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Abstract. This paper proposes an algorithm for designing a cryptosystem, in which the derivative 

disproportion functions are used. The symbols to be transmitted are encoded with the sum of at 

least two of these functions combined with random coefficients. A new algorithm is proposed for 

decoding the received messages by making use of important properties of the derivative 

disproportion functions. Numerical experiments are reported as demonstrating the algorithm’s 

reliability and robustness. 
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1. Introduction 

 
In the competitive world of today, the value of information is constantly increasing and therefore, it is 

necessary to encrypt this information in order to defend it from an unauthorized access. The latter aim has led 

to the widespread use of cryptographic techniques within information systems, the most famous of which are 

the Data Encryption Standard (DES) [1], Advanced Encryption Standard (AES) [2], and the Rivest-Shamir-

Adleman (RSA) cryptosystem [3]. But the new powerful super-computers and the technologies of network 

and neural computing that have arisen since 2000, bring up the revision of the previous cryptographic systems 

that had been considered as absolutely reliable. Therefore, the development of new approaches to the creation 

of cryptosystems is relevant. 

 

Almost all cryptosystems use integers as the keys. The greater the key length is, the more difficult it is to 

“hack” a cryptosystem by fitting the key or by solving a factorization problem. The transition from integers to 

real numbers, or even better, to real functions is expected to considerably complicate the task of code breaking 

(hacking) and thus to enhance the cryptosystem’s reliability (resistance). 

 

In this paper, we examine the capability of such an approach for classifying and declassifying of both an 

analog signal and the signal in the form of a sequence of symbols from the specified alphabet [5]. This 

cryptosystem is based on the use of derivative disproportion functions [5]–[6]. The input symbols are encoded 

by the sum of real functions (keys) multiplied by randomly selected coefficients. Due to the derivative 

disproportion functions an opportunity arises to recognize what functions had been used to encode the 

received signal. The latter allows one to decode the encrypted symbols even though the randomly selected 

factors multiplying the key functions are unknown.
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The rest of the paper is arranged as follows. Sections 2 and 3 define the derivative disproportion functions and 

specify the problem. The decoding algorithm is described in Section 4, while Section 5 deals with the 

numerical examples and the results of numerical experiments. Sections 6 and 7 discuss the proposed 

cryptosystem’s robustness and the requirements to the disproportion key functions, respectively. The paper is 

completed with the concluding remarks (Section 8) and the list of references. 

 

2. Derivative Disproportion Functions  

 
The new methods of classifying information can be developed on the basis of the use of derivative 

disproportion functions. Disproportion functions related to the derivatives and to the values were proposed 

and studied previously by the authors in [5]–[6].   

         

The derivative disproportion functions are used to characterize real functions. They permit to obtain a 

quantitative assessment of the deviation of a numerical function from the power function ny k x   for a 

given value of the argument, regardless of the multiplier k. Here, 1n  is an integer. 

 

Definition 1. The n-th order derivative disproportion of the function  y y x  with respect to x ( 0x  ) is 

defined as follows: 

    
  1 n
n

x n n

y d y
@d y

n!x dx
   .                                                                                                         (1) 

        

In the particular case of 1n   (order 1), Eq. (1) of the derivative disproportion is reduced to: 

                        
 1
x

y dy
@ d y

x dx
  .                                                                                                                     (2)           

 

As it could be expected, for the linear function y kx its disproportion of order 1 is zero for any value of the 

coefficient k. The symbol @ is chosen to designate the operation of determination of disproportion. The 

symbol “d” is selected to refer to the function’s derivative as the main object of disproportion calculated. 

Finally, the left-hand side of Eq. (2) reads “at d one y with respect to x”. 

 

If a function is specified in a parametric form, the n-th order derivative disproportion defined by Eq. (1) is 

determined by applying the rules of calculation of  
n nd y dx  under the parametric dependence of y on x. In 

particular, the first-order derivative disproportion of the function defined parametrically as  y t  and 

 x t  (where t is the parameter, and    0 0t , ' t   for all t) has the form 

                           
 

   
 
 

 
 

11 t
x t

t

t ' ty'y
@d y @d t .

x x' t ' t

 


 
                                                                      (3)      

 

It is clear that if    t k t  for some constant k, its derivative disproportion defined by Eq. (3) equals zero 

on the common domain of the functions  y t  and  x t . 

