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Abstract. We determine extremal graphs with respect to the  number 
of independent sets for polygonal chains joined by cutting edges. We 
show that for any class of polygonal chains, independently of the 
number of sides on each polygon, the zig-zag polygonal chain has the 
extremal minimum value. Meanwhile, the polygonal chain at distance 
2 between any two consecutive cutting edges provides the extremal 
maximum value. These results generalize and formalize previous 
ideas about phenylene chains. 
To recognize those extremal topologies, extremal values   for the 
product between two Fibonacci numbers with complementary indices 
are determined. The product between two Fibonacci numbers with 
complementary indices are also applied   for recognizing extremal 
graphs when a path is extended with one more vertex, or when any 
independent subgraph is linked to the path. Our results are achieved 
by applying decomposition of the input graph through the vertex and 
edge division rules. 
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1 Introduction 

Given a graph G = (V, E(G)), a subset S ⊆ V is called independent if for every u, v ∈ S implies that {u, v} ∈/ E(G). The 

corresponding counting problem on independent sets, denoted by i(G), consists of counting the number of independent sets of a 

graph G. 

Merrifield and Simmons showed the correlation between the number of independent sets of a graph representing a chemical 

molecule and its boiling points. This is one of the reasons why the number of independent sets of a graph G is called the Merrifield-

Simmons index of G on mathematical chemistry. Although, in the graph theory area, i(G) is also called the Fibonacci number of 

G. 

Graphs function as representations for a multitude of systems, the structure and operation of which rely on the interconnected 

arrangements of their fundamental elements. Any procedure that produces a numerical value independent from a particular 

labeling vertex will result in a topological invariant (Doslic,2012). Many topological invariants are closely correlated with some 

physic chemical characteristics of the underlying compounds. It is well known that the Merrifield-Simmons (M-S) index is an 

important invariant for the structural chemistry Deng (2008) y Wagner & Gutman (2010). From Doslic (2012), we know that the 

results from M-S index have a potential use for combinatorial chemistry. The Merrifield-Simmons index stands out as one of the 

most favored topological indices in the realm of chemistry.  

On the other hand, several works have been developed to analyze extremal values for the number of independent sets on different 

classes of graphs Deng (2008), Wagner & Gutman (2010), Cao & Zhang (2008), Gutman (1992), Lianzhu (1998), Zhang & Zhang 
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(2000). For example, the polygonal array graphs have been widely investigated and they represent a relevant area of interest in 

mathematical chemistry, because they have been used to study intrinsic properties of molecular graphs Pedersen (2005). 
 

 

We will differentiate two classes of polygonal arrays that are commonly used to model chemical compounds. The sequence of 

polygons, where any consecutive pair of polygons share one edge, it will be a polygonal array. Meanwhile, a sequence of polygons 

where any consecutive pair of polygons are joined by one cutting edge, it will be called a polygonal chain. 

Gutman (1993) analyzed extremal hexagonal arrays according to three topological invariants: Hosoya index, largest eigenvalue, 

and Merrifield-Simmons index. Gutman showed that the extremal topology for the maximum Merrifield-Simmons index, in the 

case of hexagonal arrays, is the linear hexagonal array. Meanwhile, Zhang & Zhang (2000) shown that the minimum of the M-S 

index on hexagonal chains is achieved by the zig-zag polyphenegraph. 

The recognition of extremal graphs has been a relevant study on pattern structural recognition area. In graph theory, several works 

deal with the characterization of the extremal graphs concerning Hosoya and M-S indices for different graph topologies, such as 

trees, unicyclic graphs, and certain structures involving pentagonal and hexagonal cycles Deng (2008), Wagner & Gutman (2010),  

Cao & Zhang (2008), Pedersen (2005), Deng (2010), Shiu (2008), Zhu et al. (2010). For example, Ren et al. (2007) determined 

the minimal M-S index for double hexagonal chains. In Zhu (2010), a survey about extremal graphs for Hosoya and Merrifield-

Simmons indices involving different graph topologies is considered. 

A phenylene is any divalent aromatic radicals obtained from a benzene molecule by removing two hydrogen atoms. Some of those 

polymers, in which the basic building block is a phenylene, are called polyphenylenes. We will model the polyphenylenes by 

polygonal chains. Polyphenylenes are macromolecules, which comprise benzenoid aromatic nuclei directly joined to one another 

by C − C bonds. These materials have been known for many years, and they are modeled through polygonal chains joined by 

cutting edges Jones (1989). The derivatives of polyphenylenes are commonly seen chemicals, which can be used in organic 

synthesis, drug synthesis, heat exchanger, etc. Yang (2018). 

