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Abstract. Soil moisture is crucial in various fields and monitoring 
it to guide irrigation is challenging. Machine learning has emerged 

as a promising tool to predict soil moisture levels accurately. This 

study evaluates machine learning techniques for this task, training 
models with meteorological variables and direct soil moisture 

measurements. Four machine learning algorithms were 

implemented, highlighting the Gradient Boosting Regressor as the 
most effective. In addition, a processed data set that combines 

meteorological and soil moisture measurements is presented, 

hoping it will be helpful for future research. This approach seeks to 
improve the compression and predictability of soil moisture, which 

is crucial for agricultural planning and water management in 

agriculture 
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1 Introduction 
 

Soil moisture content is vital to various fields, including biology, hydrology, agronomy, engineering, ecology, and soil geology. 

Its monitoring is increasingly extensive, especially with increased precision irrigation infrastructure and control systems 

investments. However, monitoring soil moisture to guide irrigation presents significant challenges. Irrigators must carefully 

select the appropriate equipment for their irrigation system and the specific characteristics of their land plot (Rasheed et al., 

2022). Soil moisture is crucial in providing water for agriculture, being its primary resource. Despite its importance, direct field 

measurement faces significant challenges, underscoring the need to accurately predict it to support agricultural planning 

activities and relevant research (Palominos-Rizzo et al., 2022).  

 

Machine learning has led to the development of innovative algorithms capable of accurately predicting soil moisture levels, 

which can be used in irrigation activities or other purposes (Rasheed et al., 2022). Currently, some works apply machine 

learning in soil moisture prediction. In (Lee et al., 2019), they estimate soil moisture using deep learning based on satellite data. 

The authors (Ahmad et al., 2010) introduce a new regression technique called Support Vector Machine (SVM) to estimate soil 

moisture using remote sensing data. In the work (Prasad et al., 2018), hybrid models that combine Extreme Learning Machines 

(ELM) with data intelligence are developed and examined to perform monthly soil moisture predictions. 

 

In (A et al., 2022), they estimate soil moisture based on remote sensing data and deep learning. This study uses machine 

learning techniques to estimate soil moisture, motivated by finding a correlation between meteorological data and soil moisture 

measurements, given the absence of abundant data from our sensors, to provide a solid basis for another research. Models were 

trained with meteorological variables and direct soil moisture measurements. We implemented four machine learning 

algorithms: Random Forest Regressor, K-Nearest Neighbors, Gradient Boosting Regressor, and Multiple Linear Regression. 

 

When evaluating these models with predictions, we found that the Gradient Boosting Regressor demonstrated lower mean 

squared error and mean absolute error than the other models, especially when tested in time intervals different from the training 

period. Finally, this model was applied to recent data from the Instituto Tecnológico de Morelia meteorological station, 

obtaining consistent soil moisture estimates that align with the expected behavior over time. 
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Among the contributions of this study, we highlight the presentation of a dataset created by C. K. Gasch et al (C. K. Gasch et al., 

2017). This dataset was processed to be presented in a CSV file, extracted from its original TXT format. We identified the 

sensor locations with the least missing data and used the nearest neighbor interpolation method, given its temporal structure, to 

fill in the missing values. Additionally, we enriched this dataset with information from a meteorological station near the 

locations where the soil moisture measurements were taken. In this way, we created a dataset that integrates meteorological and 

soil moisture measurements. This dataset will serve as a basis for future research to identify patterns or conduct temporal 

analyses. 

 

 

2 Theoretical framework 
 

2.1 Soil moisture 

 

Agriculture and water are deeply intertwined, with water being an essential factor in agricultural production. Agricultural 

methods influence the hydrological cycle through evapotranspiration, aquifer recharge, and surface water flow. Adequate soil 

moisture is crucial for various biological and physical processes, including seed germination, vegetative development, nutrient 

cycling, and soil biodiversity conservation. Measuring soil moisture is essential to assessing water availability for agriculture 

and understanding soil health and its capacity to retain water, which is vital for maintaining a sustainable agroecosystem 

(Kashyap & Kumar, 2021). Soil moisture is a crucial factor in agriculture, as it directly influences crop growth and the 

sustainability of agricultural ecosystems. This moisture depends on irrigation practices and soil management and is closely 

linked to various climatic variables. 

