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Abstract. This paper analyzes Convolutional Neural Network 

(CNN) models for classifying dried chili pepper quality. The 

models categorize images into five categories: “Extra”, “First 

Class”, “Second Class”, “Trash”, and “Empty”, each representing 

different qualities and scenarios in a sorting machine. We 

compared architectures from the Torchvision library, including 

ResNet, ResNeXt, Wide_ResNet, and RegNet using Transfer 

Learning (TL) in a feature extraction approach. All models employ 

residual blocks, an innovative technique enhancing deep learning 

performance. The models were evaluated using crossvalidation and 

metrics such as Precision, Recall, Specificity, F1-score, 

Geometric_mean, Index of Balanced Accuracy, and the Matthews 

Correlation Coefficient. They were trained using SGD, Adagrad, 

and Adam optimizers. Our findings suggest that ResNet-152, 

trained with the Adagrad optimizer, achieved the highest mean 

validation accuracy of 96.62%. The selected model can assist 

agricultural producers in classifying their products according to 

international standards.  
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1 Introduction 
 

Around the world, dried chili pepper is a common spice in a variety of foods. It is mainly used in Asian cuisine, but it is also 

used in Indian and Middle Eastern cuisine, as well as in Mexican food. Given its relevance in soups, sauces, dye and other 

applications, peppers play a pivotal role in the global agricultural economy. As a result of high demand, the pepper market is 

one of the fastest-growing food markets worldwide. In 2017, the global pepper production was estimated to be around 

36,092,631 million tons, with China producing the highest quantity worldwide (17,821,238 tons), followed by Mexico 
(3,296,875 tons) (Kittler et al., 2016; Russo, 2012). The quality of dried chilies depends on several factors, such as their size 

(fragmented or not) and uniform color. Discoloration or brown spots are signs of poor quality. Mexico is one of the main centers 

of origin and dispersion of the Capsicum genus and is the center of origin of the annuum species that has generated a great 

diversity of types of chili peppers. Dried chili peppers are divided into three quality categories according to the Mexican Official 

Norm (NMX-FF-107/1-SCFI-2014): Extra, First, and Second Class (NMX-FF-107/1-SCFI-2014, s. f.). However, the quality of 

chili peppers Capsicum annuum L. (better known as "Mirasol" or “Guajillo”) is often graded and sold based on the personal 

experience of the buyer and seller, leading to disagreements or inequality in the negotiation of this agricultural product.  

 

The Food industry is continually changing. One of the biggest changes in this area has been the introduction of automation in 

the selection of foods, whether fresh or dehydrated, which has been used to improve and guarantee the quality and efficiency of 

food processing operations. Automation has been used in food sorting to boost productivity, save operating costs, and improve 

quality in food firms. For chili pepper marketers, sorting dried chili peppers is a difficult, labor-intensive, and time-consuming 
task, so advancements in sorting technologies can be quite appealing. 
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Artificial Intelligence (AI) is among the most promising technological advances. The goal of AI, a subfield of computer science, 

is to build digital tools with human-like intelligence. Deep Learning (DL) is one area of AI that has shown notable progress in 

recent years. DL has applications in many fields, including medicine (Lopez-Betancur et al., 2021; Ortiz-Rodriguez et al., 2018; 

Sarvamangala & Kulkarni, 2022), agriculture (Maeda-Gutierrez et al., 2020; Too et al., 2019), food processing (Naranjo-Torres 

et al., 2020), physics (Guerrero-Mendez et al., 2020; Xu et al., 2021), as well as numerous others (Z. Li et al., 2022; Lopez-

Betancur et al., 2022; Wang et al., 2019). Central to these advancements in DL are optimization algorithms. These algorithms 

play a pivotal role in training DL models. They adjust the model parameters to minimize the loss function, effectively “learning” 

from the data. The choice of optimizer can significantly impact the performance and precision of the model (Kingma & Ba, 
2014; Reddi et al., 2019). Thus, the careful selection and tuning of these optimizers is crucial in developing efficient and precise 

DL models, pushing the boundaries of what AI can achieve in various fields. 

 

A number of visual inspection systems have been created recently for the food industry and precision agriculture with the goal 

of cutting down on the time and expense of manual inspection. Computer vision and image analysis are typically used by sorting 

machines or visual inspection systems to identify product irregularities without the need for human participation. Modern 

sorting machines are almost as good as skilled human inspectors in terms of performance, using machine learning algorithms to 

automatically identify abnormal products or pin-point specific flaws with high accuracy. 

