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Abstract. We present a novel approach to find relevant features for identifying four subtypes of Guillain-

Barré Syndrome (GBS). Our method consists of a combination of Quenching Simulated Annealing (QSA) 

and Partitions Around Medoids (PAM), named QSA-PAM method. A 156-feature real dataset containing 

clinical, serological and nerve conduction test data from GBS patients was used for experiments. Different 

feature subsets were randomly selected from the dataset using QSA. New datasets created using these 
feature subsets were used as input for PAM to build four clusters, corresponding to a specific GBS 

subtype each. Finally, purity of clusters was measured. Sixteen features from the original dataset were 

encountered relevant for identifying GBS subtypes with a purity of 0.8992. This work represents the first 

effort to find relevant features for identifying GBS subtypes using computational techniques. The results 

of this work may help specialists to broaden the understanding of the differences among subtypes of GBS. 

Keywords: feature selection for clustering, search optimization, hybrid methods for clustering. 

 

 

 

1 Introduction 
 

Guillain-Barré Syndrome (GBS) is an autoimmune neuropathy of fast evolution and potentially fatal. GBS ha s an incidence of 

1.3 to 2 per 100,000 people and a mortality rate from five to fifteen percent. The exact cause of GBS is unknown; however, it  is 

frequently preceded either by a respiratory or a gastrointestinal infection. The diagnosis of GBS includes clinical, serological 

and electrophysiological criteria (nerve conduction or Electrodiagnostic test) [1]. The severity of GBS varies among subtypes, 

which can be mainly Acute Inflammatory Demyelinating Polyneuropathy (AIDP), Acute Motor Axonal Neuropathy (AM AN), 

Acute Motor Sensory Axonal Neuropathy (AMSAN) and Miller-Fisher Syndrome [2]. Electrodiagnostic criteria for 

distinguishing AIDP, AMAN and AMSAN are well established in the literature [3], while the Miller-Fisher subtype is 

characterized by the clinical triad: ophthalmoplegia, ataxia and areflexia [2]. In Mexico, axonal subtypes are prevalent [4, 5].  

 

A better understanding of the differences in the GBS subtypes is critical for the implementation of appropriate treatments fo r 

total recovery and, in certain cases for the survival of patients. Hospitalization time and the cost of treatments vary according to 

the severity of the specific subtype. Finding a minimum feature subset to accurately identify GBS subtypes could lead to a 

simplified and cheaper process of diagnosis and treatment of the GBS case. The ultimate goal of a physician is to get patients to 

a full recovery. This can be more effectively achieved when an early diagnosis of the case is performed using a minimum 

number of medical features. 
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Cluster analysis or clustering is a machine learning technique that allows to group objects into clusters. Objects in the same 

cluster are similar and dissimilar from objects in other clusters. Cluster analysis has applications in many disciplines [6, 7, 8]. 

Particularly, cluster analysis has been used in medicine to identify disease subtypes [9, 10, 11], among other applications.  

 

 

In this work we use a real dataset consisting of 156 features and 129 cases of GBS patients, these are 20 AIDP cases, 37 

AMAN, 59 AMSAN and 13 Miller-Fisher cases. The dataset contains clinical, serological and nerve conduction test data. 

 

This work constitutes an initial exploratory analysis of our dataset using machine learning techniques . We started with a 

clustering technique as this method is useful to study the internal structure of data to disclose the existence of groups of 

homogeneous data. We know in advance of the existence of four GBS subtypes or classes in our dataset. It is our interest to 

investigate the capability of computational algorithms such as clustering techniques to identify these four real groups  using a 

minimum number of features . Machine learning techniques has been found in the literature to predict the prognoses of this 

syndrome [12,13] as well as to find predictors of respiratory failure and necessity of mechanical ventilation in GBS patients [14, 

15, 16]. Nevertheless, no previous studies on cluster analysis of GBS data using machine learning techniques were found in the 

literature. 

 

Usually in cluster analysis there is no prior information as a guide to find the exact number of clusters and therefore different 

partitions with different number of clusters are explored. The ultimate goal is to select the highest quality partition, base d on an 

internal or external metric. In this work, we perform a cluster analysis in a real GBS dataset to identify relevant features that 

allow to build four clusters, each corresponding to a GBS subtype. The quality of the clusters is measured with an external 

metric called purity. Purity is an external clustering validation metric that evaluates the quality of a clustering based on the 

grouping of objects into clusters and comparing this grouping with the ground truth. The high purity is reached when clusters 

contain the largest number of elements of the same type and the fewest number o f elements of a different type. Although there 

are several clustering validation metrics, both internal and external [17], we selected purity since our interest was to find “pure” 

groups and to take advantage of the available prior knowledge of the true labels. The use of a prior knowledge to evaluate a 

clustering process is also known as supervised or semi-supervised clustering, some examples can be found in [18,19, 20, 21]. 