 

2.2 Machine Learning Techniques 

 

Machine learning techniques, such as Random Forest Regressor, K-Nearest Neighbors, Gradient Boosting Regressor, and 

Multiple Linear Regression, are powerful tools for predicting values in various contexts. These algorithms can model complex 

relationships between variables and generate accurate predictions about future values. The authors (Khalyasmaa et al., 2019) 

present the application of a specific machine learning method, Random Forest Regressor, to generate accurate daily forecasts of 

solar energy generation using historical measurement data and meteorological data from open sources provided by 

meteorological services. In (Gajula et al., 2021), a proposed method uses the K-Nearest Neighbors (KNN) algorithm to assess 

soil quality and predict the most suitable crops. This approach considers temperature and soil quality as input variables for the 

algorithm. The article  (Ponraj & Vigneswaran, 2020) uses machine learning models to predict reference evapotranspiration, 

thus facilitating irrigation planning. Daily meteorological data, including maximum and minimum temperature, relative 

humidity, solar radiation, soil temperature, and wind speed, were used. The data were processed using Multiple Linear 

Regression, Random Forest Regressor, and Gradient Boosting Regressor techniques. The results indicated that the model 

preprocessed with GBR outperformed the other models' accuracy of reference evapotranspiration predictions. 

 

The study  (Ponraj & Vigneswaran, 2020) aimed to predict daily soil moisture at the crop level using meteorological information 

through multiple linear regression models. It was concluded that these models, by incorporating meteorological variables, 

effectively estimated soil moisture. This is because moisture tends to replicate seasonal patterns and respond to variations in 

precipitation. 

 

2.3 Datasets 

 

In (C. K. Gasch et al., 2017), a dataset is obtained from monitoring soil water content and complementary data collected at a 37-

hectare zero-tillage experimental farm in the northwest United States. The water content measurements have been taken hourly 

since 2007 using ECH2O-TE and 5TE sensors distributed across 42 locations, covering five depths (0.3, 0.6, 0.9, 1.2, and 1.5 

meters), totaling 210 sensors throughout the RJ Cook agronomic farm. This dataset is available in (C. Gasch & Brown, 2017). 

 

This dataset includes hourly and daily measurements of water content (in m³/m³) and soil temperature (in °C) at 42 locations and 

five depths (0.3, 0.6, 0.9, 1.2, and 1.5 meters) from April 20, 2007, to June 16, 2016. The data are stored in .txt files for  each 

location. The website meteostat.net is a meteorological and climatic database that provides detailed data from thousands of 

weather stations and locations worldwide. Fortunately, it has a station in Pullman, very close to R.J. Cook Agronomy Farm, 

where soil water content measurements and auxiliary data were taken at different depths (Meteostat, n.d.). 

 



Noel Alan Zavala-Díaz et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 15(4) 2024, 61-71. 

63 

 

The website (Meteostat, n.d.) offers the opportunity to obtain data in different ways; however, when downloaded over seven 

days (one week), the obtained data have an hourly frequency, which is like the dataset (C. Gasch & Brown, 2017). 

 

 

3 Methodology 

 
Fig. 1 shows the methodology employed in this study. First, a dataset that includes soil moisture and meteorological data is 

consolidated (see Section 3.1). Then, the machine learning techniques to be used are selected. Next, the selected algorithms are 

trained to estimate soil moisture. Subsequently, tests are conducted, and the effectiveness of the chosen algorithms is evaluated. 

Finally, the results obtained are analyzed. 

 

Fig. 1. Methodology 

 

3.1 Consolidating a dataset containing soil moisture and meteorological data 

 

This stage involves consolidating a dataset that includes soil moisture from the dataset (C. Gasch & Brown, 2017) and 

meteorological data obtained from (Meteostat, n.d.). First, Section 3.1.1 shows the process of obtaining the meteorological data 

dataset. 