 

Dry chili pepper sorting devices have been developed using AI and DL algorithms. Chili samples can be separated using sorting 

machines based on the size, color, shape, or other characteristics depending on the product. Farmers are very interested in the 
development of these machines because they will be able to classify their produce more efficiently. 

 

Owing to the critical significance of pepper classification, a number of innovative studies, methodologies, and approaches have 

been created. Images of red chili peppers were divided into two categories in a study by Purwaningsih et al. (Purwaningsih 

et al., 2018): worth in chili and no worth in chili (feasible and not feasible). Using a smartphone, they took 80 pictures of the 

two high-quality varieties of chiles. Ten photos were set aside for validation and seventy for training from this database. Using 

the validation dataset, the authors' basic CNN model produced an 80% classification accuracy. On the other hand, underfitting 

or overfitting of the CNN model is frequently observed when the model is trained using a limited dataset. 

 

A method for identifying the “chile” (Capsicum frustecens) and its blossom was created by Saad et al. (Saad et al., 2020). To 

train and validate their algorithm, they took five hundred pictures of chili plants, each with several target items. For the object 
detection approach, the authors used the Faster Regions with ResNet-50 (CNN model) as a feature extractor. The detection 

confidence level attained by Saad et al. was 65%. 

 

Chili peppers were identified and categorized using the You Only Look Once (YOLO) version 3 object detection algorithm in 

research by Herdiyeni (Herdiyeni et al., 2020). Based on a set of criteria from the chili samples, the authors divided the samples 

into two classes, A and B. They captured the photos with a commercial smartphone. There are five peppers in each of the 100 

images in the dataset. A 20% portion was used for validation and the remaining 80% for training the image dataset. To train the 

detector, 10,000 iterations were used. 99.4% accuracy in classification tasks and 100% accuracy in object detection were 

attained by its object detector algorithm. The authors also looked at classification in situations where red chili peppers 

overlapped, and they were 75.6% accurate. 

 

Furthermore, Cruz-Dominguez (Cruz-Domínguez et al., 2021) used a basic artificial neural network to develop a classification 
technique for dried chiles. The authors developed the classification task and obtained the class of the chili as the output by 

computing and using the histogram of the image of the chili as the input of a multilayer perceptron. Their accuracy rate in the 

classification results was 82.7%. The authors of this research are motivated to assess the effectiveness of a set of cutting-edge 

architectures that employ residual blocks. These architectures are part of Torchvision, an open-source computer vision package 

from the Torch machine learning library. This paper describes an analysis of a set of CNN models that can be used to sort dried 

chili peppers. Model comparison and analysis are carried out using a set of statistical metrics that are frequently applied in DL. 

Furthermore, the CNN models were trained using several optimizer algorithms. These optimization algorithms are techniques 

employed to adjust the parameters of a CNN model to minimize the loss function and improve the accuracy of the model. 

 

2 Methods, Techniques, and Instruments 
 

This section describes the use of CNN models for the image classification task of dried chili pepper quality grades. It also details 

of the models and optimizers used, the methods applied, and the performance metrics employed in this study. 
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2.1   CNN Models 

 

CNN models are a type of artificial neural network inspired by the structure of the human visual system and are commonly 

implemented in computer vision tasks (Q. Li et al., 2014). These networks are composed of multiple layers that work together to 

process images (See Fig. 1). Traditional CNN architectures consist of stacked convolutional layers, while newer architectures 

explore novel ways of constructing these layers to improve learning efficiency. The performance of CNN models can vary 

depending on the specific features they are trained to recognize. Therefore, it is important to compare different CNN models to 

determine the most optimal architecture for the specific task of classifying the quality of dried chili peppers. 
 

 
Fig. 1. Architecture of a general CNN to classify dried chili pepper images. 

 

In order to compare the latest and best models in image classification tasks, particularly those employing residual blocks, the 

authors implemented some of the most accurate models reported on the Torchvision website. The subsequent part of this section 

introduces the ResNet, ResNeXt, Wide ResNet, and RegNet CNN models that were utilized. These models, all of which utilize 

residual blocks, are highly accurate, efficient, and scalable, and have been employed in a wide variety of computer vision 

applications (Bello et al., 2021). 

 

ResNet (ResNet-152). ResNet, an acronym for Residual Network, is a CNN architecture that introduces the concept of skip 
connections (also known as shortcut connections). This innovation allows for the creation of deeper networks with numerous 

layers, effectively circumventing the vanishing/exploding gradient problem (He et al., 2016). ResNet emerged as the winner of 

the 2015 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a competition that evaluates algorithms for large-

scale image classification (Deng et al., 2009). In this research, we utilized the ResNet-152 version, signifying that the model 

architecture is comprised of 152 layers. 