 

Lemma 1. Every derivative disproportion function of order n boasts the following properties: 

1. Multiplying the function y by any scalar k results in multiplying its derivative disproportion by the 

same scalar. 

2. The order n derivative disproportion of a sum (difference) of functions equals the sum (difference) of 

their derivative disproportions. 

3. For the linear function y kx , its derivative disproportion of order 1 is zero for any value of the 

coefficient k. 

Proof. It is readily verified by simple algebraic manipulations with the use of definition 1.             
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Remark 1. In other words, the operator 
 n
x@ d defined on the space  nC  of n times continuously 

differentiable real functions is linear over this space.                                                                           
 

3. Problem Specification 

 
Consider a communication system (channel) transmitting symbols (signals) encoded with a cryptosystem K 

based on the key functions  i if f t ,  each defined on a (time) interval  0 0 1i it ,T ,T ,i , ,m   . The 

functions are assumed to be smooth and n times (continuously) differentiable. A symbol transmitted at the 

time moment t is encoded by the sum of (at least two) key functions with possible time delays (shifts) 

 0 1i i,T ,i , ,m.    

 

For example, if the transmitted symbol is encoded by the (weighted) sum of two key functions 

 and 1p qf f , p,q m,   the signal transmitted through the communication channel has been encoded as 

                      0 0p p p q q q p qy t k f t k f t ,k ,k .                                                                        (4) 

 

It is assumed that an invader (intruder, hacker) who may have gotten an unauthorized access to the channel is 

not aware of either the key functions if  or their time delays (shifts) i , or the coefficients  ik , i p,q.    

 

On the receiver side of the communication system (channel), the complete list of key functions and their 

delays is known, but which of them (and with what coefficients) are involved in the received signal coded as 

in Eq. (4) is to be detected. The recognition of these functions and their coefficients in Eq. (4) permits one to 

decode the received symbol  y t . 

 

The problem of detecting both the key functions and their coefficients in Eq. (4) is solved by the algorithm 

proposed in the next section. 

 

4. Algorithm Description 

 
The problem in question is not easy to solve since the key functions and their coefficients can be detected 

only approximately. The received message  y t  is expanded in time, so the exact or approximate derivatives 

of this function are needed. When the data are discrete, e.g.,         0 1 1
T

Ny t y t , y t , , y t  , then the 

desired approximate “derivative” of the (discrete) function  y t is found by a special method, similar to that 

by Gregory-Newton (cf., [4]). 

 

Our algorithm is quite complicated, and due to the space restriction, here we present its description for 3m 

only (the complete version can be found in [6] and other publications of the second author).  

 

The main idea of the general algorithm is as follows: if the key functions’ delays (shifts) 1i ,i ,m   are 

known, we may represent the received message  y t  as the sum of all key functions with yet unknown 

coefficients ik : 

                            
1

m

i i i
i

y t k f t 


  .                                                                                                     (5)  

 

Next, we have to detect these coefficients at the present moment t. The coefficients will be equal to zero for 

those functions that are not really involved in the encrypted signal Eq. (5). 
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As we mentioned above, the description of the algorithm will be given here only for the case 3m  . The 

algorithm consists of m steps (that is, 3 in our case). 

 

Step 1. Select arbitrarily one of the key functions, for instance, the first one  1 1 1f f t   . By making use of 

Eq. (3) calculate the derivative disproportion for the signal  y t  and denote it as      
1

1
01 f

F t : @d y t . 

Besides, the derivative disproportions F21(t) and F31(t) are computed for the key functions  2 2f t   and 

 3 3f t   with respect to  1 1f t  . Due to the linearity of operator @ (see, Remark 1), Eq. (5) yields (for

3m  ): 
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  

 

               (6) 

 

Here, the first term on the right-hand side of the upper line of Eq. (6) is zero due to assertion 3 of Lemma 1. 

 

Step 2. Again, pick up randomly one of the remaining derivative disproportions F21(t) and F31(t); let it be, for 

instance, F21(t). Now we compute the derivative disproportions of the functions F01(t) and F31(t) with respect 

to F21(t); denote them as F0121(t) and F3121(t), respectively. 