 

3.1.1 Meteorological data dataset 
 

The process of obtaining the meteorological data consists of selecting the 7-day measurement period starting from 4/20/2007 

within the Pullman station from the meteostat.net repository, then downloading the file by selecting the CSV format. This way, 

we will obtain weekly information files at hourly intervals. This process is repeated until 6/16/2016, corresponding to the dataset 

period (C. Gasch & Brown, 2017), with which a new dataset will be consolidated, including soil moisture and meteorological 

data. 
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Table 1. Variables found in meteorological dataset, definitions and null values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several methods are available, such as mean, median, or mode imputation, linear or multiple regression, MICE (Multiple 

Imputation by Chained Equations), matrix factorization, advanced machine learning algorithms, and interpolation. Since the 

data are ordered in time and have a temporal structure, interpolation methods can predict the missing values based on the 

existing values. 

The "nearest" interpolation method, or nearest neighbor interpolation, is a form of interpolation based on the idea that values 

close in time (or in sequence) are more similar to each other so that the nearest value will be a good approximation for the 

missing value. Fig. 2 shows the meteorological variables of this dataset. 

 
Fig. 2. Monthly average value of the meteorological variable’s dataset 

 

3.1.2 Soil moisture dataset 
 

As mentioned earlier, this dataset includes hourly and daily records of soil moisture (expressed in m³/m³) and soil temperature 

(in °C) at 42 different locations and five different depths (0.3, 0.6, 0.9, 1.2, and 1.5 meters). These measurements span from 

April 20, 2007, to June 16, 2016. The data are stored in text files separated by location. The first challenge was determining 

which locations offered the best data quality, the one with the least number of null records. This selection was crucial to ensure 

the reliability of subsequent analyses. 

Variable Definition Null Values 

time Time 0 

temp Temperature 213 

dwpt Dew point 256 

rhum RH 256 

prcp Precipitation 6558 

snow Snow depth 80283 

wdir Direction of the wind 23414 

wspd Average wind speed 414 

wpgt Maximum wind gust 80283 

pres Pressure 1125 

tsun Sun time 80283 

coco Climate condition code 80283 

Total  353368 
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After analyzing the corresponding text files, it was determined that the CAF308.txt file had the least number of null values 

compared to the files of the other 42 sensor locations, specifically concerning moisture measurements. Table 2 details the 

dataset's variables from this selected file for this study, including soil moisture and temperature at different depths, along with 

the number of null values found for each variable. It is noted that the soil moisture measurement at a depth of 30 cm has the 

fewest null values compared to other depths. The total number of values for these measurements, extending from April 20, 

2007, to June 16, 2016, should be 80,283 records. 

Table 2. Variables found in soil moisture dataset, definitions and null values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To address the missing values, the "nearest" interpolation method or nearest neighbor interpolation was used. Since the data are 

temporally ordered, values close in time tend to be more like each other, making it reasonable to assume that the nearest value is 

an adequate approximation for the missing value. 

Figure 3 presents the graph of the monthly average soil moisture value at a depth of 30 cm, which will be the focus of this study. 

It covers the period from 2007 to 2016. However, at first glance, a more precise and significant trend can be seen between 2012 

and 2016. Therefore, we will focus on this time interval for the subsequent analyses. 

 

Fig. 2. Monthly average soil moisture values 

 

3.1.3 Soil Moisture and Meteorological Data Dataset 

 
After acquiring the soil moisture and meteorological datasets, we combined them into a single dataset. Then, we created a 

correlation matrix between the variables to explore possible relationships. Since our hypothesis suggested that relative humidity 

might correlate with soil moisture, we generated a relative humidity graph and applied a filter to smooth out the noise. We used 

a moving average with a window size 24, as shown in Fig. 4 c). The window size 24 for the moving average was selected to 

match the daily periodicity of the hourly collected data, covering a complete cycle. This window size facilitates the smoothing 

Variable Definition Null Values 

H_30cm Humidity at 30 cm 18806 

H_60cm Humidity at 60 cm 23701 

H_90cm Humidity at 90 cm 22323 

H_120cm Humidity at 120 cm 24540 

H_150cm Humidity at 150 cm 25577 

T_30cm Temperature at 30 cm 18806 

T_60cm Temperature at 60 cm 23705 

T_90cm Temperature at 90 cm 22330 

T_120cm Temperature at 120 cm 24540 

T_150cm Temperature at 150 cm 25578 

Total  229906 



Noel Alan Zavala-Díaz et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 15(4) 2024, 61-71. 