 

ResNext (ResNext-101). The ResNeXt model, proposed by Xie et al. (Xie et al., 2017), also implements the skip connection 

from the previous block to the next block (like ResNet) and aggregates a set of transformations. This new dimension, known as 

“cardinality”, refers to the size of the set of transformations or independent paths. The idea is to stack the same transformation 

blocks inside the residual block. Experiments have shown that accuracy can be improved more effectively by increasing the 

cardinality than by deepening or widening the model. ResNeXt was proposed by Facebook AI Research in 2017 and was 
designed for image classification tasks. Although ResNeXt did not win the ILSVRC 2016 challenge, it has proven to be an 

effective model for image classification. In this research, we used the ResNeXt-101-32x8d version, which means that the model 

architecture is 152 layers deep, has a cardinality of 32, and a base width of 8. 

 

Wide ResNet (Wide resnet-101-2). Wide ResNet is an expanded and modified version of the ResNet model and was 

introduced by Zagoruyko and Komodakis (Zagoruyko & Komodakis, 2016) to address the problem of diminishing feature reuse 

and long training time caused by the increasing number of stacked layers in residual networks. The creators of Wide ResNet 

reduce the depth and increase the width of residual networks using wide residual blocks. Simply put, Wide ResNet has a greater 

number of channels compared to ResNet. For instance, the models wide_resnet50_2 and wide_resnet101_2 have a greater 

number of channels in the internal 3x3 convolution. 

 

RegNet (x_32gf and y_32gf). In 2020, Facebook AI researchers Radosavovic et al. (Radosavovic et al., 2020) introduced a 
novel network design paradigm known as RegNet in their paper “Designing Network Design Spaces”. This approach presents a 

lowdimensional design space that yields simple, fast, and versatile networks. The design space combines benefits of manual 
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design and Neural Architecture Search (NAS), thereby addressing limitations of traditional network design. The process 

involves parameterizing the population of networks within the design space. The primary objective for this project, according to 

the authors, is to advance understanding of network design and uncover design principles that generalize across settings. RegNet 

utilizes a single type of network block from the many different architectures available, such as the bottleneck block. RegNet has 

two variants: RegNetX, which employs the residual block of the classic ResNet, and RegNetY, which leverages squeeze-and-

excite blocks. Although RegNet is not a CNN model per se, it represents a design space. 

 

2.2   Optimization Algorithms 

 

A critical factor that influences the performance of a CNN model is the optimization algorithm used in the training process. This 

algorithm attempts to identify optimal parameters that minimize the loss function, thereby increasing the ability of the model to 

classify input data and produce more accurate output data. Primarily, such an algorithm determines how to modify or adjust the 

weights of the neural network. So, with appropriate weight adjustments, the number of incorrectly predicted cases decreases. 

Additionally, certain optimizers help prevent model overfitting, among other significant aspects (Ayumi et al., 2016; Liu et al., 

2021). 

 

Stochastic Gradient Descent (SGD). SGD is one of the most popular algorithms in modern DL. Its goal is to minimize the loss 

function by iteratively updating the model parameters based on the gradients of the loss function. It does this by computing the 

gradient of the loss function with respect to the parameters for a single input-output case, and then adjusting the parameters in 
the opposite direction of the gradient, scaled by a learning rate. This process is repeated, often many times, until the algorithm 

converges to a set of parameters that achieve the minimum loss. 

 

Adaptive Gradient Algorithm (Adagrad). Introduced in 2011 by John Duchi et al. (Duchi et al., 2011), the AdaGrad 

optimizer is an adaptive learning rate optimization algorithm that dynamically adjusts the learning rate for each model parameter 

based on the history of its past gradients. The main principle behind AdaGrad is to accumulate the sum of squares of previous 

gradients for each parameter and use this information to scale the learning rate for new updates. This effectively reduces the 

learning rate for parameters with frequently large gradients and increases the learning rate for parameters with infrequent or 

small gradients. By adapting the learning rate for each parameter individually, AdaGrad helps to accelerate convergence and 

improve performance, particularly for problems with sparse gradients. 

 
Adaptive Moment Estimation (Adam). Introduced in 2015 by Diederik Kingma and Jimmy Ba (Kingma & Ba, 2014), Adam 

has become a popular choice due to its effectiveness and ease of implementation. Adam works by maintaining two 

exponentially decaying averages of the gradients: the first average tracks the mean of the gradients, and the second average 

tracks the variance of the gradients. These averages are then used to adjust the learning rate according to the characteristics of 

each parameter. In addition to adaptive learning rate adjustment, Adam also incorporates momentum. Momentum is a technique 

that helps to accelerate convergence by keeping track of the past gradients and using them to guide the current update. This 

helps to overcome the problem of “zigzagging” that can occur with SGD. Finally, Adam includes bias correction to account for 

the fact that the initial estimates of the mean and variance of the gradients are biased. This helps to ensure that the algorithm 

converges to the correct solution. 

