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Abstract. Process Mining as a Service (PMaaS) could 

enable organizations to delegate the analysis of their 

business processes to third parties in the cloud and then 

avoid costs related to storage and processing. However, this 

involves outsourcing event log data to the service provider, 

which can be honest but curious and learn from the data in 

clear. This potentially compromises the confidentiality and 

privacy of the event log data that can be sensitive, for 

example, in the healthcare domain. Thus, it is necessary to 

both safeguard the privacy of the event log data and 

guarantee their usefulness in the process mining tasks. This 

paper presents a study and experimental evaluation of two 

cryptographic-based methods suitable for PMaaS with 

security and privacy guaranties, tested under the process 

discovery task and evaluated through a set of experiments 

in terms of utility loss, performance and computational cost, 

using available event logs in the healthcare domain. 
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1 Introduction 
 

A business process refers to a set of interrelated activities that are executed in a consistent and coordinated 

manner within an organization to achieve a business objective. An example of a business process is the purchase 

of a product, which is initiated when a customer places an order. This is followed by shipment of the product, 

delivery, and invoicing. A business process can be executed multiple times, where each execution corresponds 

to an individual instance of the process, also known as a case or trace. An event log is the collection of events 

recorded during the execution of a business process. Some of the typical attributes of an event include: the 

identifier of the case in which the event occurs ("Case ID"), the timestamp in which the activity was performed 

("Timestamp") associated with the event, the label of the activity performed ("Activity") and the entity 

responsible for executing the activity ("Resource"), as shown in Table 1. 
 

Process Mining (PM) [15] is an area of data science that allows extracting knowledge from the event log to gain 

a better understanding of the business process, in order to improve the quality of the business process. One of 

the tasks in PM is process model discovery: based on the event log data, the business process model is 

automatically discovered. This discovered model reflects the actual behavior of the business process and not 
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the one expected from the documented (ideal) process. It is through the discovered model that the running 

process can be analyzed and areas for improvement can be identified. 

 

Table 1. Example of a medical data event log. 

Case ID Timestamp Activity Cost Resource Patient 

1 06-01-2021 15:20:15 Register 100 Pedro Brenda 

1 06-01-2021 15:22:02 Triage 50 Ana Brenda 

1 06-01-2021 15:25:43 Blood Test 800 Julio Brenda 

2 06-01-2021 15:43:08 Register 100 Jorge Isidro 

2 06-01-2021 15:43:50 X-Rays 500 Pedro Isidro 

3 07-01-2021 15:46:27 Register 100 Pedro Marta 

3 07-01-2021 15:48:14 Triage 50 Ana Marta 

 

Under a Bigdata context, the wide availability of data from multiple executions of a business process and the 

considerable size of some event logs motivates the use of external (cloud) services, not only for storage but also 

for executing process mining algorithms, thus leading to the concept of Process Mining as a Service (PMaaS) 

[11]. However, some event logs such as those in the healthcare domain (like the one presented in Table 1), may 

contain highly sensitive data such as patient, diagnosis, and treatment information. Therefore, an event log in 

possession of a non-trusted third party becomes a risk to the confidentiality and privacy of the organization’s 

data. This makes evident that, under a PMaaS context, it is mandatory to guarantee confidentiality and privacy 

of event logs. 
 

In the literature, several approaches [4, 9, 11] have been proposed to preserve confidentiality and privacy in an 

event log, such as data sharing, generalization or noise aggregation. In this work, we focused on the study, 

evaluation, and experimental evaluation of two cryptographic frameworks in the context of PMaaS, particularly 

under the process discovery task [13]. Evaluation is done using real data event logs [5, 6], that is, models are 

discovered using both the event log in clear and in encrypted form. The results revealed that there is no loss of 

utility in the resulting process models from encrypted event logs under three different security levels. 

 

This article is an extension of the work reported in [21]. As new content, the related work is updated with recent 

references, the analysis of the design of the strategies is more detailed and the evaluation is more extensive 

using new data and measures. 
 