Polyphenylenes share many structural similarities with benzenoid compounds (modeled by hexagonal arrays). Therefore, closely 

related classes of compounds can be efficiently modeled by both classes of graphs. However, while the study of benzenoid 

compounds has been followed (and in many cases preceded) by the study of benzenoid graphs, the graphs representing 

polyphenylene compounds remain largely unexplored Doslic et al. (2018). Our line of research is the establishment of the graph 

topologies for the extremal values for the M-S index for polygonal chains. 

We show how the properties of the product between two Fibonacci numbers with complementary indices are useful for 

determining extremal graphs on a path linked to a new vertex or linked to a connected subgraph. Also, we present new results 

about extremal graphs for the number of independent sets on polygonal chains. Our results consider polygonal chains not uniform; 

it means that the polygons have different sizes and the distance between any consecutive pair of cutting edges can be variable. 

Our proofs do not require the explicit computation of the Merrifield-Simmons index on polygonal chains, instead the vertex and 

the edge division rule are applied to decompose the input graphs. 

In the following section, we introduce some notation to be used as well as some related works. In section three, we present the 

analysis done on the product between two Fibonacci numbers with complementary indices, and we determine its extremal values. 

In section four, we show the analysis done for obtaining extremal values with respect to the M-S index of polygonal chains joined 

by cutting edges. And in section five, a note on M-S index is presented for polyphenylene dendrimers. The last section contains 

the conclusions. 

 

2 Preliminaries 
 

Let G = (V, E) be an undirected graph with a set of vertices V (or V (G)) and set of edges E (or E(G)). It is assumed that G is a 

simple graph if it does not have loops or parallel edges. The neighborhood of x ∈ V is the set N (x) = {y ∈ V: {x, y} ∈ E}, and its 

closed neighborhood is N (x)∪{x}, which is denoted by N [x]. NH (x) emphasizes the consideration of the neighbors of x, but only 

on the subgraph H. Therefore, NH (x) = {y ∈ V (H): {x, y} ∈ E(H)}. The degree of a vertex x in the graph G, denoted by δG(x), 

is |NG(x)|. The degree of the graph G is ∆(G) = max{δG(x): x ∈ V (G)}. 
 

A path Pn of n vertices between the vertices v and w is a sequence v1v2, . . ., vn−1vn of edges such that v1 = v, vn = w, and vkvk+1 ∈ 

E, for 1 ≤ k < n. A simple path is a path where v1, . . ., vn−1, vn are all distinct. A cycle is a non-empty path such that the first and 

last vertices are identical, and a simple cycle is a cycle in which no vertex is repeated, unless the first and last vertices are identical. 
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For u, v ∈ V (G), d (u, v) denotes the distance between u and v in G, which is the length of the shortest path between u and v. 

Similarly, for e, f ∈ E(G), d (e, f) denotes the distance between the edges e and f, which is the length of the shortest path between 

e and f, without considering the same edges e and f. 

 

 

Given a graph G = (V, E), let G′ = (V ′, E′) be a subgraph of G, then V ′ ⊆ V and E′ contains edges {v, w} ∈ E such that v ∈ V ′ 

and w ∈ V ′. If E′ contains every edge {v, w} ∈ E, where v ∈ V ′ and w ∈ V ′, then G′ is called the induced graph of G. A connected 

component of G is a maximal induced subgraph of G. Thus, a connected component of G is not a proper subgraph of any other 

connected subgraph of G. 
 

An acyclic graph is a graph that does not contain cycles. The connected acyclic graphs are called trees. Let T (v) be a tree T with 

root vertex v. The vertices in a tree with degree equal to one are called leaves or pendant nodes, while the non-roots nodes of 

degree greater than one are called internal nodes of the tree. It is not difficult to infer that in a tree there is a unique path connecting 

any two pair of vertices. We denote by Pn, Cn, Tn, Sn and Kn to a path, a simple cycle, a tree, a star graph and a complete graph, 

respectively, all of them containing n vertices. 
 

For a vertex u ∈ V (G), (G − u) denotes the graph induced by (V (G) − {u}). For an edge e ∈ E(G), (G − e) denotes the graph 

obtained from G by deleting the edge e, while (G\e) denotes the graph obtained by deleting e and both end-vertices. 
 

