the Big Five Model, also known 

as the Five Factor Model, in the field of software engineering for improving team composition. The aim was to 

determine the accuracy of the data and the feasibility of bringing personality detection to a larger scale, in 

addition, they replicated two studies in software engineering to examine the effect of selecting a particular tool 

on the validity of results. On the other hand, Gilal A. et al. [24] investigated the influence of MBTI personality 

type, gender and team roles on team performance. They employed four dimensions of MBTI characteristics 

(Introverted/Extroverted, Sensing/Intuitional, Thinking/Feeling and Judging/Perceiving) to construct a model. 

In addition, Gilal A. et al. [32] examined the role of programmers, focusing on introverted and extroverted traits 

of MBTI, and their gender. The experimental subjects for their experiments varied among the studies. For 

example, Calefato et al. [36] evaluated personality detection tools and replicated software engineering studies 

using individual developers. On the other hand, Gilal et al. [24] developed and evaluated their model using data 

from university students, while Gilal et al. [32], used data from both university and industry sources.  

We identified a tendency to employ MBTI, over the Big Five Model. The MBTI model's popularity and 

accessibility may be the reason for its extensive use [61], [62]. However, recent studies have shown that it lacks 

fidelity and do not recommend using [63], [64], [65]. On the other hand, the experimental subjects are from 

academia or industry, depending on the accessibility of the researchers to these subjects. 

Algorithms Category 

On the other hand, the Algorithms category comprises the Decision Tree [37], the Johnson Algorithm [38], and 

the Genetic Algorithm [39] (see Table 2 in the Appendix for further illustration.). The decision tree is a 

classification technique for making decisions based on the input data. In contrast, the Johnson Algorithm, on 
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the other hand, is an optimization technique designed for solving complex scheduling problems. Lastly, the 

Genetic Algorithm is an optimization and search algorithm inspired by principles of natural selection.  

Gilal A. et al. [24]   developed a decision tree model to predict effective team performance based on personality 

traits determined by the MBTI, team roles (programmer and team leader), and gender. They used the C4.5 

algorithm [66] and the 10-fold cross-validation method [67], achieving a prediction accuracy of 70.78%. 

Similarly, Gilal A. et al. [32] created a model for predicting the most suitable personality trait (Introvert and 

Extrovert pairs of MBTI) and gender for the programmer role. In this paper, they used two approaches. In the 

first approach, the decision tree method was used, employing the C4.5 algorithm (specifically the J48 [68] 

implementation), which resulted in a prediction accuracy of 58.58%. In the second approach, the Genetic and 

Johnson algorithms were applied, with prediction accuracies of 70.74% for both.  

Both studies focused on prediction. Gilal A. et al. [24] aimed to predict effective team performance, while Gilal 

A. et al. [32] aimed to predict the most suitable personality trait for the programmer role. On the other hand, 

the two papers ([24], [32]) considered algorithms with the role and gender of the team members. In particular, 

the role of programmer, except for Gilal A. et al. [24], who also considered the role of team leader. Regarding 

the metrics used in the research papers, prediction accuracy was the primary metric calculated in all papers 

([24], [32]), only Gilal A. et al. [32] identified 70% accuracy as an acceptable performance benchmark. Gilal 

A. et al. [24] also considered validation methods such as K-fold cross-validation for the decision tree algorithm. 

In contrast, Gilal A. et al. [32] employed a data division of 70% for training and 30% for testing. 

The most used algorithm method was the Decision Tree in combination with other factors such as MBTI, gender 

and team role. Similarly, it was found that prediction accuracy was frequently used, sometimes with 

consideration of validation methods. Algorithms have been found to produce positive results in predicting 

optimal combinations of personalities and team performance. 

Tools 

It includes tools that employ algorithms for personality detection, such as the IBM Watson Personality Insights 

[45], Twitpersonality [46], LIWC (Linguistic Inquiry and Word Count) [47], and Personality Recognizer [48] 

(see Table 3 in the Appendix for further illustration.). The LIWC is a commercial text-analysis software 

designed to examine the relationship between language use and personality traits. On the other hand, the IBM 

Watson Personality Insights is a commercial solution that uses a machine-learning methodology whose outcome 

is a scale of likeliness of a personality trait of the Big Five traits. In contrast, the Personality Recognizer is a 

method for predicting personality traits given an analysis of written language. Lastly, Twitpersonality is another 

method for predicting personality traits (determined by the Big Five) based on a document written by a user. 