66 

 

of daily fluctuations and highlights clear trends in relative humidity, providing a solid basis for analyzing daily effects on soil 

moisture. Figure 4a shows the filtering with a window of size 6, while in Figure 4b, many variations are still observed compared 

to the window of size 24 in Figure 4c. In Figure 4d, a slight improvement in the variations is observed with a window size of 48. 

However, it is decided to use a window size of 24 to match the daily periodicity. 

 
Fig. 4. Relative humidity with and without filter, a) window size of 6, b) window size of 12, c) window size of 24, and d) 

window size of 48 

 
Figure 5 presents the correlation matrix between the variables. Notably, the correlation between Soil Moisture (H_30cm) and 

Relative Humidity (rhum) is 0.36. However, after applying the moving average filter to Relative Humidity, as shown in Fig. 5, 

this correlation increases to 0.47. 
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Fig. 5. Variable correlation matrix 

 

4 Results 
 

 

A comparative analysis of four machine learning techniques (Random Forest Regressor, Gradient Boosting Regressor, K-

Nearest Neighbors, and Multiple Linear Regression) was conducted using meteorological variables to generate new soil 

moisture values for future dates. The selected variables were temperature (temp), dew point (dwpt), relative humidity (rhum), 

precipitation (prcp), and the corresponding month. The selection of these variables is justified by the following reason: Relative 

humidity showed a higher correlation with soil moisture, as observed in Fig. 5. Additionally, given the cyclical behavior 

observed in Figure 4, it was decided to include the month as a feature for model training. The other complementary variables 

were selected because they are available for future work using meteorological data from the city of Morelia and will be used to 

generate synthetic soil moisture values from the trained model. 

 

Python and the Scikit-learn library were used to train the machine learning models, including Random Forest Regressor, 

Gradient Boosting Regressor, K-Nearest Neighbors, and Multiple Linear Regression. Scikit-learn is an open-source tool that 

offers various supervised and unsupervised algorithms for machine learning. This study used the default hyperparameter values 

for each model, ensuring a standard and consistent configuration during the training process. 

 

The dataset presented in section 3.1.3, which includes information on soil moisture and meteorological data, was used to train 

the model. The period from 2011 to 2015 was used for the training process, with the interval from 2015 to 2016 reserved to test 

the model. During training with the 2011 to 2015 data, 80% of the data was allocated for training and the remaining 20% for 

testing. After training the models, they were evaluated using data from the 2015 to 2016 interval to test their predictions, as seen 

in Fig. 6. It was observed that the Gradient Boosting Regressor model showed greater accuracy in fitting the actual values, while 

the K-Nearest Neighbors model exhibited larger variations concerning the actual soil moisture values. This difference can be 

verified in Table 3, where the mean squared error (MSE) and mean absolute error (MAE) metrics are presented. A lower error is 

observed when using the Gradient Boosting Regressor model to estimate soil moisture with data different from those used 

during training. 
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Fig. 6. Soil moisture prediction of the different trained models, a) Random Forest Regressor, b) Gradient Boosting Regressor, c) 

K-Nearest Neighbors and d) Multiple Linear Regression 

 
To complement the results shown in Figure 6, a moving average filter of size 24 was implemented in the predictions presented 

to analyze whether applying this filter could reduce the error. Figure 7 shows the actual values, unfiltered predictions, and 

filtered predictions. Figures 7a and 7c show a notable change when applying the filter to the predictions. In Figures 7b and 7d, 

less variability is seen after applying the filter. 