A subset S ⊆ V is called independent, if for every u, v ∈ S implies that {u, v} ∈/ E. The corresponding counting problem on 

independent sets, denoted by i(G), consists of counting the number of independent sets of a graph G. Computing i(G) is a #P- 

complete problem for graphs G, where ∆(G) ≥ 3. The computation of i(G) remains #P-complete even if it is restricted to 3-regular 

graphs GreenHill (2000). 
 

Let G = (V, E) be a molecular graph and denote by n(G, k) the number of ways in which k mutually independent vertices can be 

selected in G. The empty vertex set is considered an independent set, then n(G, 0) = 1 for all graphs, and n(G, 1) = |V (G)|. 
  

Furthermore, i(G) = Σk≥0 n (G, k) is the Merrifield-Simmons index of G, which is the exact number of independent sets of G. 
 

Some reductions rules have been useful to count combinatorial objects on graphs, particularly, the following rules are commonly 

used in the computation of i(G): 

1. When G is formed by a list G1, . . ., Gk of connected components, then i(G) = ∏ 𝐺𝑖
𝑘
𝑖=1   

2.  Vertex reduction rule: Let v ∈ V (G), i(G) = i (G − v) + i(G − (N [v])) 

3.  Edge division rule: Let e = {x, y} ∈ E(G), i(G) = i (G − e) − i(G − (N [x] ∪ N [y])) 
 

We denote the nth-Fibonacci number as Fn. The sequence of Fibonacci numbers is obtained by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2. 

The Fibonacci numbers and its properties have been useful in the analysis of structural compounds in the mathematical chemistry 

area. 
 

Given a tree Tn with n nodes, it is known that the topology with a minimum number of independent sets corresponds to the path 

i(Pn) = Fn+2. Meanwhile, the topology with the maximum value for the number of independent sets corresponds to the star: i(Sn) = 

2n−1 + 1 Prodinger (1982). On the other hand, the number of independent sets for a cycle Cn with n vertices is i(Cn) = Fn+2 − Fn−2. 

 

Extremal values for the product of two Fibonacci numbers with complementary indices 
 

Let Pn be a simple path with n vertices and n − 1 edges, then i(Pn) = Fn+2. Let k > 0 be a constant integer and let Pi and Pj be two 

disjointed simple paths with complementary indices, denoted as (Pi ⊕ Pj). This means that i + j = k. It is known that i(Pi ⊕ Pj) = 

i(Pi) · i(Pj) = Fi+2 · Fj+2. In De Ita, et al. (2019), the sequence βk,s = Fs · Fk−s, is introduced for all k = 2, 3, ... and 1 ≤ s < k. Some of 

those values are illustrated in Table (1). 
 

The sequence βs,k is increasing on the even indices of s, and it has a decreasing behavior on the odd indices of s. For example, β2p,k 

< β2(p+1),k for every p ∈ {1, 2, ..., floor(k/4)}, and all k. Meanwhile, β2p+1,k > β2p+3,k for every p ∈ {0, 1, ...,floor(k/4)-1} and all k. 

For completeness, we present one of the main results of the extremal values for the sequence βs,k, whose proof can be seen in [19]. 
 

Proposition 1. For any integers s with 1 ≤ s < k, 

1. if k ≥ 3, then mins {FsFk−s} = F2Fk−2 = Fk−2, 

2. and if k ≥ 2, then maxs {FsFk−s} = F1Fk−1 = Fk−1 
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Table 1. Product between Fibonacci numbers with complementary indices 

n Fn 

 

β1,k 

Max 

 

β2,k 

Min 

β3,k β4,k β5,k β6,k β7,k β8,k β9,k β10,k β11,k β12,k β13,k 

1 1 0             
2 1 1 0            

3 2 1 1 0           

4 3 2 1 2 0          

5 5 3 2 2 3 0         

6 8 5 3 4 3 5 0        

7 13 8 5 6 6 5 8 0       

8 21 13 8 10 9 10 8 13 0      

9 34 21 13 16 15 15 16 13 21 0     

10 55 34 21 26 24 25 24 26 21 34 0    

11 89 55 34 42 39 40 40 39 42 34 55 0   

12 144 89 55 68 63 65 64 65 63 68 55 89 0  

13 233 144 89 110 102 105 104 104 105 102 110 89 144 0 

14 377 233 144 178 165 170 168 169 168 170 165 178 144 233 
 

According to the above proposition, if we fix a row (k), the value β1,k = F1 ·Fk−1 = Fk−1 is the maximum value for the series in the 

row k, while β2,k = F2 · Fk−2 = Fk−2 is the minimum for the same series in the same row k. The remaining values of the series are 