This article is organized as follows. Section 2 presents some relevant PM concepts and cryptographic 

frameworks. Section 3 presents a discussion of related work. Section 4 describes relevant features of selected 

methods for discovery of process models using encrypted logs. Section 5 presents an evaluation of the two 

methods under study with real data. Finally, Section 6 concludes this work. 
 

2 Background 
 

Usually, process discovery algorithms start by transforming the event log data into a Directed Follows Graph 

(DFG) scheme [14], and output a model in a visual notation language, such as a Petri Net (PN) or Business 

Process Modeling Notation (BPMN). The discovered model should allow replicating each of the traces 

recorded in the event log, where a trace is the chronological sequence of events of a given case. Formally, an 

event log L is a set of n traces, 𝐿 = {𝑡1, 𝑡2, 𝑡3, … 𝑡𝑛}, each trace 𝑡𝑖 containing the sequence of events associated 

to the executed activities in the case. For example, the event log in Table 1 is represented as the set of traces, L 

= {< “Register”, “Triage”, “Blood Test” >, < “Register”, “X-Rays” >, < “Register”, “Triage” >}. 

While nodes in the DFG represent process’ activities, the arcs represent the relationships between activities. An 

arc (a,b) in the DFG indicates that activity b is executed after activity a. (a,b)k indicates that the arc (a,b) appears 

k times in the DFG, i.e., that relationship appears in more than one trace in the event log. For example, the event 

log in Table 1 is represented as DFG = {(“Register”, “Triage”)2,(“Register”,“X-Rays”)1, (“Triage”,“Blood 

Test”)1} and graphically shown as a PN process model in Figure 1. 
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Figure 1. Process model associated to the event log in Table 1. 

 

The Alpha algorithm [15] is one of the first algorithms for process model discovery. It takes an event log L as 

input and produces a process model M in PN. Using the event log L = {< a,b,e,f >, < a,b,e,c,d,b,f >, < 

a,b,c,e,d,b,f >, <a,b,c,d,e,b,f >, < a,e,b,c,d,b,f >}, as example, the Alpha algorithm proceeds to discover the 

process model through the following 8 steps: 
 

1. Identifies the distinct set of activities (Δ) in 𝐿 → Δ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}. 
2. Discover the initial activities (Δ𝐼) on each 𝑡𝑗 → Δ𝐼 = {𝑎}. 

3. Discover the final activities (Δ𝑂) on each 𝑡𝑗 → Δ𝑂 = {𝑓}. 

4. Group activities using order relationships: causality (→), parallelism (||) and choice (#) to create the 

set of relations 𝑋𝐿. Where 𝑋𝐿 = { ({𝑎}, {𝑏}), ({𝑎}, {𝑒}), ({𝑏}, {𝑐}), ({𝑏}, {𝑓}), ({𝑐}, {𝑑}), ({𝑑}, {𝑏}),
({𝑒}, {𝑓}), ({𝑎, 𝑑}, {𝑏}), ({𝑏}, {𝑐, 𝑓}) }. 

5. Remove pairs of 𝑋𝐿  to create an optimized set of relationships 𝑌𝐿 = { ({𝑎}, {𝑒}), ({𝑐}, {𝑑}), ({𝑒}, {𝑓}),
({𝑎, 𝑑}, {𝑏}), ({𝑏}, {𝑐, 𝑓}) }. 

6. Determine the set of nodes (𝜆) and the start and end nodes (𝑀𝐼 , 𝑀𝑂) of the model. Where 𝜆 =
{ 𝑝({𝑎},{𝑒}), 𝑝({𝑐},{𝑑}), 𝑝({𝑒},{𝑓}), 𝑝({𝑎,𝑑},{𝑏}), 𝑝({𝑏},{𝑐,𝑓}), 𝑀

𝐼 , 𝑀𝑂 }. 

7. Nodes are connected 𝜆 through arches 𝛾. Where 𝛾 = { (𝑀𝐼 , 𝑎), (𝑓,𝑀𝑂), (𝑎, 𝑝({𝑎},{𝑒})), (𝑝({𝑎},{𝑒}), 𝑒),

(𝑐, 𝑝({𝑐},{𝑑})) , … , (𝑝({𝑏},{𝑐,𝑓}), 𝑐), (𝑝({𝑏},{𝑐,𝑓}), 𝑓) }. 

