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Abstract. Wavefront coding technique has been used to 

extend the depth of focus in an optical imaging system. An 

optical element called a phase mask allows coded images to 

be obtained since the point spread function remains almost 

invariant in an axial range. Subsequently, a computational 

technique is required to decode the acquired images. An 

optical-computational technique is proposed to use a phase 

mask for the coding stage and a convolutional neural 

network for the final restoration. Comparative results are 

made between cubic and trefoil profile phase masks and 

decoded using the traditional Wiener filter and a 

convolutional neural network. Image quality evaluation is 

done using the peak signal-to-noise ratio. 
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1 Introduction 

 
Hybrid optical–computational systems with extended depth of focus have been used for different applications 

where high resolution is required, such as microscopy, biometrics, ophthalmology,  and object detection [1,2]. 

Dowski and Cathey [1] incorporate a phase mask (PM) as an optical element at the exit pupil of the imaging 

system, which codes the wavefront. In this way, the optical system is partially invariant to defocus. However, 

the quality of the encoded image obtained requires a computational process for its decoding. Traditionally, 

restoration algorithms are based on different filters such as Inverse [3], Wiener [3], spectrum equalization, and 

recently machine learning techniques [4, 5].  

 

In the computer vision field, since real imaging conditions are usually imperfect, the digital image represents 

only a degraded version of the original scene. Most efforts are focused on addressing the problems caused by 

occlusion, deformation, and small-size imaging. The deep architectures developed for this task are based on 

CNNs, Generative Adversarial Networks (GANs) and autoencoders [6,7]. 

 

Haoyuan Du et al. [4] investigate a framework of neural networks for restoring blurring images in WFC. They 

take the classical cubic phase mask in the wavefront coding step. Nevertheless, it is well known that the cubic 

phase mask introduces artifacts in the final image [8]. Reyes-Alfaro, et al. [9] employ a trefoil phase mask in a 

wavefront coding imaging system and a CNN architecture as a deblurring algorithm. They show that the 

decoded image quality evaluation remains constant at different defocus values for the CNN architecture as a 

deblurring algorithm. This work presents an optical-computational technique that uses cubic and trefoil profile 
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phase masks (PM) for encoding and a convolutional neural network for image deblurring. As we can see in 

Figure 1, the proposed method does not require information about the peak and valley of the point spread 

function (PSF), as traditional image restoration algorithms do [1,3].  

 

 

 
Figure 1 Restored images using the traditional Wiener filter and the proposed trained network. 

 

The content of this document is organized as follows: in Section 2 a Wavefront coding (WFC) system is defined 

with a cubic and trefoil PM placed in the exit pupil of the system. The architecture and characteristics of the 

CNN are shown in section 3. The numerical simulation for WFC and the CNN for the deconvolution task is 

described in section 4. Comparative results of the extension depth of focus (DoF) using the different 

deconvolution techniques are summarized in Section 4. Finally, in Section 5 the conclusions of this work are 

given. 

 

2 Wavefront Coding 

 
Let 𝑓𝑜 (𝑥1, 𝑦1) be a function that describes the intensity of the object whose image will be formed through the 

optical system, the intensity function of the geometric image is 𝑓𝑔 (𝑥, 𝑦) where (𝑥1, 𝑦1) and (𝑥 , 𝑦), are the 

coordinates in the object plane and the image plane, respectively. The intensity pattern 𝑓𝑖  (𝑥, 𝑦, 𝑧) can be 

described as the convolution of the geometric image 𝑓𝑔 (𝑥, 𝑦), and the corresponding point spread function 

(PSF) |ℎ(𝑥, 𝑦, 𝑧)|2, i.e., 

 

                                                       𝑓𝑖 (𝑥, 𝑦, 𝑧) =  𝑓𝑔 (𝑥, 𝑦) ∗ |ℎ(𝑥, 𝑦, 𝑧)|2                                                  (1) 

 

The ℎ(𝑥, 𝑦, 𝑧) in an optical system can be calculated using Fresnel diffraction theory. As can be seen in Figure 

2, in a traditional optical system as we move from the focal plane or image, the images present blur. The WFC 

system uses a PM placed in the exit pupil (ExP) of the optical system, which causes a partially invariant PSF in 

an axial range, schematized in Figure 3. Therefore, the pupil function 𝑃’ of the wavefront coding system is 

given as, 
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𝑃′(𝑥0, 𝑦0) = 𝑃(𝑥0, 𝑦0) 𝑒𝑥𝑝 [−𝑖
2𝜋

𝜆
𝛼𝑃𝑀(𝑥0 + 𝑦0)] 𝑒𝑥𝑝 [−𝑖

2𝜋

𝜆
𝜓(𝑥0

2 + 𝑦0
2)].          (2) 

 

Where 𝑃 represents the pupil function, the first exponential is the phase term generated by the PM and the last 

one exponential is given by the amount of defocus (𝜓) of the optical system[9]. 