 

Our approach consists of a combination of Quenching Simulated Annealing (QSA) and Partitions Around Medoids (PAM), 

which we named as QSA-PAM method. PAM algorithm is used to perform the clustering process and is thoroughly described in 

section 2.2.1. Simulated Annealing (SA) is a general purpose randomized metaheuristic that finds good approximations to the 

optimal solution for large combinatorial problems. The SA algorithm was proposed by Kirkpatrick et al. [22] and Cerny [23] 

and is an extension of the Metropolis algorithm [24]. This method takes its name from the metallurgy field where there is a 

process in which a piece of metal is initially heated to high temperatures and then gradually cooled to change the configurat ion 

of atoms in order to reach a thermal equilibrium. In a similar fashion, the computational version of this process uses a cooling 

scheme to control the pace and duration of the search for the best solution. At a high temperature, SA widely explores the 

solution space and accepts worse solutions than a current one with a high probability, which let SA avoids getting stuck in local 

minima. As the temperature goes down, the searching process becomes stricter and the probability of accepting a bad solution 

becomes increasingly low. 

 

QSA is a version of SA consisting of two phases: Quenching and Annealing [25]. In the Quenching phase the temperature is 

quickly decreased, using an exponential function, until a quasi-thermal equilibrium is reached.  This phase is applied at a very 

extremely high temperature and its purpose is to broadly explore the feature space. The Annealing phase comes in after 

Quenching phase completes, where the temperature is gradually reduced.  This paper is organized as follows. In section 2 we 

present a description of the dataset, the functioning of PAM and QSA methods, as well as the metrics used in the study and 

finally, we explain the QSA-PAM method. In section 3 we show how the QSA parameters were determined and also we give 

experimental results of QSA-PAM method. Section 4 discusses  the results of the study. In section 5 we summarize conclusions 

of the study and also we suggest some future works.  

 

2 Materials and methods 
 
2.1 Data 

 
Records of 129 patients attended at Instituto Nacional de Neurología y Neurocirugía in Mexico City  were used for experiments 

in this work. Data were collected from 1993 through 2002. There are 20 AIDP cases, 37 AMAN, 59 AMSAN and 13 Miller-



Canul-Reich et al. / Finding relevant features for identifying subtypes of Guillain-Barré Syndrome using 

Quenching Simulated Annealing and Partitions Around Medoids . IJCOPI Vol. 6, No. 2, May-Aug 2015, pp. 

11-27. EDITADA. ISSN: 2007-1558. 

13 

 

Fisher cases. The identification of subtypes was made by a group of neurophysiologists based on the clinical and 

electrophysiological criteria established in the literature [1, 2]. In this study, each subtype represents a class. Therefore, there are 

four classes in the dataset. This dataset is not yet publicly available and this is the first time it is used in an experimen tal study. 

No public dataset was found to be used as a benchmark. 

 

Originally, the dataset consisted of 365 attributes corresponding to epidemiological data, clinical data, results from two ne rve 

conduction (electrodiagnostic) tests, and results from two Cerebrospinal Fluid (CSF) analyses. The second nerve conduction test 

was conducted in 22 patients and the second CSF analysis was conducted in 47 patients only. Therefore, data from these two 

tests were excluded from the dataset.    

 

The diagnostic criteria for GBS are established in the literature [1, 2]. These formal criteria were considered to determine which 

variables from the original dataset could be important in the characterization of the four subtypes of GBS. We made a pre -

selection of variables based on these criteria. After pre-selection, the dataset was left with 156 variables: 121 variables from the 

nerve conduction test, 4 variables from the CSF analysis and 31 clinical variables. As for the type of attributes, these are 28 

categorical and 128 numeric attributes. The situation of dealing with mixed data types was solved using Gower’s similarity 

coefficient, as explained later in section 2.4. 

 

2.2 Methods 
 

2.2.1 Partitions Around Medoids (PAM) 

 
As stated before, the dataset used in this work combines categorical and numeric data. PAM is a clustering algorithm capable of 

handling such situations. It receives a distance matrix between instances as input. The distance matrix was computed using 

Gower's coefficient, described in section 2.4.  

