

www.editada.org

International Journal of Combinatorial Optimization Problems and

Informatics, 15(5), Dec 2024, 96-107. ISSN: 2007-1558.

https://doi.org/10.61467/2007.1558.2024.v15i5.562

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved.

Development of a Graphical Interface for Communication with CubeSat Space

Protocol-Based Cards: Telemetry Reception Results

Miguel Limón González, Enrique Rafael García Sánchez, Selene Edith Maya Rueda, Nicolas Quiroz

Hernández

Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias de la Electrónica.

miguel.limongonzalez@gmail.com, rafael.garciasan@correo.buap.mx, selene.maya@correo.buap.mx,

nicolas.quirozh@correo.buap.mx.

Abstract. A graphical user interface is proposed to facilitate

telemetry collection and configuration set-up for CubeSat

Space Protocol-compatible nanosatellites during their

testing and assembly stage. The graphical user interface

connects to the various subsystems of the nanosatellite

through a module that functions as a gateway. The graphical

user interface is written in Python and Qt. Python is an

interpreted high-level language compatible with Linux

systems, and Qt is a multi-platform graphical user interface

development framework. Through the graphical user

interface, telemetry from the various satellite modules can

be collected.

Keywords: Nanosatellite, CubeSat, Python, Qt, GUI,

Telemetry

Article Info
Received May 10, 2024.

Accepted Nov 20, 2024.

1 Introduction

Satellites can be classified by their mass and size. Within the category of small satellites, we have picosatellites

(less than 1 kg), nanosatellites (1 to 10 kg), microsatellites (10 to 100 kg), and minisatellites (100 to 1000 kg)

[1]. The establishment of standards for nanosatellite construction has allowed for a decrease in manufacturing

and launch costs. An example of this is the CubeSat standard, which defines the basic form factor as 1U, with

dimensions of 10 cm x 10 cm x 10 cm, and a mass of less than 2 kg [2]. In addition to the emergence of

standards, the reduction of costs and risks in nanosatellite manufacturing projects has driven using commercial

off-the-shelf components (COTS) [3]. In the last decade, the launch of nanosatellites has seen significant

growth. According to the NanoSats database in 2011 the number of launched nanosatellites was twelve launched

while in 2023, the number of launched nanosatellites increased to 396 [4].

Internally, a satellite is composed of the following subsystems: Electrical Power System (EPS), On Board

Computer (OBC), Attitude Determination and Control System (ADCS), radio, and payload. EPS refers to the

satellite's power module. OBC refers to the flight computer that manages the satellite's systems. ADCS is

responsible for controlling the satellite's orientation. The radio is responsible for receiving commands and

transmitting telemetry and mission information to the ground segment or to other satellites [5], [6]. Finally, the

module containing the necessary elements to fulfill the satellite's mission is known as payload. For example, if

the mission is about Earth observation, the payload is likely to be a device for capturing images.

CubeSat Space Protocol (CSP) is a protocol stack designed for CubeSats. CSP shares the layered design of

TCP/IP. One of its main highlights is that it allows embedded systems to define different services through the

Limón González et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 96-107.

97

same communication channel, similar to computer networks using TCP/IP where a server can offer different

services using the same IP address on different TCP/UDP ports [7].

The CSP protocol was developed in 2008, and it was published under the MIT license as libCSP. Since then, it

has received periodic updates. The CSP protocol stack is written in C, and it is considered cross-platform.

Currently, it has support for different operating systems such as FreeRTOS, Windows, MacOS, and Linux as

well as bindings for the Python language. The libCSP library includes code that allows packet routing, ICMP-

like requests such as ping and buffer status [8]. CSP is available under LGPL license.

Python is an interpreted high-level programming language widely used in various fields such as web

development, data analysis, artificial intelligence, and more [9]. On the other hand, Qt is a multi-platform

application development framework that allows creating graphical user interfaces (GUIs). Qt uses a dual

licensing model, which means it is available under both a commercial license and an open-source license (GNU

Lesser General Public License, LGPL) [10]. This provides flexibility for developers to choose the option that

best suits their needs.

