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Abstract. This project introduces a metric-driven strategy 

for enhancing real-time task planning within a mobile 

distributed system. The core design revolves around a real-

time task planning algorithm that exploits consensus 

mechanisms among multiple nodes. By incorporating 

innovative real-time scheduling algorithms, validated on a 

supercomputer, the project establishes frameworks for 

simulating distributed mobile environments in real-time. 

This enables the execution of tasks in unpredictable 

contexts, ensuring adherence to stringent time constraints 

and empowering decision-making capabilities. The primary 

objective is to optimize task allocation in mobile distributed 

systems, including aerial nodes, thereby facilitating 

seamless data transfer while maintaining data integrity. The 

project builds upon the Fan task scheduler, integrating 

compensatory measures for online load distribution and 

optimization of message routes, effectively reducing 

communication latency in dynamic mobile environments. 

The contributions made aim to enhance real-time task 

allocation across diverse nodes, enabling the transfer of 

location and search data across networks without any data 

loss. This approach bears significant importance for the 

efficient management of tasks within dynamic scenarios. 
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1 Introduction 

 
Real-time systems play a critical role in modern technologies, particularly in the context of dynamic mobile 

distributed networks. The scientific community recognizes the importance of real-time distributed activities, 

emphasizing optimization aspects such as processing, memory, communication, energy, timing, and precision, 

as discussed in [1, 2]. These sources also highlight how real-time systems provide valuable feedback 

mechanisms for users while addressing the challenges posed by real-time operations in distributed 

environments, especially concerning data transmission. 

 

Efficient recognition systems in such environments rely heavily on robust architectures due to the disruptions 

common in congested mobile distributed environments with limited resources. A novel solution has emerged 

to address these challenges by introducing a router to oversee and establish the Fan task scheduler. This 
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scheduler integrates online load distribution compensation, message route optimization, and communication 

time reduction through routing enhancements [3-5, 20]. 

 

In a mobile distributed system (MDS), nodes form a dynamic system, requiring the selection of appropriate 

metrics. The objective is to minimize the sum of weighted weights at specific times, considering packet 

transmission costs between nodes, as expressed in equation (3). This metric plays a crucial role within the 

Weighted Mobile Distribution (WMD) context, where value differences are integrated into the complementary 

system [6, 7]. Building upon previous work [8-10], we propose a metric to compare algorithms based on 

process scheduling theorems for uniprocessors and multiprocessors, measuring the computation time required 

for scheduler determination under partial order and resource constraints. 

 

Entities within an MDS include sending, receiving, and bridging/router nodes, adapting based on 

communication needs to form local states. Nodes communicate within a dynamic topology, employing message 

flooding and route search mechanisms within a designated neighborhood (L), utilizing Ad Hoc Sustainable 

Longevity Routing (SLR) networks [9, 10]. 

 

The analysis, design, and implementation of a planning algorithm ensure the execution of periodic, aperiodic, 

and sporadic tasks within simulated dynamic environments, adhering to deadline constraints and implementing 

the planned Earliest Deadline First (EDF) approach [11, 12]. Extensive literature reviews on mobile distributed 

systems, real-time systems, and high-performance computing, combined with the application of hybrid routing 

and reactive protocol algorithms, led to the application of algorithms on a real-time execution-capable mobile 

platform. 

 

Simulated algorithms and methodologies were developed within a high-performance computing architecture, 

utilizing a supercomputer with ample resources for tests and desired outcomes. Within the MDS, the 

configurations of sender, receiver, and bridge-router nodes were investigated. These nodes interact within 

neighborhoods (L) through adaptable configurations, allowing multicasting within transmission ranges, as 

discussed in [16, 17]. 

 

Ultimately, the objectives of the project include developing algorithms for real-time task planning within aerial 

mobile distributed systems, benefiting drone communication, and enhancing responses in human-risk scenarios 

such as natural disasters. The article proposes embedded tools for system analysis and real-time planning 

algorithm results in distributed computing environments, supported by an embedded software tool that 

measures real-time task and process planning times. This tool is tested under risky scenarios, effectively 

making decisions based on real-time planning tests [18-25]. 

 

2 State of the Art 

 
Communication networks involving mobile devices and aerial robotics, such as drones, are pivotal across 

various applications, including goods delivery, surveillance, search and rescue, and even entertainment. 