 

PAM, introduced by Kaufman and Rousseeuw [26], aims to group data around the most central item of each group, known as 

medoid, which has the minimum sum of dissimilarities with respect to all data points. PAM forms clusters t hat minimize the 

total cost E of the configuration, that is, the sum of the distances of each data point with respect to the medoids. E is formally 

defined as: 

1

( , )
i
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i

i o C

E dist o m
 

  
 

(1) 

 

where k  is the number of clusters, io C  is the set of objects in the cluster Ci, and  

( , )idist o m  is the distance between an object o and a medoid mi. 

 
PAM works as shown in Algorithm 1 [27]:  

 

1. k  objects are arbitrarily selected as the initial medoids m.  

2. repeat 

       2.1. The distance is computed between each remaining object o and the medoids m.  

       2.2. Each object o is assigned to the cluster with the nearest medoid m.  

2.3. An initial total cost Eini is calculated. 

2.4. For each medoid m 

2.4.1. A random o is selected. 

2.4.2. A total cost Efin is calculated as a result of swapping m with the o randomly 

selected.    

2.4.3. If Efin – Eini < 0 then m is replaced with o. 

              until Efin – Eini = 0. 

 

Algorithm 1: Partitions Around Medoids (PAM) 
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2.2.2 Clustering validation measure   

 
The dataset used in this work provides the ground truth. We know there are four classes in the dataset. The goal of this study 

was to find a minimum set of features that as purely as possible identify four clusters, each corresponding to one class. To 

achieve this goal we selected purity as the metric to evaluate the quality of the clustering process.  

 

Purity validates the quality of a clustering process based on the location of data in each cluster with respect to the true c lasses. 

The more objects in each resultant cluster belong to the true class, the higher the purity. Formally [28]: 

max1
( , ) j k j

k

purity C w c
N

    
 

(2) 

 

where N is the number of labeled samples,
1 2{ , ,..., }kw w w   is the set of clusters found by the clustering algorithm, 

1 2{ , ,..., }JC c c c is the set of classes of the objects, K is the number of clusters, J is the number of classes, wk is the set of 

objects in cluster k ,  cj  is the set of objects in class j, 
k jw c  is the number of objects in cluster k  belonging to class j. Purity 

values range in [0, 1], a value of 1 indicates all objects in each of the identified clusters belong to the same class.  

 

2.2.3 Gower’s similarity coefficient 

 
Distance metrics are used in clustering tasks to compute the distance between objects. The dist ance computed is used by 

clustering algorithms to determine how similar or dissimilar the objects are. Based on it, a clustering algorithm can determine 

which cluster the objects could be thrown in. There are many distance metrics. Some of them deal with n umeric data, such as 

Euclidean, Manhattan and Minkowski [27]. To deal with binary data, the Jaccard coefficent and Hamming are often used [27]. 

For categorical data, some distance metrics are Overlap, Goodall and Gambaryan [29].  

 

In this work we used for experimentation a dataset that contains mixed data, that is, both categorical and numeric data. To deal 

with this context we selected the Gower's coefficient. It is a robust and widely used distance metric for mixed data. We used  this 

coefficient to obtain a matrix of distances between instances as required by PAM. It was introduced by Gower in 1971 [30]. 

Gower's coefficient is defined as follows [31]:  
2 1ij ijd S   (3) 
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(4) 

 

 
where p1 is the number of quantitative variables, p2  is the number of binary variables, p3 is the number of qualitative variables, 

a is the number of coincidences for qualitative variables, a  is the number of coincidences in 1 (feature presence) for binary 

variables, d is the number of coincidences in 0 (feature absence) for binary variables, and Gh  is the range of the h-th quantitative 

variable. 

 

Gower's coefficient is within the range 0 - 1. A value near to 1 indicates strong similarities between items and a value near to 0 

indicates weak similarity. 
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2.2.4 Quenching Simulated Annealing (QSA) 

 
In this work we aim to find a minimum feature subset for identifying four GBS subtypes from a 156-feature real dataset. This 

represents a combinatorial problem and to find a good approximation of the best solution the QSA metaheuristic was selected. 

QSA, shown in Algorithm 2, is a version of the SA algorithm which has two phases: Quenching and Annealing. Quenching 

phase is applied at a very high temperature which is rapidly reduced using an exponential function until a quasi-thermal 

equilibrium is reached. Quenching phase has shown to allow the exploration of a wider portion of the solution space than 

previous SA approaches did [32]. In Annealing phase the temperature is  gradually reduced and therefore the exploration is 

performed at a slower pace, and so the solution space is scrutinized aiming to find the best solution.  Figure 1 shows the 

temperature behavior in both Quenching and Annealing phases.   