These tools differ in their approach, techniques, and features. For instance, LIWC and Personality Recogniser 

use a 'top-down' [69] or closed vocabulary approach, which refers to a predetermined set of words that a system 

can recognise. In contrast, IBM Watson Personality Insights and Twitpersonality use a 'bottom-up' [69] or open 

vocabulary approach, which enables the system to recognise a wider set of words. However, the techniques 

used by all the tools differ. For instance, LIWC counts the frequency of specific words in a text, while IBM 

Watson Personality Insights employs machine learning [70]. Personality Recogniser uses regression models 

[71] and Twitpersonality uses support vector machines [72]. Regarding features employed, LIWC uses a closed 

vocabulary, whereas IBM Watson Personality Insights uses an open vocabulary and word embedding. 

Personality Insights uses both LIWC and the Medical Research Council database [73]. Similarly to IBM Watson 

Personality Insights, Twitpersonality also uses word embedding.  

Based on the information provided, we observed that there is an increasing trend in utilising existing tools for 

conducting experiments on team composition. This shift in focus allows for the allocation of resources towards 

other variables such as experimental subjects or input data for the tools. Similarly, it is important to know the 

problem's characteristics and landscape to select the appropriate tool for our needs. 

Others Category 

The Others category includes Team Roles, Gender, the Umbrella Traversal Model [49], and COCOMO. The 

Team Roles consisted of assigning each team member a role; authors assigned roles to members who have the 

expertise and the technical knowledge. The roles a member could play in the project include 

programmer/developer, designer, and tester, among others. For instance, Gilal A. et al. [29] only explored the 

role of the team leader. Gender also plays an essential role in team composition. Researchers as Gilal A. [32], 
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have examined the suitability of different genders for programmer roles. In contrast, the Transversal Umbrella 

Model approach is a metamodel aimed at identifying the optimal combination of several factors [49]. Anil 

Kumar S. [49], explored the possibility of the Transversal Umbrella Model to construct the most suitable pair 

of programmers based on time to travel from one point to another. The author defines it as an optimization 

model that consists of efficiently moving four people with varying walking, in terms of the time needed to get 

from the starting point to the destination, during rainy weather. This must be accomplished with only one 

umbrella that can accommodate a maximum of two people simultaneously. Finally, the COCOMO was 

employed by Gulzar W. [22], to define the number of people in each of the development phases, as described 

above. In the 'other' category of methods, we identified various techniques for team building. However, we did 

not observe any trend in the use of these models during the implementation phase. It would be worthwhile to 

evaluate the methods in this category in contexts beyond those established by the research. Further to the 

analysis of the phases, let us look at the testing phase. In the testing phase, Gulzar W. [52] followed the same 

approach as in the above phases. The output of this method was the number of staff needed, determined by the 

effort and the duration of this phase, as mentioned earlier. Due to a lack of contributions in the testing phase, 

we identified an area of opportunity in investigating methods for composing teams in this phase. Concurrently, 

this problem could be attributed to a deficiency in interest regarding software testing [74], [75].  

For papers classified as Software Development, we will employ the previously used classification. The 

categories are as follows: personality models, algorithms, tools, and others.  

Personality Models Category 

The category of personality models includes various models, such as MBTI, Five Factor Model, Belbin’s Roles 

[41] and Keirsey Personality Type [44] (see Table 4 in the Appendix for further illustration.). Research on team 

composition for software development that has used these personality models has taken different approaches. 

For instance, in the papers using the MBTI, Gilal A. et al. [25] aimed to find the ideal personality combination 

for the role of the programmer with the respective team leader and combinations of programmer personalities 

considering their gender for software development teams. In contrast, Jaafar et al. [27] were concerned only 

with the selection of a software development team leader according to their personality type. Similarly, Gilal et 

al. [29] aimed to gain a deeper understanding of the role of the development team leader based on the personality 

types of team members, while considering their gender and role as programmers. 