 

2.3   Transfer Learning (TL) 

 
Training a CNN model from scratch is a highly computationally intensive task that requires a large number of labeled images. 

This can be particularly challenging for tasks like classifying the quality of dried chili peppers, where obtaining a large labeled 

dataset might be difficult. An effective alternative is to use the TL technique, which leverages the knowledge that a CNN model 

has gained from a previous training process on a largescale dataset, such as ImageNet. In TL, only a portion of the model is 

retrained to perform the new image classification task, significantly reducing the training time and computational resources 

required. This approach, known as “feature extraction”, involves freezing the weights of the early layers of the model and only 

training the final layers. Additionally, the final layer of the model is reshaped to match the number of output classes in the new 

task. Fig. 2 illustrates the TL process, showing a pre-trained model on ImageNet being reused to classify dried chili peppers. 

 



Carlos Guerrero-Mendez et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 15(2) 2024, 13-25. 

17 

 

 
Fig. 2. Application of Transfer Learning to a CNN: Retraining the Last Layer and Modifying the Output Layer for Dried Chili 

Classification. 

 

2.4   Data Acquisition 

 

In this research, the authors adhered to the Mexican Official Norm NMX-FF-107/1-SCFI-2014 (NMX-FF-107/1-SCFI-2014, 

s. f.), which categorizes the quality of dried chili peppers into “Extra”, “First Class”, and “Second Class”, based primarily on 

brightness, color uniformity, size, and integrity. To facilitate the development of the sorting machine, two additional categories 

were introduced: “Trash”, referring to any non-chili object, and “Empty”, indicating an unoccupied conveyor belt. A diverse set 

of images representing each category was recorded to train the sorting machine. 
 

The image database was generated by manually classifying several dried chili peppers with the help of an experienced product 

seller. Each sample was positioned 50 cm in front of a suspended camera, and both the chili samples and a consistent white 

background were illuminated using an RGB LED lamp situated adjacent to the camera. This setup was designed to prevent 

shadow casting on the samples. The image acquisition was carried out in a dark room using a Toshiba HV-F31F camera, which 

has a resolution of 1024 × 768 (H × V) pixels. However, the images of the dried chili peppers were captured at a resolution of 

640 × 480 pixels. 

 

The resulting dataset comprises a total of 2,866 images, distributed as follows: 564 “Extra”, 529 “First Class”, and 611 “Second 

Class” images of dried peppers, 541 images in the “Trash” category, and 621 images in the “Empty” category. Fig. 3 provides a 

representative sample from each class. To mitigate the risk of overfitting and augment the training set, data augmentation 
techniques were employed. 

 

 
Fig. 3. Number of Image Samples for Each Dried Chili Pepper Class. 
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Data Augmentation. Data augmentation is a technique used to increase the diversity of a dataset by applying mathematical 

operations to the original images, thereby generating new image samples. This process enriches the dataset and can lead to 

improved model training. In this study, the authors employed three numerical transformations to augment the training dataset. 

These transformations were implemented using the torchvision.transforms module from the Pytorch library. The first 

transformation, RandomRotation, involves randomly rotating the image within a range of 0º to 90º degrees. The second 

transformation, RandomHorizontalFlip, entails randomly flipping the image along the horizontal axis. The final transformation, 

RandomVerticalFlip, involves flipping the image along the vertical axis. Fig. 4 illustrates examples of these transformations as 

applied to some images in the dataset. 
 

 
Fig. 4. Original and augmented images from each class following the data augmentation process. 

 

2.5   Training Parameters 

 

Key parameters in the training process are hyperparameters, which are adjustable elements in CNN models that dictate their 

behavior and impact on the performance of the task at hand. These “tunable” components of a model can be adjusted during the 

training process. Besides influencing the performance of the classification task, hyperparameters also affect the computational 

power and time needed to train a CNN model. The training process of a CNN model is intricate and involves a broad array of 

hyperparameters. 

 

In DL, the process of identifying the best or optimal parameters for performance of a CNN model is known as optimization. 
This method involves an iterative process of finding values that minimize the error (loss) based on the training dataset. With the 

aim of implementing the most effective optimizer in a potential dried chili classification system, this study proposes a 

comparison and analysis of different optimization techniques in training.  