 
Figure 1. Temperature behaviour in Quenching and Annealing phases of QSA. 

 

The classical SA algorithm receives as input a set X of m examples with n features. Classical SA requires a triplet composed of 

an Annealing schedule, an Energy function and a neighbour function. The Annealing schedule is defined by the initial 

temperature Ti, the final temperature Tf and the Annealing constant αAnnealing. These values control the pace and duration of 

the search. The Energy function evaluates the quality of a solution. The goal of SA  is to optimize this function. In this particular 

problem we used the purity measure as the Energy Function. The neighbour function receives both the current solution and 

temperature as input and returns a new candidate solution that is nearby to the current solution, in terms of the variation of 

features between both solutions. For high values of T a broader search in the dataset is performed to generate Si. For low values 

of T the search becomes almost local.   

 

QSA also behaves different with respect to the energy function in Quenching and Annealing phases (Figure 2). In Quenching 

phase, the energy function undergoes high fluctuations  as QSA is still exploring the search space. As Annealing phase advances, 

the fluctuations in the energy function decrease as in this phase QSA is now looking for the best solution. At the end of 

Annealing, the energy function in fact remains stable.  
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Figure 2. Energy behaviour in Quenching and Annealing phases of the QSA. 

 

QSA uses two extra parameters: a Quenching constant α Quenching and τ. These parameters work together to reduce the 

temperature at a rapid pace until τ converges to ε. In addition, this particular implementation uses a cooling constant αVLT at 

very low temperatures, which enables the search space to be meticulously traversed, which corresponds to performing a local 

search.  

 

Algorithm 2: Quenching Simulated Annealing (QSA) 

 

Input: 

Examples X = x1,…,xm 

Ti, Tf, αQuenching, αAnnealing, αVLT, τ  

 

begin 

1) T = Ti 

2) Sbest = random feature subset 

3) While T > Tf do 

4) // Metropolis cycle 

5)         Repeat 

6)                 Si = Neighbor(Sbest , T) 

7)                 ΔE = Energy(Sbest , X) – Energy(Si , X) 

8)                 If ΔE < 0 then 

9)                         Sbest = Si 

10)                     Else 

11)                         If random(0,1] < then 

12)                                 Sbest = Si 

13)                         End if 

14)                 End if 

15)         Until thermal equilibrium is reached 

16)         If τ > ε then        // Quenching phase 

17)                 γ = 1 – T 

18)                 T+1 = γ * αQuenching * T 

19)                 τ = τ
2
 

20)         Else                    // Annealing phase 

21)                 T+1 = αAnnealing * T     

22)         End if 

23)         If T / Ti < 0.1 then     // Very low temperatures phase 

24)                 T+1=αVLT * T 

25)         End if 

26) End while 

27) Return (Sbest) 

end 
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QSA, shown in Algorithm 2, begins initializing the value of T (line 1). A random feature subset is taken as an initial best 

solution Sbest (line 2). In this implementation the initial size of Sbest (between 2 and 156 variables inclusive) and their elements 

are randomly selected using the Mersenne-Twister pseudo random number generator. An external cycle is performed for 

controlling temperature variations until Tf (line 3) is reached. The Metropolis cycle (nested loop of lines 5-15) is performed 

until “thermal equilibrium" is reached. In this cycle, a neighbor solution Si is generated using Sbest and the value of T (line 6). 

The Neighbor function draws a new state Si based on the previous state Sbest where a number of features in Sbest is replaced 

with new features randomly taken from the original dataset depending on the current temperature T. For high values of T, a 

maximum of 80% of the features are replaced. For low values of T, a maximum of 20% of them are replaced. The difference in 

energy ΔE between Sbest and Si is calculated (line 7). If ΔE < 0, that is Si is a better solution than Sbest (line 8), then Si 

becomes the best solution (line 9). If ΔE >= 0, it means Si is a worse solution than Sbest, then the best solution Sbest is replaced 

with Si only if a random number generated in the range [0,1) is less than  

 (lines 11-12). This step is fundamental in SA since it allows to escape from local minima by accepting worse 

solutions than the current one. When the Metropolis cycle is finished, the temperature new T is updated (lines 16-22). If τ > ε 

the Quenching phase is performed; on this phase T will be rapidly reduced due to the use of αQuenching constant. After a few 

iterations of the external cycle (line 3), τ converges to ε (lines 19-21). Right after that, the Annealing phase is performed; on this 

phase T is reduced at a slower pace (line 17). As stated before, this particular implementation of QSA uses a αVLT constant to 

perform local searches at very low temperatures (for T / Ti < 0.1) (lines 23-25). When T reaches Tf, QSA algorithm returns the 

feature subset that optimizes the energy function (line 27).    