 

 
 

Figure 2. Scheme of an optical imaging system. When the image is observed in a different plane, the image 

will be out of focus by an amount 𝜓. 

 

 
  

Figure 3. Scheme of an optical imaging system with WFC. The PM placed at the exit pupil of the system 

achieves a partially invariant PSF in an axial range of the optical axis. A second decoding stage is required in 

order to deblur the image. 
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3 Convolutional Neural Network 

 
In deep learning algorithms, feature extraction is key to their performance. Traditional models require a stage 

external to the network for this process, while deep learning transfers this task to the neural network itself. 

Convolutional neural networks (CNN) are useful in image, audio and video processing. Its operation is based 

on identifying characteristics of the input data and passing them on to a neural network for processing. The 

kernel is like a type of filter that is applied to images, since it allows us to identify potentially important features 

or patterns, among some of these you can find edge detection, focus, component isolation, etc.  

 

The CNN attempts to learn a mapping function between the degraded image 𝑔(𝑥, 𝑦) and the ideal image 𝑓(𝑥, 𝑦). 

Its architecture consists of convolution layers, each of them representing a level of feature extraction [10]. The 

input layer is described as: 

                                                                𝑓1 (𝑥, 𝑦) = 𝜎(𝑊1 ∗ 𝑔1 (𝑥, 𝑦) + 𝑏1)                                                          (3) 

 

where 𝑊1, and 𝑏1 represent the filters and bias learned in this layer, respectively. 𝑓1 denotes the extracted feature 

map and 𝜎 is a nonlinear function, which can be of the sigmoid, hyperbolic tangent or ReLU (Rectified Linear 

Unit) type. In the architecture of this network, the ReLU activation function is used to filter values by applying 

a simple mathematical operation. Takes the input value 𝑥 and returns the maximum of 0 and 𝑥. In other words, 

if the input value is positive or zero, ReLU returns the input value itself; otherwise, it returns 0. Mathematically, 

it can be defined as 𝑟𝑒𝑙𝑢(𝑥)  =  𝑚𝑎𝑥(0, 𝑥).  

 

In image restoration, CNN networks have shown promising results for noise removal and other types of 

degradation [11]. In [11] a CNN was designed to learn the deconvolution operation without needing to know 

the cause of visual artifacts. The input images to the network were affected with noise, saturation and 

compression artifacts. In [6], to improve image quality and suppress noise, they proposed two models: a CNN 

and a CGAN (Conditional Generative Adversarial Networks). As input data to the network they used images 

encoded with a WFC optical system that uses a Cubic PM. Additionally, they added additive white Gaussian 

noise. 

 

The CNN model proposed in this work was trained using the MSE (Mean Square Error) cost function and the 

ADAM optimizer as an update rule, with an initial learning rate of 0.0001  and a batch size of 32. A each 

convolutional layer is followed by a batch normalization layer and a ReLU activation function. It contains four 

convolutional layers, in the first and second layer 64 9x9 filters were used, in the third 32 1x1 filters and in the 

last layer a 5x5 filter, as can be seen in Figure 4.  

 

 
 

Figure 4. CNN architecture for deconvolution of images coded with a WFC optical system. 
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4 Proposed Method 

 
The optical system schematized in Figure 3 was numerically simulated on the Matlab. As an input image the 

Siemens star, or spoke target with a dimension of 512×512 pixels is used as test object. A digital image in a 

traditional optical system outside the image plane presents degradation due to defocus aberration as shown in 

Figure 2, the numerical simulation of the images obtained is given through equation (2). 

 

 
 

Figure 5. Images generated by a WFC system, affected by defocus 𝜓 = 0𝜆 up to 𝜓 = 2𝜆. The diffraction-

limited image is in the plane of focus with 𝜓 = 0𝜆. 

 

 

The coded images provided by an optical system with WFC trefoil and cubic PM are shown in Figure 5. As can 

be seen, since the PSF of this system remains almost invariant in an axial range, the generated images present 

the same visibility. 

 

Figure 6 shows the Modulation Transfer Function (MTF) curves of a) a diffraction-limited optical system. The 

optical system with WFC and b) Cubic PM affected by defocus aberration, and c) Trefoil PM. The MTF remains 

almost unchanged at defocus values from 𝜓 = 0𝜆 to 𝜓 = 2𝜆. Furthermore, because the MTF values are 

different from zero at high frequencies, it is possible to recover the information in the decoding stage. 

 

  

 
 

Figure 6. MTF curves with defocus 𝜓 = 0, 0.2𝜆, . . . , 2𝜆, and wavelength 𝜆 = 650𝑛𝑚. 
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A deconvolution stage of the blur images will be carried out through the classic Wiener filter and the CNN 

described in section 3. The Wiener filter algorithm is considered effective in this task, by making use of the 

Optical Transfer Function (OTF) of the optical system, as follows [1,6,12], 

 

                                                               𝐹′(𝑢, 𝑣) = [
𝐻(𝑢,𝑣)

𝐻(𝑢,𝑣)2+𝐾
] ∗ 𝐺(𝑢, 𝑣).                                                   (4) 

 

The constant 𝐾 represents the ratio between the noise power spectrum and the image power spectrum, which 

in this work is estimated at 0.0001. 𝐹′(𝑢, 𝑣) and 𝐺(𝑢, 𝑣) are the Fourier transform of the restored image 𝑓(𝑥, 𝑦) 

and the blurred 𝑔(𝑥, 𝑦), respectively. 