8. Return 𝛼(𝐿) as a PN, which is represented by the triad (𝜆, Δ, 𝛾). 
 

Cryptographic frameworks for event log privacy-preserving cause minimal loss of utility in process discovery 

algorithms [9]. Encryption is a function ℰ that converts a readable message 𝑚 into an unreadable ciphertext 

using an encryption key 𝑘ℰ. The reverse process (decryption) can be carried out using a function 𝒟 and 

decryption key 𝑘𝒟. Encryption has already been used in process mining and several types of ciphers considered, 

such as symmetric encryption (𝑘ℰ = 𝑘𝒟), asymmetric encryption (𝑘ℰ = 𝑓(𝑘𝒟)), with 𝑓 a one-way function), 

deterministic encryption (ℰ(𝑚1, 𝑘1
ℰ) = ℰ(𝑚2, 𝑘2

ℰ) if 𝑚1 = 𝑚2 and 𝑘1
ℰ = 𝑘2

ℰ), and homomorphic encryption 

(calculations on encrypted messages is possible). This last type of encryption is relevant in the sense that when 

the encrypted result is decrypted, it matches the result that would be obtained by performing the same operations 

on clear messages. Formally, in homomorphic encryption (𝒟(ℰ(𝑚1, 𝑘1
ℰ) ⊛ ℰ(𝑚2, 𝑘2

ℰ), 𝑘𝒟) = 𝑚1 ∗  𝑚2, being 

∗ y ⊛ valid operations defined for clear data and encrypted data, respectively. In the context of PMaaS and for 

privacy of data in the clear, processing homomorphically encrypted data is essential. Some of the most relevant 

homomorphic encryption protocols are Secure Equality Checking (SEQ) [18] and Secure Multiplication 

Protocols (SMP) [19]. 
 

3 Related Work 
 

Different strategies [7, 9, 10] have been proposed to attack the privacy problem in the context of process mining. 

Cryptographic frameworks [2, 12, 11] manage to adopt encryption techniques for data confidentiality, so that 

context-related data is not leaked and can still be used in process mining algorithms without loss of utility, i.e., 

the results achieved by using protected event logs are the same than if using the original (unprotected) data. 

Burattin et al. [2] propose one of the first cryptographic frameworks, particularly using deterministic encryption 

for process mining. The framework takes advantage of the differentiation property of ciphertexts to still give 

results without loss of utility in process model discovery algorithms. Tillem et al. [12] proposed the use of 

homomorphic encryption to ensure semantic security of encrypted event log data and still discover a process 

model. Particularly, that strategy is based on the use of Alpha algorithm [13] using homomorphically encrypted 

data. Rafiei et al. [11] proposed a framework that uses deterministic encryption and guarantees security against 

frequency analysis. This type of encryption prepares the event log data for causality-based process discovery 

algorithms, i.e., those that make use of an initial DFG structure. More recent works such as [1, 20] focus on 

Register 

Start 

Triage 

X-Rays 

Blood Test 

End 
Avg: 100, Pedro 

Avg: 50, Ana 

Avg: 800, Julio 

Avg: 500, Pedro 
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protecting event log data for process mining, relying on microaggregation or differential privacy, thus 

improving computational efficiency by balancing utility loss against data privacy. 
 

4 Model Discovery from Encrypted Logs 
 

After a literature review, two strategies for process discovery from encrypted event logs were selected and 

studied in terms of data utility and performance: (1) External Confidentiality Strategy (ECS) [11] and (2) 

AlphaSec Algorithm [12]. Table 2 shows the notation used in this section to describe both strategies under three 

environments: (1) the data owner side, (2) the service provider (cloud) side, and (3) the discovered process 

models end-user side. Figure 2 shows an overview of the flow of operations in each of these strategies. 

 

Table 2. Notation used in this work. 