Acknowledging the potential utilization of drones in future wars and regional conflicts [29], the advancement 

of drone-to-drone (D2D) networks holds promise for enhancing the efficiency of these applications. 

 

One approach to bolster D2D network performance focuses on monitoring the channel utilization between 

drones, as highlighted in [30]. Within the context of smart cities, where wireless network characteristics and 

drone mobility present communication challenges, a protocol is proposed to address the hidden terminal issue. 

This protocol operates through search and functional sublayers. 

 

In [31], the authors advocate a consensus and agreement approach, underscoring its importance in distributed 

systems for various applications. Effective coordination often hinges on information exchange between 

processes to establish shared understanding before specific actions are taken. Real-time planning in mobile 

devices finds applications in healthcare and everyday scenarios. An instance is the application of 

communication and process planning in drones for autonomous pigeon deterrence [26]. This approach aims to 

minimize damage to structures and mitigate the spread of pigeon-borne diseases. Data collected from these 

efforts can aid in comprehending the intricate interplay between pigeons and drones. 
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Airborne mobile communication also plays a crucial role in agriculture, addressing labor shortages and 

agricultural losses due to climate change and pests. Precision agriculture technologies are undergoing 

transformation through the integration of electronics and mechanics, capitalizing on Unmanned Aerial Vehicles 

(UAVs) [32]. A multi-rotor drone system is proposed to address the challenges faced by farmers in eliminating 

potential threats. This study introduces an affordable and lightweight drone system suitable for low-altitude 

flights over crop fields. 

 

Hence, the proposal to develop real-time planning algorithms holds immense significance. It enables remote 

communication, efficient operation, and effective coordination among devices and mobile robots. This is 

particularly pertinent in urban airspace, where D2D interactions present distinct challenges [33]. Addressing 

conflicts and traffic density in drone traffic can benefit from the utilization of Machine Learning (ML) 

techniques, including deep learning via multilayer neural networks. This research experimentally manipulates 

traffic load, predictability, and lead time to potentially predict and mitigate conflicts. 

 

The explosive growth of mobile devices and the rapid development of wireless networks and mobile computing 

technologies have catalyzed the emergence of diverse computing paradigms, including Fog Computing and 

Mobile Cloud Computing (MCC), aiming to enhance mobile applications' Quality of Service (QoS) by enabling 

computation offloading to the edge cloud and leveraging idle computation capabilities of mobile devices. 

Efficiently scheduling offloaded tasks becomes imperative, particularly in scenarios with limited computation, 

storage, communication resources, and energy supply. In this context, the Cooperative Multi-tasks Scheduling 

based on Ant Colony Optimization algorithm (CMSACO) presented in this study addresses the multi-tasks 

scheduling problem within hybrid MCC architecture. Through optimization formulation and consideration of 

factors such as task profit, deadline, dependence, node heterogeneity, and load balancing, CMSACO 

demonstrates superior efficiency over existing algorithms. The study underscores the significance of 

developing efficient scheduling algorithms in MCC and Fog systems to attain objectives like increased profit 

and reduced energy consumption, focusing specifically on multi-task scheduling with time constraints and 

proposing a heuristic ACO-based solution. Despite its static nature catering to batch scheduling, future work 

will extend the algorithm to address online scheduling challenges [39, 40]. 

 

In [41] Cloud computing is rapidly advancing, necessitating efficient resource allocation and equitable task 

distribution to achieve optimal performance and cost-effectiveness. In this context, EcoSched emerges as a 

groundbreaking initiative within cloud computing, aiming to redefine resource allocation and task scheduling 

methodologies for improved efficiency and sustainability. This study delves into dynamic task scheduling 

methods tailored to optimize resource utilization and task distribution in cloud environments, catering to 

evolving demands. The innovative framework of EcoSched prioritizes eco-efficient task assignment by 

categorizing tasks based on computational intensity, interdependencies, and strict deadlines. Leveraging a 

refined task assignment mechanism and a sophisticated dynamic task scheduler, tasks are intelligently allocated 

to suitable virtual machines in real-time. Additionally, heuristic and predictive analyses augment decision-

making within the scheduler, ensuring optimal task placement. Simultaneously, EcoSched integrates a robust 

load balancer capable of dynamically adjusting task allocations across the cloud infrastructure, preemptively 

mitigating resource bottlenecks and minimizing response times to significantly enhance system performance. 