      

2.2.5 Description of QSA-PAM method 
 

The method we introduced in this work is a combination of two methods: Quenching Simulated Annealing (QSA) and Partitions 

Around Medoids (PAM), named QSA-PAM method (Figure 3). This is a novel method in machine learning implemented to 

search a large search space for a feature subset that leads to a good solution for a clustering problem. In our work, QSA -PAM 

was used to solve the problem of identifying four GBS subtypes - AIDP, AMAN, AMSAN and Miller-Fisher - with the highest 

purity possible. The method is described below.   

 

 
Figure 3. QSA-PAM method. 

 
QSA-PAM receives a dataset with n features as input. In this particular implementation n = 156. The class attribute was 

excluded as required in a clustering problem. We used it as the ground truth to compute the purity of the clusters obtained with 

PAM. For all experiments, the number of clusters requested to PAM algorithm was k  = 4, as there are four GBS subtypes 

present in the dataset.  

 

The method works as follows (see Figure 3): a cycle from i = 2 to n is performed. For each value of i, QSA finds the best feature 

subset containing up to i features that identify four clusters with the highest purity (e.g. for i equals 25 the best feature subset 

could be of size 18). At each iteration, different feature subsets (size varying from 2 to i) from the entire dataset are chosen by 

QSA algorithm. New datasets are created with each of these feature subsets. A distance matrix between instances from these 

new datasets is computed using Gower's similarity coefficient which is used as input to PAM to build four clusters. The 

calculation of the distance matrix requires at least 2 attributes, and this is the reason for using a minimum value of i = 2 in the 

main loop (For i = 2 to n variables). Finally, the purity of the clusters is computed as it is used as the energy function in QSA. 

QSA finds the feature subset that optimizes the energy function for each value of i. The aim of having QSA selecting the best 

features for each value of i is to look into the number of times such variables get selected, this would give us insight on their 

relevance. That is, the more times a variable is selected the more relevant it  is.  
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As a result of the method we obtained a list of feature subsets that build four clusters with the highest purity possible  for each 

value of i, each corresponding to a GBS subtype. In other words, the list contains the best 2-feature subset, the best 3-feature 

subset, and so on up to the best 156-feature subset.  

 
In this study we perform a number of runs of QSA-PAM. For each run, we set a different seed. These seeds were generated 

using Mersenne-Twister pseudo random number generator [33]. Using a different seed for each run of QSA-PAM allows for 

QSA part of the method to generate different combinations of feature subsets from the search space to choose from.  

 

3 Results 
 

3.1 Determination of QSA parameters  

 
For tuning the proposed algorithm, we started determining the initial and final temperatures Ti and Tf respectively used by QSA 

part of our method. These temperatures are computed as follows [25]: 

 

max

( ( max))

Z
Ti

In P Z





 

(5) 

 

 

min

( ( min))

Z
Tf

In P Z





 

(6) 

 

 

Where ΔZmax and ΔZmin are the maximal and the minimal deterioration respectively, both of the energy function. 

Deterioration refers to changes in the Energy function, that is, the changes in purity at a n extremely high temperature and 

extremely low temperatures for ΔZmax and ΔZmin respectively. 

 

P(ΔZmax) and P(ΔZmin) are the probabilities of accepting a new solution with ΔZmax and ΔZmin respectively. The probability 

of accepting a new solution is close to 1 at extremely high temperatures and close to 0 at extremely low temperatures [25]. 

 
To determine ΔZmax and ΔZmin, 30 runs of QSA-PAM were performed using random samples from the 156-feature dataset. 

Different arbitrary temperature values, in the range [7.674419x10
6
, 1x10

-5
] were used. An average value of 0.1372 was obtained 

for ΔZmax and 0.0088 for ΔZmin. Using both equations in 5 and 6 led us to temperatures of 1.376999x10
6
 for Ti and 7x10

-4
 for 

Tf. We used these values as approximations to the final temperatures. To verify the quality of these values, three  different 

combinations of Ti and Tf were used and compared in 30 runs of QSA-PAM: the values obtained with equations 5 and 6 (Ti =  

1.376999x10
6
 and Tf = 7x10

-4
), an arbitrary higher temperature combination (Ti = 1.5x10

6
 and Tf = 1x10

-3
) and other arbitrary 

lower temperature combination (Ti = 1x10
6
 and Tf = 1x10

-5
). The purity values obtained across 30 runs were averaged for every 

temperature combination. Results are shown in Table 1.   