between these values: Fk−2 < Fs · Fk−s < Fk−1, ∀s = 3, . . . , k − 3. The difference between the maximum and the minimum in the 

row k is the following Fibonacci number: Fk−1 − Fk−2 = Fk−3. Notice that by maintaining the same row k, the following extremal 

values in βs,k correspond to β3,k = F3 · Fk−3 for the maximum, and β4,k = F4 · Fk−4 for the minimum. Notice that the maximum value 

for the row k results to be the minimum for the next row k + 1. The fact that the extremal values of βk,s are in the first two 

consecutive columns of the Table (1), and the following extremal values are in the following two next columns, it will have logical 

consequences on the topologies that represent the extremal values for the Merrifield-Simmons index on different topology graphs, 

as we show in the following sections. 

 

3 Extremal topologies for the Merrifield-Simmons index on basic variations of a path 

 

Let Pn be a simple path with n vertices, Pn : v1v2, . . ., vn−1vn. And let u ∈/ V (Pn) be a vertex independent from Pn. We want to 

determine where to connect u to Pn via a cutting edge to obtain extremal configurations for i(Pn ∪ u). For example, let us assume 

that u is linked to a vertex vk ∈ Pn, 1 ≤ k ≤ n, making an additional edge: {vk, u}. We denote the resulting graph as (Pn ∪vk u). 

 

 
Figure. 1. Minimum topology for the M-S index for i(Pn ∪vk u). 

 

 
Figure. 2. Maximum topology for the M-S index for i(Pn ∪vk u). 
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Lemma 1. i(Pn ∪vk u) is minimum (maximum) for k = 1 (k = 2). 

 

Proof. We apply the vertex reduction rule on u to compute i(Pn ∪vk u). 

                                      

                                                i(Pn ∪vk u) =i(Pn) + i(Pn − {vk, u}) = i(Pn) + i(Pk−1Pn−k) 

                                                                 =Fn+2 + Fk+1 · Fn−k+2.                                                                                                     (1) 

The term Fn+2 in eq. 1 is invariant, because it does not depend on the place where u was linked to Pn. Therefore, the extremal 

values for i(Pn ∪vk u) only depend on the term Fk+1 · Fn−k+2, when it has the maximum or the minimum value. 

 

According to proposition 1, the minimum value for the series βk+1,n+3 = Fk+1 ·Fn+3−{k+1} is obtained when Fk+1 = F2 = 1, meaning 

that k = 1. In this case, (Pn ∪v1 u) = Pn+1 and the position to insert u to Pn for minimizing i(Pn ∪vk u), is in any endpoint of the 

path, as it is illustrated in Figure 1. 

 

On the other hand, according to proposition 1, the maximum value for the series βk+1,n+3 = Fk+1 · Fn+3−{k+1} is obtained when Fk+1 

= F1 = 1. However, in this case k = 0, and there is no vertex vk ∈ Pn that becomes the father of u. Thus, the following maximal 

value is obtained when Fk+1 = F3 = 2, meaning that k = 2. In this case, (Pn ∪v2 u) is a path where its second node has the leaf u. 

Thus, the position to link u to Pn to maximize i(Pn ∪vk u) is in the second vertex of Pn, as it is illustrated in Figure 2. 

 

Let us consider again a simple path Pn of n vertices Pn : v1v2, . . ., vn−1vn. And let H be any connected subgraph that is independent 

from Pn, then (V (Pn) ∩ V (H)) =∅. Let u be an arbitrary vertex from V (H). Consider a new connected component (Pn ∪e H), 

which is formed by linking Pn to H via a cutting edge e = {vk, u} with vk ∈ V (Pn), u ∈ V (H), as it is illustrated in Figure 3. 

 

 
Figure 3. Pn ∪e H, with e = {vk, u}, u ∈ V (H), vk ∈ V (Pn), (V (Pn) ∩ V (H)) = ∅). 

 

Lemma 2. i(Pn ∪e H) has a maximum (minimum) value when e = {v2, u} (e = {v1, u}). 

 

Proof. I(Pn ∪e H) is computed based on the division vertex u ∈ H, which is one endpoint of the cutting edge e = {vk, u}, vk ∈ V 

(Pn), u ∈ V (H). 