Notably, the proposed methodology demonstrates substantial improvements in response time and resource 

utilization metrics, outperforming conventional scheduling approaches. This research offers invaluable insights 

into the scalability and adaptability of the introduced techniques, laying the foundation for future advancements 

in dynamic task scheduling strategies. By prioritizing resource allocation optimization and load balancing, this 

study contributes to the development of resilient, efficient, and sustainable cloud environments. EcoSched 

marks a significant milestone in addressing escalating computational demands while championing eco-

efficiency, thus shaping the future landscape of cloud computing. 

 

In [42, 43] the quest to enhance resource availability and minimize the total execution time and energy 

consumption in cloud task scheduling, the utilization of electric fish optimization (EAEFA) emerges as a 

promising solution. By leveraging the inherent characteristics of electric fish, which exhibit attraction towards 

high-quality solutions and aversion towards low-quality ones, EAEFA effectively addresses the multi-objective 

optimization problem inherent in task scheduling. Through extensive experimentation on real-world 

workloads, including simulations on HPC2N, EAEFA showcases remarkable improvements, surpassing state-

of-the-art methods by over 30% in makespan time and more than 20% in overall energy consumption. This 
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underscores the efficacy of EAEFA in minimizing makespan, energy consumption, and resource utilization 

while maximizing load balance. The success of EAEFA in tackling the challenges of cloud computing work 

scheduling suggests its viability as a solution for the broader cloud computing landscape. Looking ahead, 

further research can explore the integration of EAEFA into other aspects of cloud computing, such as resource 

allocation, management, network routing, and load balancing, with potential enhancements through hybrid 

techniques combining EAEFA with complementary optimization algorithms. 

 

3 Metric Design and Application 

 
The Fan algorithm, employed in implementing the metric (refer to Fig. 1), accentuates the control, generation, 

and progression of tasks within designated timeframes. These tasks encompass message transmission at 

specific instances, establishing a process for each message, thus culminating in the metric's derivation 

concerning time. Each process was distinguished by an identifier; when the value diverges from zero, it extends 

the initiation of subordinate processes, thereby enhancing task arrangement through the Fan algorithm. 

Conversely, in the absence of such conditions, the processes remain suspended. 

 

 

 

 

 

 

 

Figure 1. Calling of processes with a specific deadline is a key aspect of this study. 

 

 

In the planning of each process, they are recognized as ready processes with a set of Jn tasks. Subsequently, 

the creation of Pm processes is expanded, ensuring the avoidance of entering the error state (E) if the deadline 

is adhered to. In equation (1), the following condition is presented: if the slack time (lost time) X j of each 

process exceeds the sum of the absolute constrained times di, then the process will be put on hold. 

 

 

 

E =∑(di)

n

𝑖=1

≤ 𝑋𝑗 

 

where: 

Xj: the time by which a task can be delayed in its activations to meet its deadline. 

di: absolute deadline. 

 

The goal is to circumvent the planning issue known as the domino effect, by introducing a real-time scheduler 

σ(t) in which processes are generated following a spanning tree structure. This involves sets of processes P, 

resources R, and tasks J, and A the connection between processes, resources, and tasks, as a connected acyclic 

graph G < P, R, J, A >. 

 

Utilizing a connected acyclic graph as part of the solution helps mitigate these planning errors, as suggested in 

[36, 29], which serves as the primary reference for this article. 

 

The experiments were conducted on a node provided by the LNS-BUAP (by its acronym in Spanish, 

Laboratorio Nacional del Sureste - Benemérita Universidad Autónoma de Puebla) supercomputing laboratory, 

utilizing instances of the lightweight operating system with a micro-kernel known as Minix. The micro-kernel 

offers essential operating system resources, rendering it ideal for executing scheduling algorithms. These 

instances were generated using a cloud computing administration tool called OpenStack. Through OpenStack, 

a substantial number of Minix instances were executed, encompassing numerous tests involving at least 1,000 

instances, and the management of 1,000 processes. 