Notation Description 

𝑒𝑖
𝑗
 Event where 𝑒𝑖

𝑗
∈ 𝑡𝑗 and 𝑖 ∈ ℤ 

𝑡𝑗 Trace where 𝑡𝑗 ∈ 𝐿 and 𝑗 ∈ ℤ 

𝐿 Multiset of traces, where 𝑒𝑖
𝑗
∈ 𝑡𝑗 ∈ 𝐿 

Δ Different activities in 𝐿 

𝑀 Process model 

[𝑥] Encrypted 𝑥 element 

[𝐿] Encrypted 𝐿, where [𝑒𝑖
𝑗
] ∈ [𝑡𝑗] ∈ [𝐿] 

ℰ Encryption function 

𝒟 Decryption function 

𝑘ℰ Encryption key 

𝑘𝒟 Decryption key 

 

 
(a) External Confidentiality Strategy (ECS). 

 
(b) AlphaSec algorithm. 

Figure 2. ECS and AlphaSec strategy environments. 
 

4.1 External Confidentiality Strategy (ECS) 
 

The strategy presented by Rafiei et al. in [11] encrypts an event log through five stages: (1) Filtering, (2) 

Selection, (3) Encryption, (4) Conversion, and (5) Connector, all executed in a trusted environment. The 

encrypted log can then be outsourced to an untrusted environment for model discovery. 
 

Stage 1. Filtering: Cases in the same trace are grouped, thus forming a multi-set of traces 𝐿. Trace filtering is 

performed 𝑡𝑗 ∈ 𝐿, so that those of lower frequency are removed according to a set threshold (determined by the 

process context). The result is a filtered event log 𝐿1. 
 

Stage 2. Selection: Attributes that are irrelevant to the process mining analysis or data that are not sensitive are 

removed from 𝐿1. This produces 𝐿2 as a new event log version. 

Stage 3. Encryption: Numerical values in the event log are coded with Paillier [8]. While for text data, a 

symmetric deterministic AES encryption is applied [3]. This step is illustrated in the “Activity”, “Resource” 

Data owner Cloud Model user

DiscConv

Secure Channel

Data owner Cloud Model User

DiscConv
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and “Cost” attributes of the clear event log in Table 1 and the encrypted log ([𝐿]) in Table 3. The result of this 

step is an encrypted event log 𝐿3. 
 

Stage 4. Conversion: A new (secret) date is selected. The timestamp of each event 𝑒𝑖
𝑗
∈ 𝑡𝑗 ∈ 𝐿

3 is replaced by 

its difference with the selected secret date. This stage is illustrated in the attribute “Timestamp” of Tables 1 and 

3. The result is a new version of the event log, 𝐿4. This prevents the time of the dates in the log from being 

identified. 
 

Stage 5. Connector: Allows to extract a DFG from the already encrypted event log and reconstruct 𝐿 in its 

original form. The above only occurs if 𝑘𝒟  and relative date values are known. 

1. The attribute indicating the previous activity is added. (“Prev. Activity”) to each event ei
j
∈ ti ∈ L

4 to 

identify which activities are directly connected. The first event of each trace tj ∈ L
4 will have a 

previous artificial activity “Start” encrypted with the same parameters with which the “Activity” 

attribute was encrypted. 

2. The information contained in “Connector” allows the grouping of events in traces, keeping the 

possibility to recreate a 𝐿 in its original form. This is done by giving to each event a random event ID 

(“ID”) and indicate the previous ID (“Prev. ID”). These new log attributes make it possible to identify 

the next event at the trace level. The “Prev. ID” of the initial event in each tj ∈ L
4 will always be 0. 

3. Next, the attributes “ID” and “Prev. ID” are hidden, as they are used only to rebuild 𝐿. These are 

concatenated and encrypted using the deterministic encryptor AES (as in Stage 3) and “Connector” is 

added as a new attribute. 

4. Next, the “Timestamp” attribute is used to protect the time values in events with the same “Case ID”. 

These are made relative to the preceding timestamp. Except for the first event of each trace, which is 

kept the same value. This allows the calculation of the duration in each of the arcs (as Activities) in a 

DFG, but makes difficult to identify events based on the time interval in which they occurred. 