 

One of the most critical hyperparameters is the “learning rate”. It dictates the rate at which the model adjusts the gradient of the 

loss function. Consequently, the learning rate controls the extent to which the model alters its predictions as it updates its results 

based on model error. A high learning rate causes the model to change its parameters rapidly, while a low learning rate results in 

slower parameter changes. The optimal approach is to select a learning rate value that allows for a correct (not overly rapid) 

decrease in error and finds the minimal error in the fewest number of epochs. Although this research employs various 

optimization algorithms that modify the learning rate, it is crucial to define the initial learning rate at which the models will 

commence their training. 

 
Another significant hyperparameter is “epochs”, which refers to the number of times the entire training dataset is passed through 

the CNN model. However, models are trained using batches. Within a single training epoch, the “batch size” denotes the 

quantity of data processed by the CNN and used to update model parameters at a time until an epoch is complete. Larger batches 

facilitate greater computational parallelism and can often enhance performance. However, they also demand more memory and 

can induce latency when fed into the training function. 

 

In DL training, the “seed” can be considered a type of hyperparameter. Although it does not directly influence learning of the 

model like traditional hyperparameters, the seed determines the initialization of weights and can impact the reproducibility of 

results and model performance. The “seed” hyperparameter serves as a starting point for a sequence of pseudorandom numbers. 

Given the same seed, the generator will produce the exact same sequence of numbers. This property is particularly useful for 

debugging and ensuring the reproducibility of model results. 
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The selection of hyperparameters was made without favoring any specific model or optimizer in this research. The 

hyperparameters utilized are detailed in Table 1. 

 
Table 1. Hyperparameters in the training process of the models 

Hyperparameter Value 

Optimization algorithms 

Stochastic Gradient Descent (SGD) 

Adaptive Gradient Algorithm (Adagrad) 

Adaptive Moment Estimation (Adam) 

Epochs 50 

Batch size 32 

Learning rate 0.001 

Seed 42 

Folds 5 

 

The algorithms developed were implemented using Python 3, and the CNN models were trained utilizing PyTorch (version 

2.1.0+cu118), an open-source, Python deep learning framework developed by Facebook. The training of the CNN models was 

performed on a Quadro P2200 GPU. We used the Torchvision package to train and evaluate the CNN models. This package 

provides a collection of pre-trained models and is also used to build high-quality computer vision applications. In this research, 

we used Torchvision version 0.16.0+cu118. Performance metrics were verified using Imbalanced-learn (Lemaître et al., 2017), 

an open-source Python library that provides tools for dealing with imbalanced datasets in classification tasks. An imbalanced 
dataset refers to a situation where the number of observations differs significantly between the classes. In other words, one class 

has many more samples than the other. This imbalance can lead to biased machine learning models since they tend to favor the 

class with more samples. Therefore, special techniques, such as those provided by Imbalanced-learn, are used to handle these 

imbalances. These techniques allow for more accurate evaluation of model performance, leading to more robust and fair results. 

 

2.6   Performance Evaluation 

 

Cross Validation. In machine learning, accuracy of a model can be high for a specific dataset but may not generalize well to 

other datasets due to overfitting. A more robust solution is to employ cross-validation, where the dataset is divided into multiple 

subsets. The model is trained and validated on these subsets, and an average accuracy value is calculated to provide a more 

reliable performance estimate. In this study, authors utilized 5-fold cross-validation on a single dataset to develop an optimal 

model for an image classification task involving dried chili peppers. This process involved partitioning the dataset into five 
subsets or “folds”, each used once for validation while remaining folds were used for training. Fig. 5 provides a visual 

representation of this 5-fold cross-validation process. 

 

 
Fig. 5. K-fold Cross-Validation, with k=5. 

 

Confusion Matrix. A confusion matrix provides a comprehensive summary of performance of a model, breaking down results 

into True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). This allows for a more nuanced 

understanding of performance of the model than accuracy alone, particularly in cases where classes are imbalanced. By 

analyzing the confusion matrix, one can gain insights into types of errors the model is making and potentially identify ways to 

improve the model. For instance, a large number of FP might indicate that the model predicts the positive class too liberally, and 

adjustments might be needed to make it more conservative. Conversely, a large number of FN might suggest that the model is 
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too conservative. In the context of a CNN model, such insights can guide fine-tuning of architecture of the model or adjustment 

of its hyperparameters to improve its performance. Fig. 6, which shows a multiclass confusion matrix, provides a visual 

representation of these concepts. 

 

 
Fig. 6. Representation of a multiclass (n classes C) confusion matrix. The class of interest is k. 