Pi ( ji+n) 
 

Ready Running  

Error 
Laxity Li  

finalize 

(1) 
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Based on the operation of the Fan algorithm, a deployment initiates a thousand threads executing tasks for each 

created process within a range of eight hundred processes, alongside the application of the Lamport algorithm, 

as discussed in [34, 35]. Initially, the thread's rotation count is calculated, which is determined by the highest 

number of rotations among other threads, plus one. Before entering its critical section, the thread ensures 

obtaining the lowest number. 

 

Because of implementing the Lamport algorithm, a revised version of the original Fan algorithm code was 

derived, ensuring successful completion for a significant portion of the created processes and their associated 

threads, along with their execution times. The execution time of tasks increases in segments of one hundred 

processes, evident in the graphs Fig. 2 and Fig. 3. Notably, the segment spanning from P701 to P800 exhibits the 

longest execution times due to the planning executed by the Lamport algorithm. 

 

4 Results 

 
The algorithm proposed here operates on the fundamental principle of initializing all processes with predefined 
deadlines, organizing them akin to a fan to distribute them effectively and ensure the accomplishment of their 
respective objectives. 
 

 

 

Figure 2. Provides a visual representation of the assignment of priority levels to processes based on their time constraints and 

criticality. 
 

During the conducted tests, we meticulously measured the time required for all processes to meet their 

deadlines. As depicted in Figure 2, an impressive 92% of the processes successfully met their predefined 

deadlines within one minute, while the remaining processes concluded within two hours. 

 

To further validate and refine this performance, additional testing is necessary. This includes exploring the 

impact of scaling up the number of processes and allocating additional resources. Nevertheless, the initial 

results obtained from the proposed algorithm offer valuable insights and can serve as robust benchmarks for 

comparative analyses against similar algorithms. These comparisons will help ascertain whether the proposed 

algorithm effectively reduces process programming time. 
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As illustrated in Figure 2, processes are represented in seconds, providing a clear visualization of the outcomes 

obtained through testing at the LNS laboratory node. Notably, 92% of the processes adhered to the predefined 

deadlines. Among the pool of 980 processes, a consistent pattern emerged over time, indicating a marginal 

enhancement in meeting process deadlines facilitated by the scheduler. Following an initial processing 

duration, an impressive 98.9% of the processes met their deadlines, with the remaining 8% showing notable 

improvement ranging from 1.8 seconds to 2 seconds. This consistent pattern underscores the algorithm's 

reliability and effectiveness. 

 

Moving forward, further enhancements to the proposed algorithm will involve expanding the number of 

processes and resources. This iterative process aims to optimize performance and accommodate dynamic 

changes in the system environment. 

 

In the context of a Mobile Distributed System (MDS), the presence of dynamic nodes necessitates a 

comprehensive analysis of the designated metric. This metric entails minimizing the weighted sum of 

determined times, considering the cost associated with transmitting packets between nodes. This approach 

captures the inherent complexities and variability present in real-time systems within MDS. 

 

Moreover, the proposed algorithm introduces a metric for comparing diverse algorithms based on process 

scheduling theorems. This metric evaluates the computational time required to determine a scheduler that 

effectively adheres to partial order and resource constraints, providing valuable insights into algorithmic 

efficiency and performance optimization. 

 

 
 

𝑀𝑐 =
1

𝑛
∑𝑁𝑝𝑖(𝑡𝑐) − 𝑁𝑝(𝑖+1)(𝑡𝑐)

𝑛

𝑖=1

 

 
𝑡𝑐 = max(𝑓𝑖) − min(𝑎𝑖) 

 

where: 

 

Mc: proposed metric. 

Npi t(c): node weighting i. 

tc: total completion time. 

fi: end time of tasks. 

ai: start time of the task. 
 

It's worth noting that the total finish time, as defined in equation (4), encompasses the time taken by the task 
with the longest duration to complete and the time at which the task that initiated first was started. 
 