5. Finally, the “Case ID” attribute is removed, and the order of all rows is disorganized. The result is an 

event log L5 protected by the five stages of ECS (see Table 3) to be outsourced to the cloud, converted 

to a DFG structure (generated based on “Activity” and “Pre-activity”) and used in causality-based 

business process model discovery algorithms. 
 

Table 3. Event log after implementation of the ECS strategy. 

Timestamp Activity Prev. Activity Resource Cost Connector 

00-00-0000 00:00:42 y7y4PUi2 NM7Jgoum XRCDyLgS 59301 5q8aL2at 

00-00-0000 00:01:47 UGdnk8fh y7y4PUi2 hLrq2mYD 46012 KQBindVr 

00-00-0000 15:46:27 bvS(28op UGdnk8fh 4hIDYn0q 98744 CKl07FSq 

00-00-0000 00:01:47 y7y4PUi2 NM7Jgoum tpwUTcAl 58430 N9a1qeto 

00-00-0000 00:03:41 jhg!676 y7y4PUi2 XRCDyLgS 81023 XIQ7ZnqA 

00-00-0000 15:20:15 y7y4PUi2 NM7Jgoum XRCDyLgS 59015 M4qAwqqz 

00-00-0000 15:43:08 UGdnk8fh y7y4PUi2 hLrq2mYD 42110 z5Zb56jY 
 

4.2 Strategy Based on Alpha Algorithm (AlphaSec) 
 

The AlphaSec protocol works with homomorphically encrypted event log data, at the data owner side. 

Particularly, AlphaSec uses Paillier, a non-deterministic homomorphic asymmetric cryptosystem. By itself, this 

encrypted log is not useful for PMaaS because the activities encrypted with this type of encryption lose the 

differentiation property. Figure 3 shows an example of the result that conventional discovery algorithms with 

homomorphically encrypted or nondeterministic event logs would have. AlphaSec solves this problem by 

adapting the basics of a conventional process discovery algorithm with homomorphic encryption protocols in 

order to discover the model. 
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(a) Process model from deterministic encryption. (b) Process model from non-deterministic 

encryption. 

Figure 3. Discovery of process models from encrypted data. 
 

AlphaSec concentrates on adapting the first 4 steps of the original Alpha algorithm [15]. AlphaSec consists of 

discovering Δ, Δ𝐼  and Δ𝑂 from the encrypted domain and find the relationships (𝑋𝐿, in Alpha's description). As 

shown in Algorithm 1, the AlphaSec protocol is composed of 3 subprotocols: (1) Secure activity discovery 

(SP1), where encrypted activities are discovered; (2) Secure direct succession discovery (SP2), where the 

activities' orders are determined; y (3) Secure Modelling (SP3), where the Zero Check Matrix (ZCM) is 

generated to be converted to a DFG structure. The following is a description of the Alphasec subprotocols using 

the example event log [𝐿] = {< [𝑎], [𝑏], [𝑐] >1, < [𝑎], [𝑑] >1, < [𝑎], [𝑏] >1}. 
 

Algorithm 1. AlphaSec 

Input: [𝐿], Δ 

Output: ZCM 

  1: for all  [𝑡𝑖] ∈ [𝐿] do 

  2:      ([𝐴𝐷𝑡𝑖], [Δ𝐼], [Δ𝑂]) = SP1([𝑡𝑖])         

▷ Activities are identified 

  3:      [𝑅] = SP2([𝐴𝐷𝑡𝑖]) ▷ Direct successions are identified 

  4: end for all 

  5: ZCM = SP3([𝑅], [Δ𝐼], [Δ𝑂]) 
  6: DFG = Conv(ZCM) 

▷ Relational matrix ZCM is obtained 

 

Secure activity discovery (SP1): It is aimed at safely discovering the activities [Δ], [Δ𝐼] and [Δ𝑂]. As a result, 

the service provider collaborates with the data owner to compare each [𝑒𝑖
𝑗
] with each [Δ𝑚] (where 𝑚 = |Δ|) 

using a SEQ protocol. If [𝑒𝑖
𝑗
] = [Δ𝑚], 𝐴𝐷𝑚,𝑛

𝑡𝑗
 is established in “[1]” (encrypted “1”), otherwise, it is set to “[0]”. 