 

From four terms derived from confusion matrix, a set of important performance metrics can be calculated. These metrics include 
accuracy, precision, recall, specificity, F1-score, Geometric_mean (G-mean), and Index of Balanced Accuracy, also known as 

IBA. Furthermore, Matthews Correlation Coefficient (MCC) is a valuable metric for evaluating classifiers due to several key 

features. Firstly, MCC takes into account Class Balance, making it particularly informative for imbalanced classes. Secondly, 

Range of Values for MCC, which varies from -1 to 1, offers an intuitive interpretation of classifier performance. Lastly, ability 

of MCC to identify inefficiencies can help pinpoint difficulties in classifying negative class samples. These characteristics 

collectively contribute to importance of MCC in assessing classifier quality. Together, these metrics provide a comprehensive 

view of performance of the model. 

 

The accuracy of the model is the fraction of the total samples that were correctly classified by the model. Equation (1) can be 

used to calculate accuracy. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 
. 

(1) 

 

Precision is the ability of a model to correctly classify positive elements. It is represented by Equation (2). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 
. 

(2) 

 

Recall (also known as sensitivity) is a metric that indicates the fraction of positive cases that the model has correctly identified 

as positive. The recall metric can be calculated using Equation (3). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 
. 

(3) 

 

Specificity is a metric that indicates the fraction of negative cases that the model has correctly predicted as negative. It is defined 

by Equation (4). 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 
. 

(4) 
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The F1-score is a metric that combines precision and recall into a single score. Mathematically, it is the harmonic mean of recall 

and precision and is expressed as Equation (5). An F1-score of 1 indicates that the model has perfect precision and recall. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

 2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 
= 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 
. 

(5) 

 
The G-mean metric combines recall and specificity into a single metric. This metric produces a balanced value that is 

independent of the number of positive and negative cases. It is represented by Equation (6). 

 

𝐺 −𝑚𝑒𝑎𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
×

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

. 

(6) 

 
The IBA is a metric used to evaluate the performance of a classifier on imbalanced datasets by giving more weight to the 

positive class (which is generally considered the most important class). In this research, a weighting factor of 0.1 is used (García 

et al., 2012). The IBA is represented by Equation (7). 

 

𝐼𝐵𝐴 =   1 + 0.1  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
−

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
×

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 
. 

(7) 

 

The MCC is a measure of the quality of classifications. MCC takes into account TP, TN and FP, FN, which can generally have 

very different sizes. The MCC is basically a correlation coefficient value between -1 and +1. A coefficient of +1 represents a 
perfect prediction, 0 is an average random prediction and -1 is an inverse prediction (Matthews, 1975). To calculate MCC, the 

Equation (8) can be used 

 

𝑀𝐶𝐶 =
(𝑇𝑃 ∗ 𝑇𝑁 −  𝐹𝑃 ∗ 𝐹𝑁)

 (𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 

. 
(8) 

 

The metrics presented in this section will be used to evaluate and compare the performance of the models in the classification 

task. These metrics provide a comprehensive evaluation that takes into account various aspects of model performance. 

 

3   Results and Discussion 
 

In the field of image classification, it is important to note that a more complex model does not necessarily yield better results. 

The effectiveness of the model is primarily influenced by the quality of the training database and the optimization algorithm that 

has been selected. As such, the careful selection of these two factors is of paramount importance for the performance of the 
model. In this paper, each CNN model underwent a cross-validation process using five folds. For each fold, 80% of the image 

dataset was used for training and the remaining 20% for validation. The highest final validation score from each fold was then 

used to calculate the mean validation score. A high mean validation score is indicative of the best model for the image 

classification task. The results revealed that the ResNet-152 model is the optimal choice for implementation in a dried chili 

pepper sorting machine, as it achieved a mean accuracy of 96.62%. Table 2 provides a detailed breakdown of the validation 

accuracy for each fold, as well as the mean fold score for each model. 

 
Table 2. Validation Accuracy for each Fold and Mean Score for each Optimizer 

Optimizer Fold 1 Fold 2 Fold 3  Fold 4 Fold 5 Mean Fold 

ResNet-152 

SGD 89.01% 90.40% 90.92% 90.40% 89.01% 89.95% 

Adagrad 97.21% 97.03% 96.86% 96.34% 95.64% 96.62% 
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Adam 97.21% 90.40% 97.03% 96.68% 95.46% 95.36% 