Table 1. Average purity over 30 runs of QSA-PAM using three different temperature configurations. 

Ti Tf Average best 

solution (purity) 

after 30 runs of 

QSA-PAM 

1.5x10
6
 1x10

-3
 0.7509 

1.376999x10
6
 7x10

-4
 0.7564 

          1x10
6
 1x10

-5
 0.7881 

 

Values of α and τ were assigned according to values typically used in literature [25, 34, 35]. Values for QSA parameters are 

shown in Table 2.   
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Table 2. Final values for QSA parameters. 

Parameter Value 

Ti 1x10
6
 

Tf 1x10
-5

 

          αQuenching 

         αAnnealing 

αVLT 

τ 

0.7 

0.985 

0.99 

0.9 

 

 

3.2 Experimentation 

 

3.2.1 Finding clusters using the 156-feature dataset 

 
The aim of the initial experiments was to analyse the behaviour of clusters using the whole 156-feature dataset. In order to 

achieve our goal, QSA-PAM was run 30 times using the 156-feature dataset, each run with a different seed. In each run, a list of 

the best feature subset for i equals 2 to 156 was obtained. Then, the purity of clusters obtained using each of the feature subsets 

was calculated. Finally, the average purity of clusters over 30 runs for each value of i was computed. The results are shown in 

Figure 4. The chart shows an initial ascending behaviour, a peak is reached approximately at I equals 30 and then the chart 

begins to slowly descend. The average purity values ranged in [0.75, 0.80]. We want to highlight that two feature subsets in the 

feature space over 30 runs reached a maximum purity of 0.8527. Also, by looking at Figure 4 we identified the need of 

determining a proper number of features to be used to create clusters of high purity. 

 
Figure 4. Average purity for each maximum number of variables requested to the method across 30 runs . 

 

3.2.2 Analysis of the size of the feature subsets selected by QSA-PAM 

 
With the aim of determining the proper number of features selected by QSA -PAM, we further analyzed the size of the resultant 

feature subsets. QSA-PAM selects the best feature subset that maximizes the purity of four clusters for each value of i ranging in 

[2,156]. The size of these feature subsets would not necessarily match the value of i. That is, for i equals 38 the size of the best 

feature subset could be 12 in one run, and 23 in another run. We were interested in investigating the median of the best feat ure 

subsets for each value of i over 30 runs. To achieve this, we counted the number of features selected by QSA -PAM in each run 

for every value of i and then we calculated its median. The results are shown in Figure 5. Overall, the size median of the feature 

subsets selected by QSA-PAM was less than 50, even in cases where a number greater than 100 was requested. 
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Figure 5. Median of the number of features selected by the method across 30 runs . 

 

3.2.3 Analysis of frequencies of features selected by QSA-PAM 
 

We also investigated the total frequency of selection by QSA-PAM for each feature in the dataset along the 30 runs, as shown in 

Figure 6. A ranking for all the 156 features was created based on these frequencies. That is, the feature on top of this ranking is 

the most frequently selected features. The highest frequency possible for any feature over 30 runs was 4650, that is 155 x 30 

(155 total features, 30 runs). The highest frequency obtained for a feature was 2612. Five features stood out of all the 156 

features reaching a frequency greater than 2000. These features were 14, 142, 13, 15 and 138 as shown in the c hart. We 

considered to use for further experiments only features with a frequency over 1000. This number of features counted to fifty.  

Coincidentally, fifty was the threshold derived from the analysis described in section 3.2.2. 

 

 
 

Figure 6. Total frequencies of selection per feature across 30 runs . 
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3.2.4 Quality of clusters formed using feature subsets based on the ranking of frequencies  
 

Based on the ranking of features according to frequencies for all 156 features, we created new datasets using the bes t 2 features, 

the best 3 features, and so on, up to 156 features. For each of these datasets, a distance matrix was computed using Gower's 

similarity coefficient. Each matrix was used as input for PAM to build four clusters. Finally, the purity of clusters  was 

computed. The results of this experiment are shown in Figure 7. The highest purity obtained with these clusters was 0.81. This 

showed that not necessarily a sequential grouping of features based on the ranking of features would lead us to the desired purity 

of 1. Two other facts observed is that a low purity of 0.7054 is reached with few features (<=15) which is similar to that 

obtained (0.6976) with a large number of features (>=125).   