(encrypted “0”). As shown in Equation 1, this is done for each [𝑒𝑖
𝑗
] of each [𝑡𝑗] in [𝐿]. 

 

[AD
𝑡𝑗] =

{
 
 

 
 
  [𝒂] [𝒃] [𝒄]
[𝒂] [1] [0] [0]

[𝒃] [0] [1] [0]

[𝒄] [0] [0] [1]
[𝒅] [0] [0] [0]

   ,

 [𝒂] [𝒅]
[𝒂] [1] [0]

[𝒃] [0] [0]

[𝒄] [0] [0]
[𝒅] [0] [1]

 ,

 [𝒂] [𝒃]
[𝒂] [1] [0]

[𝒃] [0] [1]

[𝒄] [0] [0]
[𝒅] [0] [0]}

 
 

 
 

 
(1) 

[AD
𝑡𝑗] = {[AD

𝑡1], [AD
𝑡2], [AD

𝑡3]} 
 

Secure direct succession discovery (SP2): To detect subsequent events between two events [𝑒𝑖
𝑗
] and [𝑒𝑖+1

𝑗
], two 

subsequent columns of the matrix are merged [AD𝑡𝑗] through a SMP protocol. As shown in Equation 2, each 

item in the previous column, [AD∗,𝑛

𝑡𝑗
], is safely multiplied with each element of the transpose of the subsequent 

column [AD∗,𝑛+1

𝑡𝑗
]
𝑇

. Then, the result is added to the corresponding index of a new [𝑅] matrix, as shown in 

Equation 3. 
 

 [𝒂] [𝒃] [𝒄] [𝒅]
[𝒂] [0] [1] [0] [0]

[𝒃] [0] [0] [1] [0]

[𝒄] [0] [0] [0] [0]
[𝒅] [0] [0] [0] [0]

 =  

 [𝒂]
[𝒂] [1]

[𝒃] [0]

[𝒄] [0]
[𝒅] [0]

 ×  
 [𝒂] [𝒃] [𝒄] [𝒅]

[𝒃] [0] [1] [0] [0]
 +  

 [𝒂]
[𝒂] [0]

[𝒃] [1]

[𝒄] [0]
[𝒅] [0]

 ×  
 [𝒂] [𝒃] [𝒄] [𝒅]

[𝒄] [0] [0] [1] [0]
 

(2.1) 

[𝑅AD𝑡1]  =  [AD∗,1
𝑡1 ]  ×  [AD∗,2

𝑡1 ]
𝑇
 + [AD∗,2

𝑡1 ]  × [AD∗,3
𝑡1 ]

𝑇
 

 [𝒂] [𝒃] [𝒄] [𝒅]
[𝒂] [0] [0] [0] [1]

[𝒃] [0] [0] [0] [0]

[𝒄] [0] [0] [0] [0]
[𝒅] [0] [0] [0] [0]

 =  

 [𝒂]
[𝒂] [1]

[𝒃] [0]

[𝒄] [0]
[𝒅] [0]

 ×  
 [𝒂] [𝒃] [𝒄] [𝒅]

[𝒃] [0] [0] [0] [1]
 (2.2) 
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[𝑅AD𝑡2]  =  [AD∗,1
𝑡2 ]  ×  [AD∗,2

𝑡2 ]
𝑇
 

 [𝒂] [𝒃] [𝒄] [𝒅]
[𝒂] [0] [1] [0] [0]

[𝒃] [0] [0] [0] [0]

[𝒄] [0] [0] [0] [0]
[𝒅] [0] [0] [0] [0]

 =  

 [𝒂]
[𝒂] [1]

[𝒃] [0]

[𝒄] [0]
[𝒅] [0]

 ×  
 [𝒂] [𝒃] [𝒄] [𝒅]