Regarding the integration of Qt with Python, PyQt is a set of bindings that allows utilizing Qt capabilities in

Python-written applications. Qt Designer is a tool included in Qt that enables designing user interfaces visually

by dragging and dropping components to achieve the desired appearance [11].

As mentioned earlier, nanosatellites are typically composed of multiple modules. Therefore, to test such

systems, flat-sat test benches are commonly used, allowing the interconnection of satellite modules in the same

manner as they would be once the system is assembled [12]. To debug the firmware of these systems, it is

necessary to have multiple connections that allow monitoring the debug console of each module. It is worth

noting that the more components the system has, the more complicated it becomes to evaluate such a system.

Testing during nanosatellite development is a crucial step to ensure reliability in space. To achieve this, it is

necessary to have tools that facilitate the work, particularly for long and repetitive tasks such as gathering data

or connecting to the subsystem’s shell. In these cases, we found that a GUI compatible with the CubeSat Space

Protocol, and equipped with logging capabilities, can be very useful.

1.1 Related work

In [13], Grillo conducted a presentation where he displayed a graphical interface for visualizing vibration test

data and highlighted the advantages of using Python and Qt as an alternative to proprietary software. Among

the advantages mentioned by Grillo of using Python and Qt, we can find: the ability to edit the code, making it

highly adaptable to the needs of each project since the algorithm used by the graphical interfaces can be

understood, and programs developed with these technologies are multi-platform and scalable.

In [14], Esposito developed a GUI based on Python and the Tkinter graphics library, resulting in a cross-

platform graphical inte2ace that allowed the operator to visualize telemetry received via radio on any computer

capable of running Python.

In [15], G. Orbiols et al. explain the difficulties they faced during the verification tests of the E-St@r-II

nanosatellite due to the lack of interfaces other than radio communication to monitor and control the subsystems'

status during the tests.

In [16], Rodríguez proposes the development of a device focused on testing EPS subsystems for CubeSats. This

module is responsible for recording values of various parameters of the power system, and this information can

be visualized from the computer through a LabView-based GUI.

In [17], Tapsawat uses HiL testing using custom-build interfaces with multiple pre-designed MCU boards and

embedded computers to test ADCS subsystem.

After an exhaustive search, we found similar work focused on power module testing as and ADCS module

testing. On those works they depict very specific testing hardware and complex connection systems. However,

Limón González et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 96-107.

98

the approach that we seek is towards to a slightly more general solution focused on collecting and managing

data through a single interface and avoid situations as those mentioned above.

This work proposes the development of a graphical interface written in Python, utilizing Qt as the graphics

library, and leveraging the capabilities of CubeSat Space Protocol (CSP) to communicate the PC with different

satellite subsystems through a single interface. It is expected that the use of a graphical interface and CSP will

facilitate telemetry data collection and visualization during the testing period of nanosatellite missions by

allowing the visualization of the nanosatellite's overall telemetry through a single physical interface.

2 CubeSat Test Environment

Several tools were used for the development of this project to evaluate the functionality of the graphical

interface, the equipment used, as well as some relevant characteristics and the configuration used are described

in this section:

2.1 Flat-Sat

A NanoUtil TestDock flat-sat model from GOMspace was used. A flat-sat is a test bench for nanosatellites that

allows interconnecting cards in the same way they would be in an assembled nanosatellite. For this purpose,

the system has three PC-104 type connectors interconnected. The flat-sat used in this project has ports to connect

an external power supply used to perform battery charging and discharging tests for the EPS module. In addition

to the EPS, it also has a switch that simulates the behavior of the kill switch required by the launchers of these

type of satellites.

2.2 Modules or Cards Used in the Tests

Four modules were placed in the flat-sat for the tests:

1) NanoMind A3200 OBC: An onboard computer based on a 32-bit AVR microcontroller with a clock

frequency of up to 64 MHz, external NOR flash memory of 128 MB, external RAM of 32 MB, and an

RTC [18].