In contrast, Gilal A. et al. [28] aimed to develop a model that would identify the combination of personalities 

that would result in the best team performance, considering that a team should consist of one leader and four 

programmers. The aim was to develop a classification technique for effective and ineffective teams, considering 

the combination of personal factors of team members such as personality type, gender, and team role, which 

would contribute to the construction of the model. Alternatively, Gilal A. et al. [26] investigated whether there 

were differences in project success between personality preferences by applying the Role Assignment 

Methodology for Software Engineering Teams and using the Myers-Briggs Type Indicator (MBTI) to measure 

personality preferences. Meanwhile, Lewis T. et al. [76] investigated the impact of a subset of MBTI (problem-

solving preferences) on the performance and level of conflict within a software development team.  

In their view, Gilal A. et al [30] aimed to identify the optimal combination of personality types, based on the 

MBTI, for team leaders and programmers, considering their gender. In contrast, Farhangian M. et al. [31] aimed 

to develop a model to predict team composition and explain the team process by determining the impact of 

different variables, such as personality types, inter-member relationships, and previous team experience. Qamar 

N. et al. [35], used the Five Factor Model to assign weights to the five personality traits defined in it, creating 

a metric called the "Weighted Team Homogeneity Index". In contrast, Pieterse V. et al. [43] employed Keirsey's 

Personality Type and Belbin’s Roles to create a model that considers the diversity of members' personalities. 

This model guides experimental subjects in the team-building process to reach peak productivity early and 

achieve higher team performance. Licorish et al. [42] also used Belbin's Roles, they aimed to create a tool for 

building software development teams that considers team members' personalities. In papers that use personality 

models to construct software development teams, there is a tendency to use the MBTI model in combination 

with factors such as team role and gender. This trend may be due to the accessibility and familiarity of the 

MBTI [61], [62]. However, all these methods aim to develop models or tools to assist in team creation. This 

tool could aid software engineers, team leaders, engineering educators, or anyone seeking improved results in 

team-produced software products. 
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In terms of personality type coverage, four ([27], [29], [76], [42]) out of the eight papers using MBTI considered 

only pairs of personality types, while the remaining four papers ([25], [28], [30], [26]) considered all MBTI 

personality types. Among the papers that focused on pairs, Lewis T. et al. [76] considered the sensing-thinking, 

intuition-thinking, sensing-feeling, and intuition-feeling, while the other three papers ([27], [29], [42]) focused 

on pairs such as introversion-extroversion, sensing-intuition, thinking-feeling, and judging-perceiving. 

However, the two papers ([43], [42]) that used Belbin's Roles, Pieterse V. et al. [43], who also included Keirsey's 

Personality Type, and Qamar N. et al. [35], who employed the Five Factor Model, considered all personality 

types as defined by their chosen models. 

When discussing personality types, it is common to use the MBTI in two ways: either by focusing on specific 

pairs of personality types or by using all personality types as defined by the model, resulting in a combination 

of all types. In contrast, the papers reviewed for this category considered using all personality types defined by 

the models when building teams. 

Algorithms Category 

The algorithms used to form teams include genetic algorithm [39], Johnson's algorithm [38], principal 

component regression [50], logistic regression [52], decision tree [37], shortest path [53], rule-based model 

[54], naive bayes classification [55], standard voting [56] and voting with object tracking [56] (see Table 5 in 

the Appendix for further illustration.).  

The research that used the Genetic Algorithm covered various scopes. For example, Gilal A. et al. [25] aimed 

to determine the optimal combination of personality types for the roles of leader and programmer. They used 

Johnson's Algorithm, standard voting, voting with object tracking, and Naïve Bayes classification techniques. 