[𝒃] [0] [1] [0] [0]
 

(2.3) 
[𝑅AD𝑡3]  =  [AD∗,1

𝑡3 ]  ×  [AD∗,2
𝑡3 ]

𝑇
 

 [𝒂] [𝒃] [𝒄] [𝒅]
[𝒂] [0] [2] [0] [1]

[𝒃] [0] [0] [1] [0]

[𝒄] [0] [0] [0] [0]
[𝒅] [0] [0] [0] [0]

 =  

 [𝒂] [𝒃] [𝒄] [𝒅]
[𝒂] [0] [1] [0] [0]

[𝒃] [0] [0] [1] [0]

[𝒄] [0] [0] [0] [0]
[𝒅] [0] [0] [0] [0]

 +  

 [𝒂] [𝒃] [𝒄] [𝒅]
[𝒂] [0] [0] [0] [1]

[𝒃] [0] [0] [0] [0]

[𝒄] [0] [0] [0] [0]
[𝒅] [0] [0] [0] [0]

 + 

 [𝒂] [𝒃] [𝒄] [𝒅]
[𝒂] [0] [1] [0] [0]

[𝒃] [0] [0] [0] [0]

[𝒄] [0] [0] [0] [0]
[𝒅] [0] [0] [0] [0]

 
(3) 

[𝑅]  =  [𝑅AD𝑡1]  + [𝑅AD𝑡2
]  + [𝑅AD𝑡3] 

 

Secure Modelling (SP3): The cloud queries each index of the [𝑅] matrix to the owner to obtain a “0” 

(unencrypted) if the decrypted data is 0, or “1” otherwise. The ZCM matrix of the example is shown in Equation 

4. 
 [𝒂] [𝒃] [𝒄] [𝒅]
[𝒂] 0 1 0 1
[𝒃] 0 0 1 0
[𝒄] 0 0 0 0
[𝒅] 0 0 0 0

 

(4) 

𝑍𝐶𝑀 

5 Evaluation and Discussion 
 

The two strategies previously discussed build an encrypted DFG structure capable of being used by most (DFG-

based) process model discovery algorithms without losing data utility. However, their workflows differ, mainly 

in the amount of computations assigned to each environment, which leads to different performance. In this 

section, we present an evaluation and comparison in workflow, performance, and utility loss for the ECS and 

AlphaSec strategies.  

 

5.1 Methodology 
 

The methodology used to carry out the study proposed in this article consisted of: 

 

1. Study and selection of business process model discovery methods based on cryptographic algorithms. 

2. Selection of evaluation parameters and experimental design. 

3. Implementation of the selected methods under the same conditions (programming language and 

validation and evaluation tools). 

4. Collection, analysis, and reporting of results. 
 

5.2 Workflow 
 

Each strategy devotes different numbers of operations to each of the three environments. As shown in Figure 

4, the ECS strategy performs all its work from the data owner's environment, while the AlphaSec strategy 

performs most of its work in the cloud environment but keeps interactions with the data owner. In both cases 

the cloud is responsible for converting (Conv) the output of both strategies into an encrypted DFG structure 

([DFG]). This is easily achieved since both outputs ([𝐿]4 and ZCM) provide the same information in different 

format. In both strategies the cloud handles the discovery (Disc) of the encrypted model ([M]) using [DFG], as 

described in Figure 4 in the Discovery section box. 
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(a) ECS (b) AlphaSec 

Figure 4. Workflow performed by each strategy. 

5.3 Performance 
 

The performance of the ECS and AlphaSec strategies was done under the same conditions: same 

implementation programming language and same computing platform, Java and MacOS (M1 Pro, 16 GB), 

respectively. The three PMaaS scenario environments (data owner, cloud and model user) were deployed from 

the same computer, omitting data transfer times for this evaluation. The strategies were configured with the 

same equivalent security level: 128-bit AES encryption for ECS and 3072-bit Paillier encryption for AlphaSec. 