2) NanoPower P31u EPS: This EPS has two 3.7 V batteries with 2600 mAh each. For the battery charging

system, it has up to 10 W DC-DC converters with maximum power point tracking (MPPT) to extract

the maximum possible power from the solar cells and has outputs of 3.3 V at 5 A and 5 V at 4 A [19].

3) NanoCom AX100U Radio: A half-duplex radio configurable by software that operates in a UHF

frequency range of 430 to 440 MHz. It supports modulations such as FSK/MSK/GFSK/GMSK and

supports various frame encapsulation types such as: 32-bits ASM+Golay, AX.25, HDLC+Viterbi

encoding, and HDLC+AX.25 [20].

4) Payload 1: A card based on an ARM Cortex-M4 processor microcontroller that incorporates a camera

which is connected to the main bus through a gateway using SPI.

5) Payload 2: A card that provides intersatellite communication capabilities using a STINGR simplex

modem from GlobalStar. It is connected to the main bus through a gateway using an UART interface.

6) Gateway: A card based on an ARM Cortex-M4 processor microcontroller that incorporates the

CubeSat Space Protocol and has the capability to route packets between payloads and the main

communication bus. The Gateway is connected to the main bus through CAN and I2C interfaces and

supports a variety of digital protocols.

The complete setup can be observed in Figure 1.

Limón González et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 96-107.

99

Figure 1. Photograph of flat-sat used in tests.

2.3 CubeSat Space Protocol

The CubeSat Space Protocol (CSP) version 1.6 was used, which is the latest stable version of version 1 of the

protocol. CSP is written in C++, so before using it in Python, it needs to be compiled. The compilation tool waf

is used for this purpose, considering the library's features. As a result of building the library, two binary files

are obtained that must be installed in the system, one file named libcsppy.so containing the encapsulated

methods and constants for use in Python, and another named libcsp.so containing the core of the libcsp library.

Both files must be installed in the user libraries folders; in the case of Linux systems, it is usually in the path

"/usr/lib/".

3 Graphical User Interface development

The graphical interface design was done using the QT Designer tool. Once the design was completed and the

control names defined, it was exported to Python code using the pyqt uic module to be able to use it in our code.

The graphical interface version can be seen in Figure 2.

The program initialization consists of loading the graphical interface and linking the events or "signals" of the

button-type controls to their corresponding methods. The software developed in Python uses the libcsp library

to use the CubeSat Space Protocol, however, it is not initialized until the "connect" button located in section 1

of Figure 2 is pressed.

The user interface is divided into 6 sections grouped according to their functionality and the information they

display, as depicted in Figure 2:

Limón González et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 96-107.

100

Figure 2. Graphical User Interface for nanosatellite testing.

3.1 Connection Set-Up

To set up the communication between the computer and the card, the following settings must be set: the path

of the serial port, the speed of the serial communication, the name of the interface in CSP, and the address of

the PC on the network. In this case the values of those settings are shown in Table 1.

Table 1. Settings used for connection between gateway card and Graphical User Interface.

Setting Value

Device /dev/ttyUSB0

Speed 115200

Name KISS

CSP Address 31

When the connect button is pressed, the graphical interface initializes the CSP library and then configures

interfaces. In this case the serial interface is configured as the default interface as shown in the block diagram

in Figure 3. After the interface initialization, there are three tasks that that needs to be started: the CSP router

task, which is responsible for processing the packets; the server task, which allows the processing of incoming

connections and their data; and the logger task that allows to record all the telemetry received from the network.

The initialization process is depicted in Figure 3 and a extract of code is shown in Listing 1.

Figure 3. Initialization diagram flow.

Conection
setup

Temperature

monitoring

Interface
statistics

Routing

table

Device
Information

Ping Utility

Limón González et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 96-107.

101

Listing 1. Initialization code used to set up the csp interfaces and logger tasks.