 

                                                         i(Pn ∪e H) = i((Pn ∪e H) − {u}) + i((Pn ∪e H) − N [u])  

                                                                          = i(Pn) · i(H − {u}) + i(Pk−1) · i(Pn−k) · i(H − N [u])                                            (2) 

 

Notice that only the term i(Pk−1) · i(Pn−k) in eq. 2 depends on the value of k, while the remaining terms in eq. 2 are invariant values 

that do not depend from k. For example, i(H − {u}) and i(H − N [u]) are constant values with respect to the selected vertex vk. 

Therefore, the maximum and minimum values for i(Pn ∪e H) only depend on the maximum and minimum values for i(Pk−1) · i(Pn−k). 

 

Notice that i(Pk−1) · i(Pn−k) = Fk+1 · Fn−k+2, and this is the product between two Fibonacci numbers with complementary indices.  
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In this case, the upper index is k + 1 + n − k + 2 = n + 3. By proposition 1, Fk+1 · Fn−k+2 is minimum for F2 · Fn+3−(2), implying 

that k = 1. Similarly, Fk+1 · Fn−k+2 is maximum when Fk+1 = F1, and for this case k = 0. However, Pn starts in v1; therefore, the 

index for the following maximal in the product between two Fibonacci’s is obtained when Fk+1 = F3, implying that k = 2. 

Notice that the maximum and minimum values for i(Pn ∪e H), e = {vk, u}, vk ∈ V (Pn), u ∈ V (H) depends only on the position vk 

in Pn, and both the topology of the subgraph H and the selected vertex u ∈ V (H) are not significant. 

 

Counting independent sets on basic variations of an initial graph 

With the daily use of technology and the resulting low school performance, Smart learning systems have been chosen, which 

allow to know the strengths and weaknesses of the students, and from this with the use of artificial intelligence, to propose 

improvements so that the learning of the students increases considerably in a safe way. 

The following Lemmas and Corollary will be useful for our analysis. They show that given an initial graph G = (V, E), if new 

edges are added to E(G), then i(G) is decreasing. Meanwhile, if new vertices are added to V (G), then i(G) is increasing, even if 

the new vertices are connected to all original v ∈ V (G). 

Lemma 3. Let G = (V, E) be an undirected graph, let x, y ∈ V (G), and e = {x, y} not ∈ E(G), then i(G) > i(G ∪ e). 

Proof. Let Se = {S ∈ I(G): x, y ∈ S} be the independent sets in G containing the two vertices x, y ∈ V. |Se| > 0 since at least the set 

{x, y} ∈ Se, because e not ∈ E(G). We have that i(G ∪ e) = i(G) − |Se|, then i(G) > i(G ∪ e). 

  Lemma 4. Let G = (V, E) be an undirected graph, and let x not ∈ V. Let G1 = G ∪{{x, v}: ∀v ∈ V}, then i(G1) = i(G) + 1. 

Proof. I(G1) = I(G) ∪ {{x}}, since there are no more independent sets including x and any other vertex from V. Therefore, i(G1)  

= i(G) + 1. 

Corollary 3.1. Let G = (V, E) be an undirected graph, and let x, v be two vertices such that x not ∈ V, v ∈ V. Let G1 = G ∪ {{x, 

v}}, then i(G1) > i(G). 

Proof. According to the previous lemma, i(G1) = i(G) + 1 if there are no more edges between x and any other vertex v ∈ V. If any 

edge {v, x} is omitted in E(G1), then G1 is even greater than i(G) + 1. In any case, i(G1) > i(G). 

 

Thus, we can summarize some results about counting independent sets in a graph G when additional vertices or additional edges 

are joined: 

1.  If v is an island that is adding to G, then: i(G ∪ {v}) = i(G) ∗ 2. 

2.  If v is joined to G as a vertex all connected in G, then i(G ∪ {v}) = i(G) + 1. 

3.  If v is joined to G as a vertex all connected in (G−{u}), u ∈ V (G), then i(G∪{v}) = i(G) + 2. Generally, joining any vertex v 

to G increases the value i(G ∪ {v}) with respect to i(G). 

4.  Let e = {x, y}, x, y ∈ V (G) such that e not ∈ E(G), then i(G) > i(G ∪ e). Then, the addition of new edges to G decreases the 

value i(G ∪ e) with respect to i(G). 

 

 

4 Extremal topologies for polygonal chains 

With the daily use of technology and the resulting low school performance, Smart learning systems have been chosen, which 
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allow to know the strengths and weaknesses of the students, and from this with the use of artificial intelligence, to propose 

improvements so that the learning of the students increases considerably in a safe way. 