The actual medical data event logs described in Table 4 were used as input. 
The ECS strategy uses deterministic encryption, so there is no need for the owner to encrypt each of the 

activities, since the ciphertext will always be the same. On the other hand, AlphaSec must encrypt each of the 

activities, even if they are repeated, because its semantic security relies on the ciphertexts being different. Figure 

5 shows the performance of each strategy to protect each of the logs. The ECS strategy can be affected by 

increasing the number of traces, while AlphaSec is notably affected (exponential increase) by increasing the 

number of activities. 
 

Table 4. Event logs of medical data. 

Event log Events Activities Traces Size (MB) 

Sepsis Cases [5] 15,214 16 1,050 5.4 

Hospital Billing [6] 451,359 18 100,000 174.3 

BPIC11 [16] 150,291 624 1,143 85.4 

 

 
Figure 5. Performance of each strategy. 

5.4 Utility Loss 
 

The utility loss was assessed using the real medical data event logs described in Table 4 and their versions 

protected by the ECS and AlphaSec strategies in two process model discovery algorithms: (1) Alpha [15] and 

(2) Inductive Miner [17]. To perform the evaluation, the conformance of each discovered model was tested by 

calculating its fitness and precision measures to compare the corresponding models of the same log (protected 

and unprotected). 
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Figure 6 presents the decrypted models discovered with the Alpha algorithm [15] using the Sepsis Cases and 

Hospital Billing protected logs. Similarly, Figure 7 presents the decrypted models discovered with the Inductive 

Miner algorithm [17]. Table 5 shows a cumulative evaluation of the resulting models, where the results between 

models of the same log are the same, i.e., they do not change in terms of utility loss with respect to what would 

be obtained with the unprotected log. 
 

Table 5. Evaluation of the discovered models (‘-’: unprotected). 

Discovery Event Log Protection Arcs Places Transitions Density Fitness Precision 

Alpha Miner 

Sepsis Cases 

- 451 70 18 0.178 1.0 # 

ECS 451 70 18 0.178 1.0 # 

AlphaSec 451 70 18 0.178 1.0 # 

Hospital Billing 

- 365 53 20 0.167 # # 

ECS 365 53 20 0.167 # # 

AlphaSec 365 53 20 0.167 # # 

Inductive Miner 

Sepsis Cases 

- 64 24 25 0.053 1.0 0.437 

ECS 64 24 25 0.053 1.0 0.437 

AlphaSec 64 24 25 0.053 1.0 0.437 

Hospital Billing 

- 90 30 40 0.037 0.825 0.677 

ECS 90 30 40 0.037 0.825 0.677 

AlphaSec 90 30 40 0.037 0.825 0.677 
 

 
 

(a) Sepsis Cases. (b) Hospital Billing. 

Figure 6. PN models discovered with the (original) Alpha algorithm from encrypted event logs. 
 

  

(a) Sepsis Cases. (b) Hospital Billing. 

Figure 7. PN model discovered with the Inductive Miner algorithm from encrypted event logs. 
 

6 Conclusion 
 

Privacy preserving in process mining is becoming a crucial requirement in the context of data science as a 

service. This approach is more common in the presence of a Big Data era and the continuing adoption of cloud 

computing. A data owner in possession of large event log could find huge benefits to outsource the process 

mining tasks, such as process model discovery. In this work we provided an assessment of suitable privacy 

preserving process discovery methods based on cryptographic principles. A such approach resulted to be 

attractive because no loss of utility is exhibited at the time that privacy over sensitive data in the event log is 

preserved. The methods were identified from the state of the art, studied and assessed under the same conditions. 

The first method (ECS) uses deterministic encryption and the second one (AlphaSec) relies on homomorphic 

encryption. Experimental results revealed that both strategies can come to the same results in the form of a DFG 

model usable in conventional process model discovery algorithms. While ECS takes advantage of the cloud to 

perform noticeably fewer computations, AlphaSec provides semantic security to the log, which prevents the 

cloud from being able to learn information through frequency analysis, thus providing a higher security. It is 
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planned to extend the study presented in this work consider quantum safe encryption techniques to face the 

currently quantum threat to encryption algorithms to consider. 
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