The Server task is responsible for setting up a port that remains listening and allows receiving data sent to the

node. The diagram shown in Figure 4 on the left side illustrates the process followed by the task to receive

packets sent by other nodes. When the server receives data, it processes them and send them to the

corresponding destination port.

The logger task, whose diagram is shown in Figure 4 on the right side, depicts the process that is responsible

for processing incoming telemetry. Incoming Telemetry is checked for errors using CRC32 that is a feature of

CubeSat Space Protocol, then the length of the packet is verified, and the data is decoded. Finally, the data

decoded is used to refresh the GUI and stored to disk.

Server

Create CSP socket

Start listen on CSP
socket

Incoming
Connection?

Are there
packets left?

Send packet to
the destination

port

Read incoming
packet

NO

YES

NO

YES

Logger

Incoming
packet on port

25?
Check CRC

Verify packet
length

Decode data

Refresh GUI
with new

data

Save recieved
data to disk

SI

NO

a) b)

Figure 4. Flow diagrams corresponding to server task (a) and logger task (b).

Infinite

Loop

Infinite

Loop

Limón González et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 96-107.

102

3.2 Parameters transmitted by OBC categorized by subsystem

The flat sat used in this setup, was configured to emit a housekeeping telemetry every 5 minutes. The

housekeeping telemetry includes information from all the subsystems, and it is intended to give the user an idea

of the satellite's health. The information is collected by the OBC through many digital protocols, and then

assembled in a single packet of 130 bytes that is transmitted to the PC. The complete list of parameters gathered

by the OBC are presented in Table 2.

Table 2. Housekeeping data recollected and transmitted by the OBC as telemetry data.

Subsystem Description of Parameters Unit or Expected Value

Radio Power amplifier temperature °C

 Last Received Signal Strength Indicator 16-bit integer

 Background RSSI 8-bit integer

 Last transmitter power mW

 Packets transmitted 16-bit integer

 Packets received 16-bit integer

EPS Power converters voltage - Array mV

 Battery voltage mV

 Current in - Array mA

 Boost converters current mA

 Battery's output current mA

 Output current - Array mA

 Output channels status - Array 0 or 1

 Temperature sensor °C

OBC Temperature Sensor °C

 Pulse Width Modulation (PWM) current mA

 Uptime in seconds 32-bit number

 Magnetometer - X axis 32-bit float number

 Magnetometer - Y axis 32-bit float number

 Magnetometer - Z axis 32-bit float number

 Gyro - X axis 32-bit float number

 Gyro - Y axis 32-bit float number

 Gyro - Z axis 32-bit float number

Payload 1 Camera status 8-bit number

 Number of images captured 32-bit number

 Number of seconds since last capture 32-bit number

 Space available
32-bit float number

(MB)

Payload 2 Number of Channel 8-bit number

 Number of Bursts 8-bit number

 Minimum Burst Interval: Units of 5 s.
01h to 3Ch
(5 to 300 s)

 Maximum Burst Interval: Units of 5 s.
02h to 78h

(10 to 600 s)

Status code

8-bit number

Number of seconds since the device unit last

attempted to send a satellite transmission.
16-bit number

Limón González et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 96-107.

103

Number of seconds until the device unit

attempts to send a satellite transmission.
16-bit number

 Packet size of last or current message. 8-bit number

 Currently waiting on or sending burst number 8-bit number

Number of seconds until burst transmission

number 2
16-bit number

Number of seconds until burst transmission

number 3
16-bit number

 Total messages transmitted in current mode. 16-bit number

Total Packet transmission count since hard

power on.
16-bit number

 STINGR Antenna temperature °C

 Payload Board temperature °C

Gateway Board temperature °C

 Memory available 32-bit float number in kb

 Interface Status 32-bit number

ADCS
Coarse Sun Sensors Value - Array [+Y, +X, −X,

−Y, −Z]
16-bit number

 Solar panel’s temperature on +Y axis 32-bit float number

 Solar panel’s temperature on +X axis 32-bit float number

 Solar panel’s temperature on −X axis 32-bit float number

 Solar panel’s temperature on −Y axis 32-bit float number

 Solar panel’s temperature on −Z axis 32-bit float number

 Bdot status −2 to 2

 Bdot value from low pass filter slow 32-bit float number

 Bdot value from low pass filter slow2 32-bit float number

 Value of detumbled state 0 or 1

3.3 Gathering housekeeping information

The process to gathering housekeeping information is executed by the OBC. This module makes requests to all