ResNeXt-101-32x8d 

SGD 89.90% 89.88% 89.01% 88.31% 88.31% 89.08% 

Adagrad 95.30% 95.29% 95.81% 95.11% 94.24% 95.15% 

Adam 95.64% 95.29% 94.94% 94.76% 94.59% 95.04% 

Wide ResNet-101-2 

SGD 87.46% 88.13% 88.66% 88.13% 86.74% 87.82% 

Adagrad 91.11% 89.88% 89.53% 90.05% 87.96% 89.71% 

Adam 94.08% 95.46% 94.24% 93.89% 93.19% 94.17% 

RegNet-x_32gf 

SGD 90.77% 90.92% 89.70% 90.40% 89.01% 90.16% 

Adagrad 93.21% 93.37% 91.97% 91.80% 89.35% 91.94% 

Adam 96.17% 96.34% 96.68% 96.68% 95.64% 96.30% 

RegNet-y_32gf 

SGD 90.42% 91.10% 92.50% 90.23% 90.05% 90.86% 

Adagrad 91.81% 89.88% 89.53% 88.31% 85.69% 89.04% 

Adam 96.17% 95.81% 96.86% 96.86% 95.99% 96.34% 

 

In the evaluation of the ResNet-152 model with different optimizers, Adagrad proved to be the most effective, achieving a mean 

fold (mean accuracy) of 96.62%. Although Adam reached the same maximum accuracy as Adagrad in Fold 1 (97.21%), it 

showed significant variability in the following folds, resulting in a lower mean fold of 95.36%. On the other hand, SGD 

maintained a constant but lower performance, with a mean fold of 89.95%. Importantly, in the fold results of the ResNet-152 

model, values above 97% were achieved, a milestone not achieved with the other models and optimizers compared in this 

research. These results suggest that Adagrad offers more consistent performance, while Adam may be more sensitive to the 

specific data of each fold. 

 
In the evaluation of the ResNeXt-101-32x8d model. Adagrad achieved the highest mean fold accuracy of 95.15%, closely 

followed by Adam with 95.04%, and finally SGD with 89.08%. Notably, Adam and Adagrad achieved very similar accuracies 

across all folds, with Adam slightly outperforming Adagrad in Folds 1 and 2, but being surpassed by Adagrad in Folds 3, 4, and 

5. Despite the high accuracies achieved by Adam and Adagrad, SGD showed consistently lower performance across all folds. 

These results suggest that while Adagrad and Adam can achieve high accuracies, Adagrad appears to offer more consistent 

performance across different folds.  

 

During the assessment of different optimizers on the Wide ResNet-101-2 model, it was found that Adam achieved the highest 

mean fold accuracy of 94.17%, followed by Adagrad with 89.71%, and finally SGD with 87.82%. Across all folds, Adam 

consistently outperformed the other optimizers, with its lowest accuracy still higher than the highest accuracy of both Adagrad 

and SGD.  
 

Referring to the RegNet-x_32gf model, it was observed that Adam outperformed the other optimizers with the highest mean 

fold accuracy of 96.30%. Adagrad followed with a mean fold accuracy of 91.94%. Notably, for the first time, SGD surpassed 

90% in mean fold accuracy, achieving 90.16%, although this was not higher than the mean fold accuracy obtained by Adagrad. 

Across all folds, Adam consistently achieved the highest accuracies, surpassing 96% in all but one fold. By examining the 

results of the RegNet-y_32gf model, it was found that Adam achieved the highest mean fold accuracy of 96.34%. However, it’s 

noteworthy that for the first time, SGD, with a mean fold accuracy of 90.86%, outperformed Adagrad, which had a mean fold 

accuracy of 89.04%. This is particularly interesting as SGD has consistently been outperformed by other optimizers in previous 

models. Across all folds, Adam maintained the highest accuracies, surpassing 95% in all folds. Given these results, RegNet-

y_32gf could be considered as a second option for the implementation of the image classification system after ResNet-152.  

 
Upon examining the models Wide ResNet-101-2, RegNet-x_32gf, and RegNet-y_32gf, which are designed for image 

recognition and composed of several regulatory units adaptable to different domain sizes and shapes, it was found that Adam 

consistently achieved the highest mean fold accuracy. Specifically, Adam achieved a mean fold accuracy of 94.17% for the 

Wide ResNet-101-2 model, and 96.30% and 96.34% for the RegNet-x_32gf and RegNet-y_32gf models, respectively. These 
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models, based on the design space, demonstrated greater flexibility and efficiency than conventional models (Radosavovic et al., 

2020). 

 

In contrast, the models ResNet-152 and ResNeXt-101-32x8d, which are variants of the ResNet family characterized by residual 

blocks with an input convolutional layer and an output convolutional layer, showed superior performance with Adagrad. These 

models have a fixed number of residual blocks and convolutional layers, providing them with greater stability and simplicity 

compared to models with more blocks or layers. They also use a simple residual design, which consists of replacing each 

residual block with a smaller residual block with the same architecture. 
 