The mean squared error and the mean absolute error of the filtered predictions were calculated to corroborate the decrease in 

error. These values marked with '*' are presented in Table 3. It is observed that there is a reduction in error compared to 

unfiltered predictions. In the case of the Gradient Boosting Regressor model, which demonstrated better results in predicting soil 

moisture values for the 2015-2016 data set, the mean square error decreased from 0.000460 to 0.000448, and the mean absolute 

error from 0.017459 to 0.017328. For the K-Nearest Neighbors model, a more significant error reduction was observed when 

applying the filter to the predictions, going from 0.000814 to 0.000584 in the mean square error and from 0.022255 to 0.019771 

in the mean absolute error. 
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Fig. 7. Soil moisture prediction of the different trained models with filter, a) Random Forest Regressor, b) Gradient Boosting 

Regressor, c) K-Nearest Neighbors, and d) Multiple Linear Regression 

 

 
Table 3. Mean squared error and Mean Absolute Error of the trained models. 

* error values for predictions applying 24-window moving media filter 

 

Once we obtained the best-evaluated model, Random Forest Regressor, we made soil moisture predictions using meteorological 

data from the meteorological station at the Instituto Tecnológico de Morelia. For this, we needed the date from which the month 

was extracted, as well as the variables of temperature (temp), dew point (dwpt), relative humidity (rhum), and precipitation 

(prcp). Figure 8 shows the values generated by our model for the time interval from January 2021 to May 2023. A logical and 

consistent behavior is observed, in line with what was expected. 

Variable Training 

ECM 

Dataset 2015-2016 

ECM 

Training 

EAM  

Dataset 2015-2016 

EAM 
Random Forest 

Regressor 0.000401 
0.000736 

0.000597* 
0.013026 

0.020937 

0.019243* 
Gradient Boosting 

Regressor 0.000574 
0.000460 

0.000448* 
0.018599 

0.017459 

0.017328* 
K-Nearest 

Neighbors 0.000525 
0.000814 

0.000584* 
0.015645 

0.022255 

0.019771* 
Regresión lineal 

múltiple 0.001033 
0.000718 

0.000681* 
0.025296 

0.021316 

0.020781* 
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Fig. 8. Soil moisture prediction for ITM meteorological dataset 

 

5 Conclusions 
 

This work demonstrates the applicability of machine learning techniques for soil moisture estimation, with potential for future 

research and applications in the agricultural field. Various machine-learning techniques for estimating soil moisture in 

agriculture were explored and compared. The results obtained from the analysis revealed their potential to provide accurate and 

valuable estimates in agricultural planning and decision-making. 

 

The models trained using Random Forest Regressor, Gradient Boosting Regressor, K-Nearest Neighbors, and Multiple Linear 

Regression demonstrated their effectiveness in predicting soil moisture using meteorological variables such as temperature, dew 

point, relative humidity, precipitation, and the corresponding month. Among these models, the Gradient Boosting Regressor 

stood out for its lower mean square error and mean absolute error, which suggests its greater predictive capacity compared to the 

other techniques evaluated. By applying a moving means filter with a window size of 24, a decrease in both the mean squared 

error and the mean absolute error could be observed and measured. Using a humidity prediction model and the appropriate type 

of filter can help improve predictions. 

 

Furthermore, it was observed that including the month as a characteristic in the training of the models contributed significantly 

to improving their performance, which indicates the importance of considering seasonal variability in the estimation of soil 

moisture. 

 

The data processing and analysis performed in this study also provided important insights into the availability of information 

and the feasibility of machine learning techniques in agricultural settings where sensor data may be limited or expensive to 

acquire. 

 

Another contribution of this work is the presentation and processing of the data set created by C. K. Gasch et al. This data set 

has been transformed into a more accessible format, facilitating its use and analysis for future soil moisture estimation and 

precision agriculture research. By identifying and addressing missing data using nearest-neighbor interpolation techniques and 

enriching the data set with additional meteorological information, we have created a solid foundation for more detailed and 

comprehensive analyses. 
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