modules of the satellite. The modules respond to the previous OBC’s request and the OBC proceeds to process

the information. This information helps the OBC to change the satellite behavior according to the status of some

variables like the battery voltage, radio status, space available, etc. Once the information is processed, the

housekeeping frame is conformed and sent over the CSP network. In this case the OBC has been configurated

to send housekeeping every 5 minutes to the address 31 that corresponds to the PC. The connection used in the

testing process can be observed in Figure 5.

Gateway OBC EPS Radio

PC-GUI

Cube-sat

Payload

Payload

Figure 5. Connection diagram of nanosatellite modules.

Limón González et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 96-107.

104

3.4 System Status Visualization

In the main window the user can visualize the system status parameters, a space was added in the graphical

interface for its display as observed in Figure 2, section 4. The parameters shown include uptime, process list,

and available memory. The uptime since the OBC's startup is indicated in seconds. The process list is displayed

in a 4-column table as detailed in Figure 6a, where the first column corresponds to the task name, the second

column to the task state, the third column to the task priority, which can be a number between 0 and the

maximum number of priority levels supported by the hardware, the fourth column to the amount of memory in

bytes used by the task, and the fifth to the task identification number. The task state is denoted by the letters: X

for Running, R for Ready, B for Blocked, and S for Suspended. Lastly, the amount of available memory in

bytes on the device for creating more tasks is shown.

3.5 Communication Interface Statistics Visualization

It was considered useful to visualize communication statistics such as the number of packets sent and received.

For this purpose, space was allocated in the graphical interface as observed in Figure 1, section 5. The statistics

displayed for each interface include: the interface name, the number of packets transmitted and received by that

interface, the number of errors in transmitted packets, the number of errors in received packets, the number of

discarded packets, the amount of bytes sent, the number of bytes received, and the maximum transmission unit

of the interface. In Figure 6b, an example of the statistics for a serial communication interface of the gateway

card can be observed in detail.

a) b)

Figure 6. Details of statistics visualization on GUI: device memory status (a), communication

interface status (b).

3.6 Echo Request

To conduct connection tests with other subsystems of the satellite, controls were placed in the graphical

interface to send echo requests, as seen in Figure 2, section 6. In the QSpinBox control, the address to which

the echo request is to be sent can be selected and pressing the "Ping" button is required to send it. The result of

the echo request can be observed in the QLabel control located to the right of the "Ping" button.

3.7 Storage of telemetry data

When a packet is received the interfaces take advantage of CSP features such as CRC32 functions for error

detection. If data received is free of errors, the data is decoded and saved to disk later. Relevant information

about the communication with satellite modules and information from certain sensors is shown to the user

through the GUI. After, checking information for errors and refreshing GUI, the information is stored to disk.

Format of stored data can be CSV or JSON. Also is possible to storage information in a SQLite3 database.

Limón González et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 96-107.

105

4 Results

Several tests were conducted to ensure the correct transmission of data between the OBC card and the graphical

interface. These tests are listed below:

4.1 Connection Test

The graphical User Interface is connected to the OBC using a USB-TTL converter. In the OBC configuration

the Interface KISS is enabled over this port, at 115200 bps. To test communication, 4 ping requests were sent

from PC to the OBC, the responses for the request were visualized in the GUI, the results can be observed in

Table 3.

Table 3. Ping test and its response time in milliseconds.