Similarly, Gilal A. et al. [30] aimed to identify the personality patterns of programmers monitored by team 

leaders. Various methods were used, including the Genetic Algorithm, Standard Voting (SV), Voting with 

Object tracking, and Johnson's Algorithm. In contrast, Gilal A. et al. [29] developed a rule-based team 

composition model using two approaches. The first approach was a descriptive examination using a decision 

tree, while the second approach was predictive experiments using genetic and Johnson algorithms. Similarly, 

Gilal A. et al. [32] also used the same two approaches to create a cost-effective team for software development. 

On the other hand, John B. et al. [51] aimed to create a model using principal component regression based on 

the Six Sigma methodology. The model would significantly reduce the time taken to solve development tickets. 

This would enable the team leader to strategically choose the team's size and minimum experience of the 

development team, considering the capacity and experience of the team members to solve the tickets. In 

contrast, Gilal A. et al. [28] aimed to create a model for composing software development teams based on team 

members' roles, personality types, and genders, using logistic regression, decision tree, and rough sets theory. 

Sahin Y. [40] proposed a new algorithm for team composition in software engineering courses within the 

academy. The algorithm considers the preferences in team composition of both teachers and students (in this 

model the teacher or student chooses the selection of the team) and employs the shortest path and agglomerative 

clustering [77] to establish efficient connections between students, a test was conducted to determine their 

preferences for working with other students.  

Regarding the measurement of algorithm results in articles, different studies have used different metrics. Four 

different articles ([25], [29], [30], [32]), which used genetic algorithms, all used prediction accuracy with team 

performance (in terms of efficiency) to measure their results. Similarly, Gilal A. et al. [28], while employing 

other algorithms, also used prediction accuracy and team performance (in terms of efficiency) to measure their 

results. John B. et al. [51] measured their results in terms of model accuracy and process performance (measured 

in the process performance index [78]), while Sahin Y. [40] measured team performance (in terms of project 

grades, concerns regarding team members, team restlessness, time needed for team building, alignment with 

meeting schedules, timely project completion, and the suitability of the project concerning course objectives.). 

Decision trees are increasingly being used in the algorithms used at this phase. Within the scope of the papers 

that employed algorithms, a strong tendency towards creating models or algorithms for building software 

development teams was identified. Similarly, some papers propose identifying, determining, or classifying 

individuals based on their gender, role, or personality type to find the optimal combination of team members. 

In the comparisons of the metrics used, we noticed a tendency to use more than one metric. Commonly one 

focuses on measuring the prediction results of either the algorithm or the model, and another on measuring the 

outputs of the teams that were formed based on the algorithm. 
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Tools Category 

In the category of tools used in the papers, we identified the use of the “Role Assignment Methodology for 

Software Engineering Teams,” a tool developed by Martínez L. et al. [79] and employed by Gilal A. et al. [26]. 

This tool employs sociometric [80] and psychometric techniques [81] that consider the personality [82], skills, 

and software roles of team members [79]. The main steps for its application are assessment of skills and abilities, 

application of personality assessments, conducting individual interviews, application of sociometric techniques, 

assignment of team responsibilities, and monitoring of the fulfilment of team roles as defined by Martínez L. et 

al. [79].  

Others Category 

A variety of methods have been considered for team building, including proposed methods such as SaiCho [57] 

and DELPHI [58], practical constraints, skills and their distribution among the team, personal criteria, 

motivational factors, the rough fuzzy model [27], roles, gender, experience, expertise, heterogeneity, expert 

opinion, rough set theory [28], and qualitative and quantitative methods. Understanding the available methods 

for building software engineering teams provides us with a broader understanding of the current knowledge in 

this area. Researchers can use or adapt this knowledge to suit our specific needs and contexts. This range of 

team-building methods during software development suggests that there are multiple ways to form teams, 

regardless of whether there are experimental individuals to work with. 

RQ2 What are the experimental settings commonly used by development phases for team composition in the 

field of software engineering? 