 

4 Experimental Results 

 
An algorithm was implemented to numerically simulate a WFC system using a Cubic [1,4,13] and Trefoil PM 

[8] with strength 𝛼 = 3𝜆. To evaluate the restoration of the coded images, a defocus aberration ψ=0λ, 0.2λ, ..., 

2λ is added. In the deconvolution processes a) the Wiener filter and a b) CNN are used. 

 

For image deblurring, a CNN is used. Two data sets are created that includes 240 images, 189 images for 

training and 51 images for validation. Each network is trained on the data set generated by the point spread 

function with different defocus values. The CNN model was trained using the MSE loss function and the 

ADAM optimizer as the update rule, with an initial learning rate of  10−4. Each convolutional layer is followed 

by a batch normalization layer and a ReLU activation function. 

 

Figure 7 shows the image acquired at a defocus value of  0𝜆,  and 1.2𝜆, in a) image without the WFC technique, 

it is observed that it is no longer visible in detail, b) the coded image obtained by the system with WFC with 

cubic PM and c) with trefoil PM.  

 

 
 

Figura 7. Images affected with defocus 𝜓 = 0 𝜆 and 1.2𝜆, in a) image without PM, in b) image coded by 

cubic PM, and c) coded by trefoil PM. 
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Figure 8 shows the results with a) Wiener filter and in b) with the proposed CNN. Allowing the depth of focus 

of the optical system to be extended.  

 

 
 

Figure 8. Restored images applying Wiener filter and proposed CNN, for an image obtained at a defocus 

value of 1.2𝜆, with the phase masks mentioned in the coding stage. 

 

 

Figure 9 shows the results obtained with both methods, the restoration is carried out in 6 images acquired every 

0.4𝜆 from the aforementioned defocus values. . In the traditional optical system, as can be seen, the image is 

blurred as the distance from the observation plane increases. The quality of the restored images was evaluated 

with PSNR and the results are presented in Figure 10. 

 

For the cubic PM case, the reduction of artifacts and the higher contrast in the deblurring image is evident when 

the CNN is used. In the trefoil PM the artifacts are less, but the contrast is higher with the CNN. 
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Figure 9. Experimental results with different DoF, coded by a WFC optical system through Cubic and trefoil 

PM, and restored through Wiener filter and proposed CNN. 

 

 
 

Figura 10. Quality measurements of restored images given by a WFC system. 

 

5 Conclusions and Directions for Further Research 

 
A CNN architecture is presented for image deconvolution in WFC applications with a cubic phase mask, which 

has demonstrated increased contrast in the decoding image and greater extension of the DoF. On the other hand, 

the trefoil PM reduces the presence of artifacts in the decoded image.  

 

Coded CNN Wiener Filter Coded CNN Wiener Filter

0 λ 8.942994118 16.23788452 38.49230957 9.088680267 17.99086952 38.49516678

0.2 λ 8.944410324 16.33903885 36.67863464 9.08801651 18.02503586 37.70360947

0.4 λ 9.145870209 15.2272234 11.54454327 9.037004471 16.26637077 16.05162811

0.6 λ 8.94906044 16.62407303 30.0450592 9.086105347 18.08459473 33.87414551

0.8 λ 8.95746994 16.96260071 25.23714828 9.084156036 18.14818573 30.2693615

1 λ 8.9692173 17.23745346 21.93663025 9.08080101 18.15312004 27.52833939

1.2 λ 8.986392975 17.42596436 19.29980278 9.077386856 18.11362648 24.9847126

1.4 λ 9.007278442 17.44797897 17.1163578 9.071504593 17.93992424 22.73608017

1.6 λ 9.031961441 17.23760033 15.30467987 9.063552856 17.68677902 20.79616547

1.8 λ 9.063294411 16.77382088 13.80402184 9.056847572 17.31952667 19.06200409

2 λ 9.10147953 16.08874893 12.56099796 9.04780674 16.85459518 17.47319984

Cubic PM Trefoil PM

PSNR
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Coded images were used without any preprocessing to train the CNN. Its performance is compared with those 

obtained through the classic Wiener filter since it is the most used for decoding. Wiener filter depends on the 

optical transfer function of the optical system. Because of this, a CNN that performs deconvolution is proposed. 

 

PSNR is used to evaluate the quality of the restored image. The results obtained from deconvolution with CNN 

are promising. This involves further research into other deep learning models that need to be taken into account 

to detect blurred regions or predict the degree of blur. 
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