Origin Destination Response

Time 1

Response

Time 2

Response

Time 3

PC OBC 15 ms 14 ms 15 ms

PC OBC 15 ms 16 ms 15 ms

PC OBC 15 ms 15 ms 14 ms

OBC PC 14 ms 14 ms 14 ms

OBC PC 15 ms 15 ms 14 ms

OBC PC 16 ms 15 ms 15 ms

4.2 Packet Count Test

To verify the accurate counting of packets sent and received, tests were conducted involving the transmission

of bursts of packets with a known number of packets per burst. Each packet sent has a 150 bytes length. The

results obtained are presented in Table 4.

Table 4. Packet Count Test.

Origin (Address) Destination

(Address)

Packets

Sent

Packets

Count

Result of

test

PC (31) OBC (1) 25 25 OK

PC (31) OBC (1) 50 50 OK

PC (31) OBC (1) 150 150 OK

OBC (1) PC (31) 25 25 OK

OBC (1) PC (31) 50 50 OK

OBC (1) PC (31) 150 150 OK

4.3 Data decoding and storage test

To ensure the usefulness of the GUI during nanosatellite testing periods, it is necessary to ensure that the

information received via CSP can be successfully decoded and stored. For this purpose, tests were conducted

where the system was left running for 10 periods of 12 hours each. During this time, the graphical interface

received, decoded, and stored housekeeping packets. The total number of packets received was 1440. Out of

the total packets, only 0.005% presented errors, which were located in the fields corresponding to information

from payload 1, possibly due to programming errors in payload 1. The data was stored on disk in CSV format

for easy manipulation with spreadsheet applications.

Limón González et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 96-107.

106

The data received using the GUI can be processed to generate graphs once they have been decoded. The GUI

utilizes libraries such as pandas and matplotlib to generate graphs of the relevant information. For example, in

Figure 7, a graph generated from the voltage information of the batteries and the input and output current of the

power subsystem can be observed, allowing the test operator to understand the system's consumption and make

an estimation of the battery's duration.

Figure 7. Data of a test period of 12 hours, where the battery voltage is compared with the system's current

input and output.

5 Conclusions

The use of a graphical interface allows for data visualization in a more user-friendly manner, and when

combined with CubeSat Space Protocol in applications for nanosatellites facilitates connection testing between

the various subsystems within a satellite. Furthermore, the use of Python as a programming language allows for

rapid development cycles [21], enabling the graphical interface to be adapted to user needs in a short amount

of time. In addition, access to the vast array of data processing libraries available in Python such as pandas and

matplotlib enables users to visualize test results easily and effectively, with libraries such as pandas and

matplotlib being particularly useful for this purpose. Regarding data storage, popular formats such as CSV or

JSON can be used, or more robust solutions like MySQL databases can be opted for [22]. The implemented

graphical interface worked as expected, and we hope it will be useful for future card tests to be conducted in

the laboratory. The graphical user interface worked as expected and it helped us to reduce the time required for

repetitive tasks such as connecting and preparing loggers for each of the subsystem modules that were to be

tested therefore minimizing human error. Also, we hope that access to clear and effective data visualization

supports informed decision-making during testing and development phases.

6 Acknowledgments.

The authors of this article would like to thank the Universidad Popular Autónoma del Estado de Puebla for all

the support in the realization of this article.

Limón González et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(5) 2024, 96-107.

107

References

1. Jahku, R. S., & Pelton, J. N. (2014). Why small satellites and why this book? In Small Satellites and

Their Regulation (pp. 1–12). New York: Springer. SpringerBriefs in Space Development.

2. Johnstone, A. (2022). The CubeSat Program: Cubesat design specification. California Polytechnic State

University, USA, Technical note, Rev. 14.1. Retrieved from

https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/164582

0809779/CDS+REV14_1+2022-02-09.pdf [Accessed August 10, 2023].

3. Camps, A. (2020). Nanosatellites and applications to commercial and scientific missions. Satellite

Missions and Technology in Geosciences, 145–169.