 
Figure 7. Purity of clusters built using variables as ranked on the frequencies. 

 

 

3.2.5 Finding clusters using the 50 most frequently selected features  
 

We were interested in searching for a feature subset that improved the highest purity obtained (0.8527) when QSA -PAM was 

ran using all the 156 features. To achieve this, we created a dataset using the 50 most frequently selected features. We 

performed a second experiment of 30 runs of QSA-PAM, for i ranging in [2, 50]. Again, the purity of clusters obtained using 

each feature subset was calculated. Then, we calculated the average purity for each value of i. The results are shown in Figure 8. 

Again, we can observe that with a few features (<=10) the lowest average purity is obtained. This chart shows an initial 

ascending behaviour until i equals 10 approximately and then it stabilizes at approximately a value of purity equals 0.85 and it 

remains stable until the end. 
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Figure 8. Average purity reached with the best 50 features according to frequency . 

 
3.2.6 Our best 16-feature subset 
 

In the second experiment of 30 runs, described in section 3.2.5, we found a feature subset that built four clusters with a purity of 

0.8992. This subset contains 16 features: four clinical features and 12 features from the nerve conduction test . These features are 

listed in Table 3. We will further investigate this feature subset to create a predictive model. 

 

Table 3. List of features that built 4 clusters with a purity of 0.8992. 

Feature label in 

the dataset 

Feature name and meaning 

V22 Simmetry (Simmetry in weakness) 

V29 Extraocular muscles involvement (Muscles that move the eyes and represent cranial nerves) 

V30 

 V31 

V63 

V106 

V120 

V130 

V141 

V161 

V172 

V177 

V178 

V186 

V187 

V198 

Ptosis (Drooping eyelid) 

Cerebellar involvement (Affectation of the cerebellum) 

Amplitude of left median motor nerve 

Area under the curve of left ulnar motor nerve 

Area under the curve of right ulnar motor nerve 

Amplitude of left tibial motor nerve 

Amplitude of right tibial motor nerve 

Area under the curve of right peroneal motor nerve 

Amplitude of left median sensory nerve 

Amplitude of right median sensory nerve 

Area under the curve of right median sensory nerve 

Latency of right ulnar sensory nerve 

Amplitude of right ulnar sensory nerve 

Area under the curve of right sural sensory nerve 

 

 

3.2.7 Statistical analysis 
 

We were interested in finding a region in the chart of Figure 8 where QSA-PAM could have achieved the highest average purity 

values. That is, we looked at diverse ranges of variables requested to QSA-PAM aiming to find a group of four clusters with the 

highest quality. We divided the plot into three regions (Figure 9). The first region (group A) for values of i from 3 to 18, the 

second region for values from 19 to 34 (Group B), and for values from 35 to 50 (Group C). The first value of i was not taken 

into account. These 3 groups consisted of 16 values of purity each one. We applied the non-parametric Friedman test using 

Holm´s correction to find statistical significant differences between purities of the three groups. The test was applied pair -wise. 

We took as the null hypothesis (Ho) = purity levels between two regions are the same, and as the alternative hypothesis (Ha) = 

purity levels between two regions are different. The results are shown in Table 4. 
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According to the results shown in Table 4, we found statistical significant differences between purities achieved in regions B 

and C as shown in Figure 9. A more extensive search in these regions could lead to a better result. That is, requesting a number 

of variables to QSA-PAM between 19 and 34, or between 35 and 50.  

 
Figure 9. Regions of Average purity reached with the best 50 features  

 

Table 4. Friedman-Holm test for regions A, B, and C. 

Regions compared p Value Ho 

A - B 0.317 Accepted 

B - C 0.000 Rejected 

           A – C 1.000 Accepted  

 

3.2.8 Temperature and energy behaviour in QSA 
 
We show in this section the temperature and energy behaviour of QSA part of the QSA-PAM method for a single arbitrary value 

of i, that is for i = 50. For this value of i, the number of runs was 1002. Figure 10 shows the temperature behavior of QSA in 

both Quenching and Annealing phase. The quenching phase showed a rapid exponential decrease in temperature as described in 

the QSA section (2.2.4.). In the annealing phase, the temperature decreases slowly, as QSA search es locally in the dataset. 

 

Figure 11 shows the energy behaviour of QSA, the purity values in this case. Being this a maximization problem, the energy 

behaves in an opposite way of that of the typical QSA problems. In the quenching phase, the energy had high fluctuations as it 

was expected. In this experiment, the fluctuations in energy in the quenching phase were between 0.48 and 0.75 approximately. 