A polygon (also called a polygonal graph) is a simple cycle graph. Therefore, a cycle graph Ck of length k represents a polygon 

of k sides, which forms a k-gon. The way that two k-gons are joined (via a common vertex, a common edge or through a cutting 

edge) defines different classes of polygonal chemical compounds. 

Let us consider a polygonal chain Hn as a sequence of n polygons hi, i = 1, . . ., n, where each consecutive pair of polygons hi · 

hi+1 are joined by a cutting edge ei = {xi, yi}, i = 1, . . . , n − 1 where xi ∈ V (hi), yi ∈ V (hi+1).     This means that Hn = h1∪e1 h2 ∪e2 

. . . ∪en−2 hn−1 ∪en−1 hn. Note that in this case, (V (hi) ∩ V (hj)) = ∅ for i ̸= j, i, j = 1, . . . , n. Also, that δ(xi) = δ(yi) = 3, i = 1, . . . , n 

− 1, while ∀x ∈ (V (Hn)−∪n-1
i=1V (ei)), δ(x) = 2. We call this class of graphs as a polygonal chain joined by cutting edges (see 

Figure 3). When each polygon in the chain Hn of n polygons is a k-gons, then we say that Hn is a regular polygonal chain, or 

simply a polygonal chain denoted as Hk,n.  

In a polygonal chain Hn, the polygons forming the chain can have any length, including hexagons. Therefore, when we depict 

polygonal chains, we will draw cycles to refer to polygons with an unknown number of sides. In fact, a polygonal chain might 

contain polygons with different lengths, which would make not uniform chains of polygons joined by cutting edges. This class of 

graphs are also known as ideal Hn: 

 
Figure. 4. A polygonal chain joined by cutting edges. 

 

chains (or freely jointed chains). In a polygonal chain Hn with n ≥ 2, there are two end-polygons, h1 and hn, while h2, . . . , hn−1 are 

the internal polygons of the chain. 
 

The phenylenes are chemical compounds modeled by hexagonal chains. Similarly, if the graph obtained by contracting every 

hexagon into a vertex in a phenylene system is a path, then such graph is called a polyphenylene chain Yang (2018). Each 

polyphenylene chain contains exactly two hexagons with only one cutting edge, which are called terminal hexagons, while the 

other hexagons are called internal. From now on, we will consider a chain of polygons joined by cutting edges, where each polygon 

of the chain can have a different length to the rest of the polygons on the chain, see e.g. Figure 4. 
 

Polyphenylenes make an important class of compounds that serve as precursors to many scientifically and commercially 

interesting materials, such as polyphenylene oxide and polyphenylene sulfide. Unbranched polyphenylenes appear in the context 

of low-dimensional organic conductors, while their dendrimer-like counterparts play an important role in synthesizing large 

graphene molecules Gutman & Furtula (2012). The major interest in polyphenylenes stemmed from their characteristic thermal 

and thermo-oxidative stabilities. A recent interest in them has arisen from the finding that one member of this class of polymers, 

poly (p-phenylene)  (PPP; 1), can be transformed from an electrical insulator into an electrical conductor upon doping with electron 

acceptors or donors Jones (1989). 
 

On the other hand, an ideal chain is the simplest model to describe polymers, such as nucleic acids and proteins. It only assumes 

a polymer as a random walk and neglects any kind of interactions among monomers. Although it is simple, its generality gives 

insight about the physics of polymers. In this model, monomers are rigid rods of a fixed length, and their orientation is completely 

independent from the orientations and positions of neighboring monomers to the extent that two monomers can coexist in the 

same place. In some cases, the monomer has a physical interpretation, such as an amino acid in a polypeptide. In other cases, a 

monomer is simply a segment of the polymer that can be modeled as a discrete, freely jointed unit Rippe (2001). 
 

In this section, we will determine the extremal graphs regarding the Merrifield- Simmons index of a polygonal chain Hn where 

each pair of consecutive polygons is joined by a cutting edge, i.e. Hn = h1 ∪e1 h2 · · ·∪en−1 hn. Let us consider a new polygon h 

independent from Hn. h is linked as the n + 1 polygon via a new cutting edge e = {u, v}, u ∈ V (hn), v ∈ V (h). That new polygonal 

chain is denoted as (Hn∪eh). Let us consider k = |hn|, j = |h|. d = d(en−1, e) is the distance between the last cutting edge en−1 in Hn 

and the new cutting edge e. The extremal graphs for i(Hn ∪e h) are expressed by the following theorem. 
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Figure. 5. Computation of i(Hn ∪e h), for d = d(en−1, e) = 1. 