Upon expanding the metric expression, a substantial number of terms become null within the telescopic sum, 
yielding the following equation: 

 

 

 

𝑀𝑐 =
1

𝑛
(𝑁𝑝1(𝑡𝑐) − 𝑁𝑝2(𝑡𝑐) − 𝑁𝑝3(𝑡𝑐) + ⋯+ 𝑁𝑝(𝑛−1)(𝑡𝑐) − 𝑁𝑝𝑛(𝑡𝑐)) 

𝑀𝑐 =
1

𝑛
(𝑁𝑝1(𝑡𝑐) − 𝑁𝑝𝑛(𝑡𝑐)) 

         (5) 

 

 

In the analysis of selecting the task scheduling metric, which serves as a fundamental foundation 
for the system's core development, the consideration revolves around two key metrics: the total 
completion time metric and the time-based metric weighted sum of completion times (eq. 5). This 

              (3) 

              (4) 
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choice is driven by the significance of individual time attributes for each term and the necessity to 
accommodate various types of tasks within the proposed system. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3. Initiate Task Execution with Processes: A Fundamental Chronological Framework. 

 

Fig. 3 shows the start of the executions of the tasks from 1 to process 100. The first process enters 
the term in good condition. As the number of processes and in turn the time to reach your deadline 
increases. 

 
1. import java.net.*; 

2. import java.io.*; 

3. public class NetworkCommunication { 

4.     static DatagramSocket idServerSocket; 

5.     static InetAddress serverSocketAddr; 

6.     static DatagramPacket receivePacket; 

7.     static class ToNodo { 

8.         String message; 

9.         String ip; 

10.         int port; 

11.     } 

12.    static void sendToMessage(String message, String ip, int port) 

throws IOException { 

13.         InetAddress toAddress = InetAddress.getByName(ip); 

14.         byte[] sendData = message.getBytes(); 

15.         DatagramPacket sendPacket = new DatagramPacket(sendData, 

sendData.length, toAddress, port); 

16.         idServerSocket.send(sendPacket); 

17.     } 

18.     static String receiveToMessage() throws IOException { 

19.         byte[] receiveData = new byte[1024]; 
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20.         receivePacket = new DatagramPacket(receiveData, 

receiveData.length); 

21.         idServerSocket.receive(receivePacket); 

22.         return new String(receivePacket.getData(), 0, 

receivePacket.getLength()); 

23.     } 

24.     public static void main(String[] args) { 

25.         try { 

26.             idServerSocket = new DatagramSocket(); 

27.             serverSocketAddr = InetAddress.getByName("localhost"); 

28.             // Usage examples 

29.             ToNodo messageData = new ToNodo(); 

30.             messageData.message = "Hello, world!"; 

31.             messageData.ip = "127.0.0.1"; 

32.             messageData.port = 12345; 

33.             sendToMessage(messageData.message, messageData.ip, 

messageData.port); 

34.             String receivedMessage = receiveToMessage(); 

35.             System.out.println("Received message: " + 

receivedMessage); 

36.             idServerSocket.close(); 

37.         } catch (IOException e) { 

38.             e.printStackTrace(); 

39.         } 

40.     } 

41. } 

 

Figure 4: Approaches for Implementing a P2P Network in a Dynamic Distributed Mobile Environment. 

 

To establish an aerial mobile distributed system that employs a peer-to-peer (P2P) network connection 

framework, each peer being depicted as a distributed mobile device (refer to Fig. 4). Within this context, 

innovative real-time scheduling algorithms were devised and executed to assess delay quality within a practical 

scenario. As an illustration, the plan includes creating and deploying an embedded system featuring drones to 

facilitate assistance in hard-to-reach environments or during natural disasters. 

 

 

Cliente (Nodo Emisor)                      Red                          Servidor (Nodo Receptor) 

    |                                         |                                         | 

    |-- Crear DatagramSocket --------------  |                                         | 

    |-- Preparar mensaje                      |                                         | 

    |-- Convertir mensaje a bytes            |                                         | 

    |-- Crear DatagramPacket                 |                                         | 

    |-- Enviar DatagramPacket ------------>  |                                         | 

    |                                         |                                         | 

    |                                         |-- Crear DatagramSocket -------------- | 

    |                                         |-- Preparar buffer                      | 

    |                                         |-- Esperar DatagramPacket              | 

    |                                         |<-- Recibir DatagramPacket ----------- | 

    |                                         |-- Extraer datos y convertir a String  | 

    |                                         |-- Procesar mensaje                     | 

    |                                         |                                         | 

Figure 5. UDP Network Communication Process in Java 

 