 

Applying the operator of the derivative disproportion of order 1 to both sides of Eq. (6), then making use of 

its linearity and assertion 3 of Lemma 1, one easily gets 

          
 
 

 
 

 
 

 
 

 01 01 31 31
0121 2 3 3 3121

21 21 21 21

0
F t F ' t F t F ' t

F t k k k F t .
F t F ' t F t F ' t

 
       

 
                                 (7) 

 

Step 3. The relationship given by Eq. (7) shows the linear dependence of the function F0121 on the function 

F3121. Therefore, based on assertion 3 of Lemma 1, we conclude that the derivative disproportion function 

F01213121(t) of the function F0121 with respect to F3121 is zero for all feasible t: 

               
 
 

 
 3121

1 0121 0121
01213121 0121 3 3

3121 3121

0
F

F t F' t
F t @d F t k k .

F t F' t
       

 

 

Now one can use relations from Eq. (6) and Eq. (7) in the converse order and calculate the desired values of 

the unknown coefficients ik . Indeed, first from Eq. (7), one readily gets 

                       0121
3

3121

F
k ;

F
                                                                                                               (8)      

the latter, in its turn, combined with Eq. (6) implies: 

                       01 3 31
2

21

F k F
k .

F


                                                                                                 (9)    

Finally, by substituting the just found coefficients 2k and 3k in Eq. (5), one deduces the value of 1k : 

                        
     

 
2 2 2 3 3 3

1
1 1

y t k f t k f t
k .

f t

 



   



                                                                  (10) 

The algorithm stops after having decoded the received message  y t  by having detected the unknown 

coefficients associated with the involved key functions. All coefficients related to the non-used key functions 

are zero.                                                                                                                                                                 
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Remark 2. As it can be easily concluded, the knowledge of the list of involved functions and their delay 

(shift) values i is indispensable for the implementation of this simplified version of the decoding algorithm. 

The more sophisticated procedures that may be needed to decipher the received message in the lack of such 

important information are described in [6].                                                                                                         

                                                                          

                                                                    

5. Numerical Examples and Experiments 

 
In order to illustrate the cryptosystem operation, let us consider the binary coding in the form of an arbitrary 

sequence of symbols “0”, “1”, space “_”, and a transition to the new line (paragraph return) “\”. For this 

model, only three real key functions are employed. The symbols being transmitted are encoded by the 

(weighted) sum of at least two of these functions multiplied by random factors (coefficients). The time delays 

(shifts) of the standard functions with respect to the current time t are assumed to be zero. The communication 

system (channel) can transmit only binary code symbols. Therefore, if there appears any other symbol apart 

from those listed above, it is perceived as a paragraph return. 

 

To develop the numerical methods calculating the approximate derivatives, it is necessary to control the 

signal y(t) within the interval containing at least 10 (discrete) points of the time variable t. In fact, the number 

of points in this interval may vary (the greater this number of points, the higher the cryptosystem’s stability 

(resistance)), but in our case, it is selected constant and equals 75 (cf., again, [4]). 

 

In order to simulate the operations of the cryptosystem, the following three functions are employed as key 

functions: 

                        

      

        

     

1 1 1 1

2 2 2 2 2

3 3 3

100 15

100 0 1 10

100 0 1 400

f t sin t cos t ;

f t exp . t sin t cos t ;

f t exp . t sin t ,

  

   

 

 

  

 

 

where 1 = 1; 2 = 0.12; 3  = 0.5; 1 = 0.1; 2 = 1.2; 3 = 0.7.  

 

The coefficients k1, k2, and k3, with which the key functions encode the signal y(t) by Eq. (5) before its 

transmission, have been selected randomly by making use of a generator of pseudo-random numbers with the 

uniform distribution law from zero to 10 (for each symbol). However, only when encoding a symbol ‘1’, y(t) 

includes the entire (weighted) sum of all three key functions and therefore, their coefficients k1, k2, and k3 are 

not equal to zero. When encrypting ‘0’, we put 1 0k  , and while encoding a space, we set 3 0k  . Finally, if 

another symbol or the paragraph return is encoded, then 2 0k  . 

       

At any given time moment, the receiver tries to identify the involved key functions and calculate the unknown 

weights (coefficients)  1 2 3ik , i , , , by making use of the formulas from Eq. (8) – Eq. (10). Thereafter, the 

received message is decoded.  

 

When any text is encrypted with the application of derivative disproportion functions, it is recommended to 

always introduce at least two random letters before the transmission of the binary code. 

 

Figures 1, 2, and 3 show the diagrams of the signal y(t) transmitted via the communication channel. Various 

examples of the cryptosystem operation when the same symbols are transmitted, as well as when the binary 

symbols are alternated, were treated. 
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                             Fig. 1. The signal corresponding to the serial transmission of four symbols ‘0’. 