 

We categorized the experimental settings into two main groups: Educational and Industrial (see Figure 3 in the 

Appendix for further illustration.). The 'Educational' group includes settings such as courses, undergraduate 

experimental subjects, and universities. The 'Industrial' group refers to experiments conducted in companies, 

with employees or former students. Additionally, we use the “N/A” category to denote articles that did not 

conduct real-life experiments but rather relied on calculations or predictions. In the Requirements Phase, papers 

did not require experimental settings, as Gulzar W. [22] and Iqbal M. et al. [59]  used methodologies based on 

cost estimation and job requirements analysis. However, in the Design Phase, one paper [33] employed 

'Educational' settings. During the Implementation Phase, two papers each ([24], [32] and [32], [36], 

respectively) employed the “Educational” and “Industrial” settings, while two papers ([22], [49]), analogously 

in the “N/A” category did not use an experimental setting. Similarly to the requirements phase, experimental 

settings were not necessary as testing on people in academic or industrial settings was not required. 

In the Testing Phase, one paper did not require experimental settings, as Gulzar W. [22] employed COCOMO, 

as previously mentioned. In contrast, for software development, the predominant experimental setting was 

“educational,” appearing in thirteen articles ([25], [26], [27], [28], [29], [30], [35], [40], [43], [57], [76], [83], 

[84]). Meanwhile, “industrial” was employed in seven articles ([35], [42], [51], [58], [85], [86], [87]), while 

one paper [31] fell into the “N/A” category with no specified experimental settings. 

There is a clear educational tendency in research aimed at improving the education of future software engineers, 

rather than improving established industry processes. This may be because classroom environments are more 

accessible than offices where it is difficult to get permission to conduct experiments [88][89]. 

RQ3 What are the characteristics of team members by development phases for team composition in the field of 

software engineering? 

 

The team members' characteristics were classified into seven categories (C): 1. Age range, 2. Country of origin., 

3. Gender (Female or Male), 4. Level of expertise (Undergraduate/Engineer), 5. Role performed, 6. Previous 

experience, and 7. Language. The papers ([22], [59]) classified in the Requirements Phase did not provide 

detailed information about the characteristics of their experimental subjects, limiting the scope of the qualitative 

analysis. However, in their paper, Iqbal M. et al. [59] stated that only job descriptions for requirements 

analysts/engineers would be considered, regardless of age, gender, or any other categorisation used in this 

question. Similarly, for the papers ([33], [22]) classified in the Design Phase, Hunter K. [33] provided 

information about the experimental subjects in his work. The participants were first-year students at Tennessee 

Tech University [90] in the USA who would play the role of designers in design teams. No information was 

provided regarding the age range, gender, previous experience, or language used for communication within the 
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student group. Although the university is based in the USA, this paper will not assume that the students are 

American or that they communicate in English. On the other hand, Gulzar W. [22], given the scope of his work, 

did not consider any characteristics of the team members and was limited to collecting data on the effort required 

to conduct the work of each phase of the software development. 

During the Implementation Phase, Gilal A. et al., in both papers [29], [32], conducted their experiments with 

senior students at “Universiti Utara Malaysia” (UUM) [91] in Malaysia, as mentioned. In contrast, Calefato F. 

et al. [36] worked exclusively with engineers. Regarding gender, only Gilal A. et al. [29] and Gilal A. et al. [32] 

considered the gender of their participants. only Gilal A. et al. [29] obtained a sample of fourteen males and 

eighteen females, while Gilal A. et al. [32] worked with sixty females and thirty-seven males. On the other 

hand, the papers analysed distinct roles. Gilal A. et al. [29] focused on the role of the team leader, while Gilal 

A. et al. [32] analysed the role of the programmer. Calefato F. et al. focused on software developers and were 

the only ones to consider previous experience with software engineering. However, neither Anil K. [49] nor 

Gulzar W. [22] mentioned any characteristics of their experimental subjects. Similarly, none of the papers 

considered the age and language of the participants at this stage.  In contrast, in the Testing Phase, 

Gulzar W. [22] did not concentrate on the characteristics of the individuals in the software development team. 

Instead, it focused on collecting objective data on the activities being performed in each phase of software 

development. Therefore, no information regarding the team members is available. 