 

 
Theorem 1. i(Hn ∪e h) has a maximum (minimum) value for the distance d(en−1, e) = 2 (d(en−1, e) = 1). 

 

Proof. For this demonstration, the computation of i(Hn ∪e h) is performed via the edge division rule on e. 

  

                                                      i(Hn ∪e h) = i(Hn) · i(h) − i(Hn − N [u]) · i(h − N [v])                                                             (3) 

 

Notice that the term i(Hn) · i(h) is an invariant that does not depend on the distance d between en−1 and e, neither the size of the 

polygons in Hn. Similarly, the factor i(h − N [v]) decomposes h by deleting 3 vertices from h, forming a path Pj−3  with j−3 vertices. 

Therefore, i(h−N [v]) = i(Pj−3) = Fj−1, which results in a constant value that does not depend on the distance d. 

 

The unique term in eq. 3, which depends on the distance d between en−1 and e, is i(Hn − N [u]). Let us analyze the different values 

for this term with respect to the different values for d by considering that hn = v1 − v2 − · · · − vk − v1. 

 

If d = 1, and i(Hn − N [u]) is computed in eq. 3, then i(Hn − N [u]) = i(Hn−1) · i(Pk−3) = i(Hn−1) · Fk−1, since the polygon hn is 

disconnected from Hn. This forms Hn−1 and an independent path Pk−3 with k − 3 vertices, as it is illustrated in Figure 5. 

 

 If d = 2, and the term i(Hn − N [u]) is computed in eq. 3, then i(Hn − (N [u])) = i(Hn−1 ∪v1 Pk−3), since the polygon hn lost 3 

vertices, however, it continues as a path linked to the last polygon of Hn−1, as it is illustrated in Figure. 6. 

 

If d = 3, and i(Hn − N [u]) is computed in eq. 3, then i(Hn − (N [u])) = i(Hn−1 ∪v2 Pk−3), since the polygon hn lost 3 vertices, but 

it continues as a path linked to the last polygon of Hn−1, as it is illustrated in Figure 7. In general, considering a distance d between 

en−1 and e, and by applying the edge reduction rule one, when i(Hn − N [u]) is computed, then we obtain i(Hn − (N [u])) = i(Hn−1 

∪vd−1 Pk−3), since the polygon hn lost 3 vertices. Nevertheless, it continues as a path linked to the last polygon of Hn−1 via the edge 

cutting en−1. 

 

On the other hand, the graph (Hn−1 ∪vd−1 Pk−3) is the exact topology analyzed in lemma 2, where the minimum (maximum) for 

i(Hn−1 ∪vd−1 Pk−3) is obtained when d − 1 = 1(d − 1 = 2). If h is linked at distance 2 (d = 2), then the minimum value for i(Hn−1 

∪vr−1 Pk−3) is obtained. And the maximum value for i(Hn−1 ∪vd−1 Pk−3) is obtained when vd−1 = v2. This means that the distance d 

= (en−1, e) = 3. 
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Figure. 6. Computation of i(Hn ∪e h), for d = d(en−1, e) = 2. 

 
 

 
Figure. 7. Computation of i(Hn ∪e h), for d = d(en−1, e) = 3 

 

Thus, the extremal minimum topology for i(Hn − N [u]) is achieved when d = d(en−1, e) = 2. As this term appears subtracting in 

eq. 3, then the union of h to hn at distance 2 between the edges en−1 and e makes the maximum value for i(Hn ∪e h). Although i(Hn−1 

∪vd−1 Pk−3) has a maximum value when d = 3, it occurs only if Pk−3 continues connected to Hn−1 while i(Hn ∪e h) is being computed. 

However, the subgraph G′ = (Hn−1 · Pk−3) is reduced from G′′ = (Hn−1 ∪vd−1Pk−3), if the cutting edge that links hn−1 to Pk−3 is 

deleted. Then G′ = (G′′ − {en−1}) and by lemma 3, i(G′) > i(G′′) holds. 

 

Since G′′ represents the maximum topology for all distance d > 2, while G′ is the subgraph obtained when the distance between 

en−1 and e is one in i(Hn ∪e h). Therefore, the maximum value for i(Hn − (N [u])) is obtained at distance d = 1. As this term appears 

subtracting in eq. 3, then i(Hn ∪e h) achieves a minimum value when h is linked to hn at distance one between cutting edges en−1 

and e. In this way, we obtain the extremal graphs for i(Hn ∪e h).  