4. Kulu, E. (2023). Nanosats Database. Retrieved from https://www.nanosats.eu/ [Accessed January 27,

2024].

5. Hansen, L. J., Hosken, R. W., & Pollock, C. H. (1999). Spacecraft computer systems. In Space Mission

Analysis and Design (pp. 645–684). California: Microcosmos Press.

6. Wertz, J. R., & Larson, W. J. (1999). Spacecraft subsystems. In Space Mission Analysis and Design (pp.

353–518). California: Microcosmos Press.

7. Alminde, L., Christiansen, J., Kaas Laursen, K., Midtgaard, A., Bisgard, M., Jensen, M., ... & Le

Moullec, Y. (2012). Gomx-1: A nano-satellite mission to demonstrate improved situational awareness for

air traffic control.

8. Prasai, S. (2012). Access control of NUTS uplink (Master's thesis, Institutt for telematikk).

9. Challenger Pérez, I., Díaz Ricardo, Y., & Becerra García, R. A. (2014). El lenguaje de programación

Python. Ciencias Holguín, 20(2), 1–13.

10. Summerfield, M. (2007). Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt

Programming. Pearson Education.

11. Qt Company. (2023). Qt for Python. Retrieved from https://doc.qt.io/qtforpython-5/index.html [Accessed

July 3, 2023].

12. Surivet, A. (2021). Integration and validation of a nanosatellite flight software (ESA OPS-SAT project).

Stockholm.

13. Grillo, V. (2019). Python & Qt, powerful tools for technical computing. In 90th S&V Symposium.

Atlanta.

14. Esposito, A. (2019). CubeSatControl Centre for the management of telemetry, telecommand and

operations based on the CCSDS standards. Politecnico di Torino, Torino.

15. Obiols-Rabasa, G., Corpino, S., Mozzillo, R., & Stesina, F. (2015). Lessons learned of a systematic

approach for the E-ST@R-II CubeSat. In 66th International Astronautical Congress. Jerusalem.

16. Rodríguez Delgado, C. A. (2023). Gestión de requerimientos para el desarrollo de un sistema integrado

de pruebas para CubeSats. Tecnológico de Costa Rica, Cartago.

17. Tapsawat, W., et al. (2018). IOP Conference Series: Materials Science and Engineering, 8th TSME-

International Conference on Mechanical Engineering, Bangkok, Thailand.

18. GOMspace. (n.d.). NanoMind A3200 Datasheet. Retrieved from

https://gomspace.com/UserFiles/Subsystems/datasheet/gs-ds-nanomind-a3200_1006901-117.pdf

[Accessed July 3, 2023].

19. GOMspace. (n.d.). NanoPower P31u. Retrieved from

https://gomspace.com/UserFiles/Subsystems/datasheet/gs-ds-nanopower-p31u-30.pdf [Accessed June

2023].

20. GOMspace. (n.d.). NanoCom AX100. Retrieved from

https://gomspace.com/UserFiles/Subsystems/datasheet/gs-ds-nanocom-ax100-33.pdf [Accessed June

2023].

21. Saabith, A. S., Vinothraj, T., & Fareez, M. (2020). Popular Python libraries and their application

domains. International Journal of Advance Engineering and Research Development, 7(11).

22. Deedar, M. H., & Hernández, S. M. (2019). Extending a flexible searching tool for multiple database

formats. In Emerging Trends in Electrical, Communications, and Information Technologies: Proceedings

of ICECIT-2018 (pp. 25–35). Singapore: Springer Singapore.

https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf
https://www.nanosats.eu/
https://doc.qt.io/qtforpython-5/index.html
https://gomspace.com/UserFiles/Subsystems/datasheet/gs-ds-nanomind-a3200_1006901-117.pdf
https://gomspace.com/UserFiles/Subsystems/datasheet/gs-ds-nanopower-p31u-30.pdf
https://gomspace.com/UserFiles/Subsystems/datasheet/gs-ds-nanocom-ax100-33.pdf