Regarding Software Development, all papers ([25], [28], [35], [83], [85]) that mentioned the age of their 

experimental subjects reported subjects older than nineteen. The average age of the experimental subjects in 

Nascimento N. et al. [83] was twenty-one point five years. In Gilal A. et al.[25] and Gilal A. et al. [28], the 

subjects were older than twenty years, while in Qamar N. et al. [35] and Marsicano G. et al. [85], the subjects 

ranged from twenty-four to thirty years and from nineteen to sixty-two years, respectively. In terms of country 

category, only Marsicano G. et al. [85] explicitly stated that their experimental subjects were Brazilian 

engineers. Gilal A. et al. [25], [28], [29], [30], [92] and Jaafar J. et al. [27] conducted their experiments in 

Malaysian universities, Qamar N. et al. [35] conducted their experiment in both academia and the software 

industry in Pakistan, while John B. et al. [51] conducted their project in an Indian company, and Varona D. et 

al. [58] had software development experts from the industry in Cuba. In contrast, Da Silva F. et al. [86], [87], 

who also conducted research in the industry, focused their research on the Brazilian software industry, while 

Pieterse V. et al. [43] conducted their experiment at the University of Pretoria in South Africa [43]. 

All papers for Software Development considered males and females in different proportions but with a higher 

proportion of male participants. For instance, Nascimento N. et al. [83] had forty-one male and six female 

participants, Dzvonyar D. et al. [84] had sixty-eight male and twelve female participants, Marsicano G. et al. 

[85] had two hundred forty males and eighty-six female participants, Gilal A. [28] had fifty males and fifty-five 

female participants, Sahin Y. [40] had Two hundred forty-eight males and seventy-nine female participants, 

Lewis T. et al. [76] had thirty-four male and four female participants, and Qamar N. et al. [35] had thirty-three 

male and two female professionals, as well as one hundred ninety-seven male and eighteen female students. It 

is worth noting that Gilal A. et al. [25], [29], [30] and Jaafar J. et al. [27] did not report the gender distribution, 

and Saini J. et al. [57] did not mention the gender of their participants. 

The number of papers employing students was twelve ([25], [26], [27], [28], [29], [30], [40], [43], [57], [76], 

[83], [84]), while the number of papers employing engineers was only six ([42], [51], [58], [85], [86], [87]). 

However, Qamar N. et al. [35] used both student and engineer participants. The most expected roles for 

participants were team leaders in eight papers ([25], [26], [27], [28], [29], [30], [51], [85]), programmers in six 

papers ([25], [26], [28], [30], [35], [83]), and developers in six papers ([31], [42], [58], [84], [86], [87]). Two 

papers ([35], [83]) analysed the role of designers, while analysts and testers in the same paper [35], and one 

paper [51] mentioned both software engineers and quality assurance professionals.  

However, previous experiences mentioned in papers include work experience (mentioned in five papers [35], 

[58], [83], [84], [85] ), completion of programming courses (mentioned in four papers [25], [27], [28], [92]), 

specific university semesters (mentioned in two papers [29], [76]), studying computer or software engineering 

(mentioned in one paper [40]), programming languages (mentioned in one paper [31]), or models (mentioned 

in one paper [43]). Additionally, one paper [87] on professional maturity and management styles. The language 

needed for subjects was Portuguese in Marsicano G. et al. work [85][85]. Meanwhile, Dzvonyar D. et al. [84] 

considered subjects who speak German, English and non-German speakers.  
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The experimental subjects used by the researchers are usually students. Therefore, they should participate in as 

many roles as possible in the development of the software. In the student population, researchers got that they 

should be at least 20 years old, as the personality is more defined. We also found a wide age range for the 

professionals or engineers involved in the experiment. Moreover, there is still an imbalance in the STEM [93] 

population, as many men were observed in most of the experiments compared to the number of women 

involved. 

RQ4 What are the hard and soft skills of the team members by development phases for team composition in the 

field of software engineering? 

It is noteworthy that to maintain homogeneity among the soft skills described in the papers, we classified them 

according to the taxonomy of soft skills by Mahasneh J. et al. [94]. Similarly, some papers do not explicitly 

state the soft and hard skills required for their studies, resulting in a variation in the total number of papers in 

each section.  