                   
                     Fig. 2. The signal corresponding to the serial transmission of four symbols ‘1’. 

 
Besides, the case when ASCII- codes of symbols A, B, C, D, O are transmitted, was tested. The 

corresponding codes were as follows:  

                          01000001   01000010   01000011   

                          01000100   01001111. 

          
Fig. 3. The signal corresponding to the serial transmission of ASCII- codes of symbols A, B, C, D, O. 

 

The cryptosystem’s operation can be illustrated by the last (third) example. The following message was 

encrypted: 

ar01000001 01000010q 01000011 

01000100 

01001111 

 

-75 

-50 

-25 

0 

25 

50 

75 

1 38 75 112 149 186 223 260 297 

t 

y
(t

) 

-100 

-75 

-50 

-25 

0 

25 

50 

75 

100 

1 37 73 109 145 181 217 253 289 

t 

y
(t

) 

-120 

-70 

-20 

30 

80 

1 517 1033 1549 2065 2581 3097 

t 

y
(t

) 
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The following message was obtained after decoding: 

01000001 01000010 

01000011 

01000100 

01001111 

 

According to the operational algorithm, each of the letters led to the appropriate paragraph return. 

 

In all cases, the received message was deciphered exactly as what was transmitted. At the same time, as it can 

be seen from the figures, it is quite difficult to reveal a message born by the transmitted signal through the 

communication channel unless the decoding algorithm is applied. 

 

6. Robustness of the Cryptosystem 
 

The cryptosystem’s robustness (stability) depends on the choice of the key functions as well as on their total 

number. The more components are included in the signal, the more difficult the task of deciphering becomes 

in case it’s been intercepted as a result of a hacker attack. Obviously, it is necessary not only to identify the 

type and the number of key functions but also to fit the coefficients involved. 

 

How difficult it is to fit their values can be judged from the fact that in the given example, it suffices to apply 

 29 9999sin . t  instead of the present  210sin t in f2(t), or to select 400.0001 instead of the current 400 in 

f3(t), so that the code word consisting of four consecutive 0’s is “decoded” as four 1’s. This simple example 

confirms that any attempts on part of a hacker to “guess” the coded word by an exhaustive search for the 

coefficients (weight) even after having detected the key functions used, is almost always doomed to fail. 

 

Another instance: the replacement of 1 1   with 1 0 99.   in f1(t) has resulted in the distorted reception of 

the sole line 11000000011010000001101000000000000100000000000 without breaks in contrast to the 

three-line original message boasting with spaces as well. 

 

The cited examples show that it is quite difficult just to fit the coefficients by a simple guess, to say nothing 

about the necessity to determine the number of functions and to fit their types. 

 

It should be also noted that the same symbol is encoded differently depending on its position (location). 

Besides, one should pay attention to the fact that in this case, the frequency analysis cannot be applied for the 

unauthorized access and decoding. 

 

All the above-mentioned facts show that the cryptosystems based on the (weighted) sum of real key functions 

are sufficiently resistant to hacking (cryptographically secure). 

 

7. Requirements for Key Functions 

 

1. Each (one real variable) key function has to be real-valued and sufficiently smooth (n times 

continuously differentiable). 

2. The key function and its derivatives up to order n must not be constant. 

3. The key functions should not asymptotically approach a constant value within its domain (e.g., 

like the function x  , 0  , for the large values of x). 

4. The collection of key functions must be selected so that to exclude the possibility that the value of 

one function at some point be negligible (too small by its absolute values) as compared to the values of other 

functions at the same point; that is, every function has to make a quite significant “contribution” to the 

(weighted) sum of all key functions. 

5. The key functions cannot be identical. 
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8. Concluding Remarks 

 
We propose a cryptosystem where (one) real variable functions are used as the keys. An example is provided 

to illustrate the operation of such a system where symbols are encoded by the (weighted) sum of the key 

functions with random coefficients. The decoding is fulfilled with the aid of the first order derivative 

disproportion functions calculated for the received signal and the key functions. 

 

For a practical application of such cryptosystems, one should bear in mind that in the process of calculation of 

the coefficients during decoding, a division by small numbers, or a ratio of two numbers both close to zero 

may happen. This can lead to the information distortion. Therefore, the encrypted message must be decoded 

before it is transmitted via a communication channel. If necessary, the message should be encoded once again 

with other coefficients (weights) generated randomly for every key function. 
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