These results suggest that while Adam and Adagrad can achieve high accuracies, the choice of optimizer may depend on the 

specific architectural characteristics of the model, such as the number of residual blocks or the adaptability of regulatory units to 

different domain sizes and shapes. For models with a fixed number of residual blocks, such as ResNet-152 and ResNeXt-101-

32x8d, Adag-rad could be the better choice, while for models with adaptable regulatory units, such as Wide ResNet-101-2, 

RegNet-x_32gf, and RegNet-y_32gf, Adam appears to be more effective. These results suggest that while Adam and Adagrad 

can achieve high accuracies, the choice of optimizer may depend on the specific model and data of each fold. 

 

On the other hand, if we were to develop a dried chili pepper classification system using the model and optimizer with the 

highest performance, we would choose the ResNet-152 model trained with the Adagrad optimizer. The classifier, which would 

achieve an accuracy of 97.21%, would have the metrics of precision (Pre), recall (Rec), specificity (SPE), F1-score (F1), G-
mean (Geo), and the Index of Balanced Accuracy (IBA), listed in Table 3 for each class. 

 
Table 3. Metrics obtained with the highest model ResNet-152 – Adagrad 

Metric/Class Pre Rec Spe F1 Geo IBA 

“Empty” 100% 100% 100% 100% 100% 100% 

“Extra 95.41% 99.05% 98.93% 97.20% 98.99% 98.00% 

“First”  94.34% 91.74% 98.71% 93.02% 95.16% 89.93% 

“Second” 96.33% 95.45% 99.14% 95.89% 97.28% 94.28% 

“Trash” 99.12% 99.12% 99.78% 99.12% 99.45% 98.83% 

Average 97.21% 97.21% 99.35% 97.20% 98.27% 96.40% 

 

According to the results in Table 3, the model demonstrates exceptional performance across all evaluated metrics. With a 

precision and recall of 97.21%, the model correctly identifies 97.21% of the samples, indicating a low rate of false positives and 

negatives. The specificity of 99.35% reflects a very low rate of false positives. The F1-Score of 97.20%, which is the harmonic 

mean of precision and recall, suggests a high balance between these two metrics. In addition, the G-Mean of 98.27% indicates 

good model performance across all classes. Finally, the IBA of 96.40% suggests that the model is both accurate and balanced. In 

summary, these metrics indicate that the ReNet-152 model has solid and reliable performance. 
 

To further illustrate the performance of the ResNet-152 model trained with Adagrad, we present the confusion matrix 

corresponding to the epoch of training with the highest accuracy (see Fig 7). This matrix provides a detailed visual 

representation of how the model correctly and incorrectly classifies samples across each class. 
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Fig. 7. Confusion Matrix of the ResNet-152 - Adagrad model. 

 

In further discussing the results, if the ResNet-152 model trained with Adagrad is selected, a MCC value of 0.965 is obtained. 

This value, being remarkably close to 1, indicates an exceptional level of accuracy in the predictions made by the model. A 

value near 1 typically signifies that the predictions of the model align closely with the actual outcomes. This suggests that the 

ResNet-152 model is highly effective in classifying dried chili peppers. The high level of accuracy underscores the robustness 

and reliability of the model in handling this classification task. 

 

4   Conclusions 
 

In this research, we analyzed the performance of state-of-the-art pre-trained convolutional neural network models, all of which 

utilize residual blocks (ResNet, ResNeXt, Wide ResNet, and RegNet), for classifying images of quality grades of dried chilies. 

The aim was to identify the optimal network model for implementation in a sorting machine. Each model was trained using 

different optimizers in conjunction with the cross-validation method. 

 

Our findings suggest that the choice of optimizer may depend on the specific architectural characteristics of the model. For 
models with a fixed number of residual blocks, such as ResNet-152 and ResNeXt-101-32x8d, Adagrad demonstrated superior 

performance. In contrast, for models with adaptable regulatory units, such as Wide ResNet-101-2, RegNet-x_32gf, and RegNet-

y_32gf, Adam achieved the highest mean fold accuracy. 

 

Most notably, the ResNet-152 model trained with the Adagrad optimizer achieved the highest mean fold accuracy of 96.62% 

among all the trained models. Furthermore, the highest accuracy obtained in a single fold using the ResNet-152 model with 

Adagrad was 97.21%. The performance of this model was then evaluated using advanced performance metrics, suggesting its 

robustness and reliability in classifying dried chili peppers. This research is expected to make a significant contribution to 

agriculture and food processing by providing insights into the effective use of convolutional neural network models and 

optimizers in image classification tasks. 
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