Requirements Phase. Hard Skills: Iqbal M. et al. [59] identified the hard skills required for a requirements 

analyst/engineer based on job descriptions for the role. The identified hard skills include: The task involves 

analysing the current systems in place for the client, translating their requirements into project briefs, identifying 

and evaluating potential solutions, creating reports on the feasibility of system/software to create an acceptable 

product, overseeing the development of new systems, presenting logical and innovative solutions for user 

systems, and offering proposals for modifying or replacing existing systems. Meanwhile, Gulzar W. [22] 

described the role of a systems analyst, which considers knowledge in both requirements and software design. 

However, for this phase, we will only consider the hard skill of requirements engineering as it is most aligned 

with this phase. Soft Skills: Regarding soft skills, there was no clear trend towards the importance of a specific 

skill. Iqbal M. et al. [59]  considered teamwork and collaboration, planning and organisation, communication 

and social intelligence to be soft skills for the role of requirements analyst/engineer. Gulzar W. [22] considered 

workplace thinking to be a crucial skill for systems analysts. 

Design Phase. Hard Skills: As a systems analyst, Gulzar W. [22] highlighted the importance of possessing 

design skills, including system design, human-computer interaction, usability engineering, software and 

software-hardware integration, reuse techniques, optimization, semantic-preserving transformations, and 

proficiency in specific programming languages and debugging techniques. Soft Skills: Hunter K. et al. [33] 

considered planning and organizing as the soft skills for the design phase, while Gulzar W. [22] gave a higher 

weight to workplace thinking. 

Implementation Phase. Hard Skills: Coding was the most frequently mentioned hard skill in three research 

papers ([24], [32], [49]). On the other hand, Gulzar W. [22] stated that system programmers require hard skills 

in programming languages, data structures, database systems, operating systems, software architecture, Petri 

nets, complexity theory, computer graphics, linguistics, parsing theory, practical experience in a specific 

programming language and domain, computability theory, set theory, predicate logic, formal proof techniques, 

and Turing machines. Soft Skills: Planning and organising were the most frequently mentioned soft skills in 

three of the papers ([24], [36], [49]), followed by teamwork and collaboration, as well as communication, which 

were each mentioned in two papers, ([36], [49]) and ([22], [49]), respectively. 

Testing Phase. Hard Skills: Gulzar W. [22] defined in their research that a system tester should possess hard 

skills such as previews, assessments of readiness, walkthroughs, inspections, audits of software projects, tracing 

of requirements, quality function deployment, techniques for software testing, tools for software testing, proofs 

of correctness, techniques for defining/improving processes, statistical process control, and innovations in 

technology. Soft Skills: Gulzar W. considered teamwork, collaboration, and communication as soft skills. 

Software Development. Hard Skills: Coding was the most frequently mentioned hard skill in the papers, 

referenced in five of them ([24], [25], [32], [83], [84][1]. T). Followed by domain expertise and experience, 

which were each mentioned in three papers ([51], [57], [58]) and ([35], [51], [58]), in that order. Other skills 

that were mentioned less frequently included technical profile (with no details mentioned) stated in two papers 

([86], [87]), task management, generating solutions, and database system concepts, which were each mentioned 

in one paper [29], [42], [26], respectively. Soft Skills: The soft skills most frequently mentioned in the literature 

are social intelligence, communication, teamwork and collaboration. These skills were identified in five papers 

each ([25], [29], [42], [51], [57]), ([25], [31], [40], [43], [87]), and ([31], [35], [40], [51], [87]), respectively. 
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Self-intelligence and workplace thinking were mentioned in three papers each ([25], [29], [42]) and ([43], [51], 

[86]), sequentially. Two papers ([40], [51]) mentioned workplace professionalism, as well as conflict resolution 

and negotiation, were mentioned in two papers ([40], [87]). Similarly, skills not so frequently mentioned are 

workplace diversity, planning and organising, workplace ethics and productivity, as stated in one paper each 

([51], [40], [40], [86] respectively). 