These fluctuations continued in a number of runs of the annealing phase. From run 400 approximately, these c hanges in energy 

began to decrease to levels of purity of 0.62 to 0.72. From run 500 to the final run, there were three long phases of stability in 

the energy function. This stability is the result of QSA accepting best solutions than the current one with higher probabilities as 

the temperature reaches Tf. The final value of energy (purity) was 0.81.             
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Figure 10. Temperature behaviour in Quenching and Annealing phases of QSA-PAM for I = 50. 

 

 

 
Figure 11. Energy behavior in Quenching and Annealing phases of QSA-PAM for i = 50. 

 

 

4 Discussion 
 
In this study we aimed to find a minimum feature subset to build four clusters, each corresponding to a GBS subtype, with the 

highest purity possible. In order to achieve our goal we introduced a combination of a metaheuristic (QSA) and a clustering 

algorithm (PAM), which we named QSA-PAM method.  

 

As we explained in section 3.2.3, we created a ranking of all the 156 features based on the frequency of selection of each feature 

by QSA-PAM across 30 runs performed in an initial experiment. Using the 50 most frequently selected features, we created a 

new dataset to perform a final experiment consisting of 30 runs of QSA-PAM. We obtained a 16-feature subset able to build 

four clusters with a purity of 0.8992. In further studies, a more formal method could be used to decide on the number of most 

frequently selected features and use it as threshold instead of using 50. This could lead to obtain a feature subset that build 

clusters from GBS data with a higher purity.      
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The final feature subset identified in this study includes a combination of clinical and nerve conduction features. As to the four 

clinical features, they are reported in the literature as common clinical characteristics of GBS subtypes. This confirm the ability 

of QSA-PAM to select relevant clinical features for the identification of clusters. Concerning the electrophysiological features, 

further studies are required to confirm these findings. The identification of a minimum nerve conduction feature s ubset would be 

very useful to design a fast electrodiagnostic test.  

   

On the other hand, this finding leads to the research question of the possibility of distinguishing the GBS subtypes investigated 

in this study with only one type of feature by itself, either clinical or nerve conduction feature. Specifically, a study to 

investigate the ability of clinical features to identify GBS subtypes is recommended. Wakerley et. al. [36] identified a set of 

clinical diagnostic features to classify GBS subtypes that could be used in the proposed research.        

 

An important contribution of this study is a ranking of 156 features related with GBS. This ranking was created according to the 

frequency of selection of each feature by QSA-PAM across 30 runs. This ranking may be used in further studies. 

 

With QSA-PAM, we found a 16-feature subset able to build four clusters present in our dataset with a purity of 0.8992. This 

finding, although able to be improved, shows the effectiveness of the method to find good solutio ns to clustering tasks involving 

feature selection. 

 

5 Conclusions 
 

We introduced a novel approach to find relevant features for building four clusters, each corresponding to a GBS subtype, with 

the highest purity possible. Our method consists of a combination of Quenching Simulated Annealing (QSA) and Partitions 

Around Medoids (PAM), named QSA-PAM method. Our study represents the first effort on applying computational methods to 

perform a cluster analysis to a real GBS dataset. An original 156-feature real dataset that contains clinical, serological and nerve 

conduction test data from GBS patients was used for experiments. Different feature subsets were randomly selected from the 

dataset using the QSA metaheuristic. New datasets created using the feature subs ets selected were used as input to PAM 

algorithm to build four clusters, corresponding to a specific GBS subtype each. Finally, purity of clusters was measured. An 

initial experiment consisting of 30 runs of QSA-PAM was performed. The frequency of selection of each feature across the 30 

runs was computed. A new dataset was created using the resultant top fifty features from the initial experiment and used as input 

to a final experiment of 30 runs of QSA-PAM. Finally, a 16-feature subset was identified as the most relevant.    

 

The method here proposed was able to find a 16-feature subset that could build four clusters, each corresponding to a GBS 

subtype, with a purity of 0.8992. This result verifies the ability of metaheuristics to find good solutions to co mbinatorial 

problems in large search spaces. In addition, given a statistical significance difference between two groups of purities  was 

found, a more exhaustive search using the maximum number of variables requested to the method associated with those gro ups 

may lead to higher purity values.   

 

In the short term, we will investigate the use of filters to reduce the original dataset prior to the use of QSA-PAM and analyse 

the results. 

 

The results of this work may help GBS specialists to broaden the understanding of the differences among subtypes of this 

disorder. 
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