Notice that in the previous proof, the values j = |h| and k = |hn| are not relevant as long as j, k > 4. This means that the extremal 

graphs are kept regardless of the size of the involved polygons (while they have more than four sides) in the chain Hn. 

 

Let us consider that Hn is built iteratively. This means, that h1 is joined to h2, after h2 is joined to h3, and so on. Under the restriction 

that d(ei, ei+1) > 0, i = 1, . . ., n−2. If distance one is kept between two consecutive polygons, then the minimum extremal topology 

for i(Hn) is formed. In this case, Hn corresponds to the polygonal chain that maintains distance one between any two consecutive 

cutting edges, which is known as the zig-zag polygonal chain. 
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Figure 8. Extremal topologies for polygonal chains. 

 

Theorem 1 shows that the minimum polygonal chain corresponds to the well-known zig-zag chain. In a zig-zag chain, the induced 

subgraph from Hn, which is derived by the vertices of the cutting edges, forms a simple path. Thus, for polygonal chains joined 

by cutting edges, the minimum extremal topology is the zig-zag chain. 

 

Also, considering that the chain Hn is built iteratively, starting from the polygon h1, and joining it to h2, and so on, holding at 

distance two between any pair of consecutive polygons. In each block of the chain, the topology formed corresponds to the 

maximum extremal topology for i(Hj), j = 2, . . ., n. Thus, under the restriction d(ei, ei+1) > 0, i = 1, . . . , n−2, the maximum extremal 

topology for i(Hn) corresponds to the polygonal chain that maintains distance two between any two consecutive cutting edges in 

the polygonal chain. 

 

The minimum and maximum extremal graphs for polygonal chains joined by cutting edges are depicted in Figures (8a) and (8b). 

Our last theorem generalizes the results obtained in the polyphenylene chains literature. 

 

 The results by Doslic et al. (2018) are consistent with our results when only phenylenes are considered as the polygons forming 

the chain. Doslic shown that the Ortopolyphenylenes chains (those whose distance between cutting edges is one) are the minimum 

extremal topologies. On the other hand, the maximum extremal graphs are formed by Meta-polyphenylenes chains (those whose 

distance between cutting edges is two). Therefore, the Para-polyphenylenes chains (those whose distance between cutting edges 

is three) have a Merrifield-Simmons index between the previous two cases. Those results by Doslic et al. (2018) about 

polyphenylene chains are derived from our theorem 1 as a special case, when just hexagons are considered in order to form 

polygonal chains. 

 

Furthermore, Theorem 1 is held regardless of the length of the polygons in the chain, or if the chain has polygons with different 

lengths (is uniform or not). In summary, considering the Merrifield-Simmons index of polygonal chains, distance one between 

each pair of consecutive cutting edges provides the minimum extremal topology of the polygonal chains. Meanwhile, distance two 

between each pair of consecutive cutting edges provides the maximum extremal topology of the polygonal chains. 

 

If we consider distance zero between cutting edges in each consecutive pair of polygons, then another maximum extremal topology 

is obtained among all chains with polygons joined by cutting edges. If we consider the vertex joining different cutting edges and 

by applying the vertex reduction on that vertex, then a maximum number of edges of the chain are deleted. That vertex has a 

neighborhood containing vertices with maximum degree, and it disjoints the graph into a maximum number of connected 

components in the chain. 
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5 Conclusions 
 

We have shown how properties of the product between two Fibonacci numbers with complementary indices are useful for 

determining extremal graphs on paths and polygonal chains joined by cutting edges, with respect to the Merrifield-Simmons index. 

We show that given a path Pn : v1, v2, . . ., vn with n vertices, and a new vertex v to be linked to Pn; (Pn+1) and (Pn ∪v2 v) are the 

minimum and maximum topologies for the Merrifield-Simmons index, respectively. Similar results are obtained if instead of only 

one vertex v, a subgraph H with an identified vertex v is considered for computing (Pn ∪vk,v H). 

 

In this article, according to the Merrifield-Simmons index, we have determined extremal graphs for polygonal chains joined by 

cutting edges. We have shown that the zig-zag polygonal chain has the extremal minimum value. Meanwhile, polygonal chains at 

distance 2 between any two consecutive cutting edges provide the extremal maximum value. In the proofs for determining those 

extremal topologies, the number of sides of the polygons (while they have more than four sides) is not relevant. Our result 

generalizes previous results obtained for Polyphenylene Chains. 

 

Our method does not require the explicit computation of the Merrifield-Simmons index of the involved graphs. Instead, it is based 

on the application of the vertex and edge division rule to decompose the input graphs. 
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