Successfully managing the software development process is a necessary skill for any software engineer. It is 

not surprising, therefore, that researchers often require experimental subjects to have the programming skills to 

complete the project. Technical skills are essential for task completion and project success, but they cannot exist 

without soft skills. “Teamwork and collaboration" and "communication" were found to be the most important 

soft skills in research papers. If each team member can communicate, work in a team, and collaborate 

effectively, the team's performance will improve. 

RQ5 What are the commonly used team sizes by development phases for team composition in the field of 

software engineering? 

 

In their research, different authors have defined different team sizes (see Figure 4 in the Appendix for further 

illustration.). For instance, during the Requirements Phase, Gulzar W. [22] determined that the requirements 

team should consist of three people. In contrast, during the Design Phase, Gulzar W. [22] recommended a team 

of five people, while Hunter K. [33] suggested a team of seven to eight people. For the Implementation Phase, 

Anil K. [49] proposed a two-person implementation team, while Gulzar W. calculated that the optimal team 

size is seven people. In contrast, for the Testing phase, Gulzar W. [22] determined that the ideal testing team 

should consist of four people. 

Regarding Software Development, Nascimento et al. [83], John et al. [51], and Gilal et al. ([28], [29], [30]) all 

recommend a team of five members. Pietersen et al. and Lewis et al. [76] suggest a range of four to five 

members, while Gilal et al. [25] suggest a range of four to six members. However, other authors have suggested 

the use of larger teams. For instance, Qamar N. et al. [35] had a team of six members, while Dzvonyar D. et al. 

[84] had a team of seven to eight members in their development team. We found that the average team size is 

five members. Therefore, a small team is more efficient [95] and five members is the ideal team size [96]. 

Depending on the context, researchers could assign each member a different task or role, and it might be 

possible to work in smaller groups to reduce the workload. 

6 Conclusions 

This work provides updated information about team composition in the software engineering field, based on 

the software development phases. Through a systematic literature review, we explored the state of the art and 

gained significant knowledge in team composition. We found information about the methods for building teams 

used by researchers, characteristics of those teams, average team size, metrics to measure the performance of 

the method used, necessary technical and soft skills for the members, and the environmental settings where 

researchers conducted their experiments.  

The main results of this work include the methods used to build software development teams. The following 

methods were used for each phase: MBTI and COCOMO for the requirements phase, COCOMO and 

Experimental Team-Building Program for the design phase, MBTI and decision tree for the implementation 

phase, COCOMO for the testing phase, and MBTI and decision tree for the software development phase. 

Therefore, the most frequently used method across all phases was MBTI for creating development teams. The 

reason for this may be that the MBTI is a more well-known personality model that is already accessible to the 

public [61], [62]. Despite being not recommended by many authors due to its lack of fidelity [63], [64], [65] 

this model is widely used in the field of team building. However, the distribution of experimental settings varied 

across the phases. During the requirements phase, no experimental settings were used. In the design phase, only 

educational settings were experimented. In the implementation phase, educational, industrial, and no settings 

were equally used among the papers classified in that phase. Finally, during the testing phase, no experimental 

settings were needed. For the Software Development phase, the experiments were mostly conducted in 

educational settings. This trend may be due to the accessibility of each environmental setting and the scope of 

the researchers' work. 
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In all phases, team members should possess skills in programming, teamwork, collaboration, and 

communication, both soft and hard. The papers had an average team size of five members. This is consistent 

with the literature which indicates that a smaller size is more efficient and ideal [95], [96]. 

Team composition in software engineering is emerging, which provides a major possibility for future 

investigation and the development of innovative studies. Further research can expand the body of knowledge 

by developing team-building methods, making use of AI algorithms, and applying the current findings to 

different software life cycles. This mapping study offers first contact with the building team’s area. By building 

optimal team composition and taking advantage of current methods, software companies, and students can 

develop high-quality products while improving performance and keeping a competitive advantage in a 

constantly evolving business.  

 

Appendix 

 
https://alumnosuady-
my.sharepoint.com/:b:/g/personal/a15001585_alumnos_uady_mx/EY3PhuhYKLtCvl0J7hVEQoUBoihgyIjPFoCUvUVtXqVSiA?e=GNrj8u 
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