The Fig. 5 depicts the process of UDP network communication using the provided Java code. It illustrates how 

a message is sent and received between two nodes (a client and a server) through a simplified flowchart. Also, 

This helps to visualize how the code handles socket creation, datagram sending and receiving, and message 

processing in a UDP network environment. 
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The provided Java code implements a basic UDP network communication mechanism, designed to send and 

receive messages over a network using datagram sockets. The NetworkCommunication class contains essential 

methods for this functionality. The sendToMessage method, defined at line 12, takes a message, an IP address, 

and a port number as input parameters. It converts the message into bytes and constructs a DatagramPacket 

which is then sent to the specified address and port using a DatagramSocket. The method receiveToMessage, 

starting at line 18, sets up a buffer to store incoming data and waits to receive a datagram packet. Upon 

receiving a packet, it extracts the data and converts it back into a string for further processing. In the main 

method, a DatagramSocket is instantiated and bound to the localhost address. The code creates an instance of 

the nested ToNodo class, populates it with a sample message and network details, and sends the message using 

sendToMessage. It then waits to receive a message with receiveToMessage, printing the received message to 

the console. The socket is closed at the end to release network resources. This implementation demonstrates 

fundamental UDP communication techniques, suitable for applications requiring low-latency message 

exchanges without guaranteed delivery, like real-time data broadcasting and simple networked applications. 

 

5  Conclusions and Directions for Further Research 

 
This research proposal delved into the study of real-time and consensus task planning algorithms, along with 

techniques, methods, and algorithms pertinent to distributed mobile systems. The focus was on recent 

applications and research developments in this field. As a result, a methodology and metric were introduced, 

poised to effectively address the objectives within a distributed environment. 

 

Furthermore, this endeavor established autonomous models to integrate process planner operations with 

problem-solving procedures, thereby yielding precise control to calculate delay times in a MDS. The 

anticipated outcomes revolve around implementing a task scheduling and consensus algorithm to bolster 

decision-making within groups of mobile agents on a drone flight platform. The aim is to achieve commendable 

results on real mobile devices. Additionally, a measurement platform for planning algorithms is envisaged to 

ascertain desired response times. This also extends to supporting theoretical frameworks while analyzing, 

designing, and developing real-time response algorithms to address natural threats. 

 

Through these results, the ambition is to counteract the domino effect inherent in other real-time task 

scheduling algorithms, utilizing the proposed Fan algorithm. Its application is anticipated within mobile 

distributed environments where response time holds paramount importance, particularly in scenarios like 

global disaster monitoring applications. 

 

In conclusion, algorithm and method simulations were executed in a high-performance computing laboratory. 

This endeavor yielded crucial data, paving the way for future research endeavors pertaining to metrics and their 

applications in the realm of MDS. Additionally, the proposed methodologies open avenues for further 

exploration in the optimization of distributed systems, with a focus on enhancing real-time response and 

decision-making capabilities in dynamic environments. 

 

Expanding on these findings, future research could delve into the development of more sophisticated 

algorithms tailored to specific applications within distributed mobile systems. For instance, exploring adaptive 

algorithms capable of dynamically adjusting task priorities based on changing environmental conditions or 

resource availability could enhance the robustness and efficiency of real-time task scheduling. Additionally, 

investigating the integration of machine learning techniques to optimize task allocation and scheduling 

processes could further improve system performance and adaptability. 

 

Moreover, the proposed measurement platform for planning algorithms presents opportunities for extensive 

experimentation and validation across various real-world scenarios. By conducting comprehensive tests in 

diverse environments and under different workload conditions, researchers can refine and validate the proposed 

methodologies, ensuring their effectiveness and applicability in practical settings. 

 

Furthermore, collaboration with industry partners and stakeholders could facilitate the deployment and real-

world testing of the developed algorithms and methodologies. By leveraging industry expertise and resources, 
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researchers can gain valuable insights into practical challenges and requirements, ensuring that the proposed 

solutions are tailored to meet real-world needs effectively. 

 

In summary, this research lays the groundwork for advancing the state-of-the-art in real-time task scheduling 

and consensus algorithms for distributed mobile systems. By addressing key challenges and proposing 

innovative solutions, it contributes to the ongoing efforts to enhance the efficiency, reliability, and adaptability 

of distributed systems in dynamic environments. 
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