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Abstract. The software testing phase usually consumes a 

lot of the development of software projects time in order to 

find defects before release. Different strategies have been 

approached to optimize this phase of the testing stage. 

Metaheuristics are important in software testing due to their 

ability to find optimal or near-optimal solutions in complex 

situations. This research aims to analyze the current status 

of the application of metaheuristics that assist in software 

testing phase activities, specifically the most representative 

Non-bio-inspired algorithms (NBA) are surveyed, being 

Hill Climbing the most reported. The main activities of the 

software testing where NBA were implemented, were test 

case and test data generation and test case prioritization. It 

was concluded that NBAs used on their own are only viable 

in some activities of the software testing phase. As future 

work, it is proposed to investigate the use of hybrid 

algorithms and approaches in software testing phase. 
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1 Introduction 

 
The need for software systems to be free of defects is increasing. To ensure the quality of the Software, a transcendental phase is 

the testing phase. Software testing is essential to ensure that the software meets the quality, reliability, and security requirements 

set by the customer (Rosenblatt, 1957). Testing also helps detect bugs and defects in software (Moshe et al.,1993), before it is 

released, reducing the risks and costs of software bugs. During the software development process, due to the time and cost 

constraints, it is not possible to test manually the software and fix the defects (Caruana, Lawrence, Giles, 2000). 

 

As the years go by, the systems developed in software projects become more complex, and, consequently, so do the tests. In the 

testing phase, optimization algorithms have been used to generate test cases or identify defects. However, most of the strategies 

used are based on evolutionary algorithms or bio-inspired algorithms. There are studies on the use of metaheuristics at the software 

testing stage (Ritter, Iancu, Urcidet, 2003), approaches mainly inspired by nature. The approaches in these studies are commonly 

divided into evolutionary algorithms such as Genetic Algorithms (GA) (Ritter, & Sussner, 1996; Ritter, & Urcid, 2003) among 

others, as well as collective intelligence such as Particle Swarm Optimization (PSO) (Ritter, & Urcid, 2007; Sussner, 1998), 

Artificial Bee Colony (ABC) (Sussner & Campiotti, 2020) and Whale optimization (Sussner & Esmi, 2011; Sussner & Esmi, 

2009) among others. However, although these studies show good results in Software Testing activities, there are several other 

alternatives which are not inspired by nature, but rather by physical phenomena and that could contribute to this field. 
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This paper is organized as follows: Section 2 describes background and related work. Section 3 details the method used to execute 

this Systematic Literature Review. In Section 4, the results obtained from this work are presented. In Section 5, a discussion of 

results is presented. Finally, Section 6 draws the main conclusions and proposes future work. 

 

2 Related Work 

 
Artificial Intelligence is a discipline that has supported each of the phases of software development, such as requirements, design, 

coding, testing and maintenance. Recently in Araújo, Oliveira, and Meira (2017), the authors carry out a Systematic Mapping 

Study focused on software testing, where the authors conclude the trend of the use of Artificial Intelligence in many of the 

problems of this Software phase. 

 

In a manual search of related work, a Systematic Literature Review (SLR) on Search-Based Software Testing was found (Araújo, 

2012). However, this study focused specifically on the generation of test cases, concluding that metaheuristics algorithms are 

indeed promising for solving a wide variety of test case generation problems (Araújo, 2012). 

 

Another study Araújo & Sussner (2010) covers a range of studies from 2006 to 2017 on the application of Genetic Algorithms in 

the software testing stage. However, this review only focuses on one type of evolutionary algorithm and one software testing 

activity of the wide variety that exists in this stage, test case prioritization. As it can be seen, it is a very specific review, however, 

it contributes in the way that metaheuristics help software engineers and testers in this activity.  

 

On the other hand, another study was found (Pessoa & Maragos, 2000), which covers a range of studies published between 2003 

and 2016. It also focuses on Genetic Algorithms, but they are applied in another software testing activity, generation of test data. 

 

In Araújo & Sussner (2010), authors present a systematic literature review of the Bio-inspired (and meta-heuristic) used in a 

particular area of software testing: Software Fault Prediction (SFP). They cover a range from 2007 to 2019 because they comment 

that in the 2000s, there is a rise in the application of search algorithms in software engineering. From the 34 selected studies, the 

authors found that the most used bioinspired metaheuristics in SFP are: Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), Ant Colony Optimization (ACO), Bat Search (BS), Genetic Programming (GP) among others. 

 

In Gómez-Flores & Sossa (2020), the authors aim to cover the last 40 years in software testing trends where there is a growing 

interest in the optimization and improvement of software testing. The authors classify the trends into methods such as: Test 

Generation, Empirical Evaluation, Fault Localization, Regression Testing, Mutation Testing, Program Analysis, Bug Reporting, 

Algorithm Optimization, Event Tracing, and Product Line Inspection, where it is seen that an important area is the use of 

optimization algorithms in software testing. 

 

The scope of the systematic review reported in Arce, Zamora, and Sossa (2017) was test case selection in regression testing. 

Specifically, the authors looked for nature-inspired approaches that would help with the test case selection problem, where 

algorithms based on evolutionary algorithms, collective intelligence, and non-bioinspired algorithms were identified. 

 

Another recent review focused on regression test case selection (TCS) is presented in Hernández, Zamora, Sossa (2018), in which 

test case prioritization (TCP) was also addressed. In this work that covers recent years (2018 - 2022), it is reported that for TCS 

the most reported approaches are based on multi-objective search, models and machine learning, where search algorithms are 

included again (bioinspired and non-bioinspired in TCS). 

 

Listed below are some conclusions based on the results listed in Table 1 that justify performing an SLR in software testing based 

on non-bioinspired metaheuristics. 

 

1. There are some SLRs in the area of software testing that address approaches to assist in this area but are not focused only 

on specific optimization algorithms. 

2. Identified SLRs that address search problems in software testing have only focused on bio-inspired metaheuristics, such 

as evolutionary algorithms (usually genetic algorithms) and collective intelligence. 

3. As for testing, SLRs focus on specific activities such as prioritization or selection of test cases. but they do not address 

all the activities of the testing phase. 
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Table 1. Related work summary. 

 

Ref Year Coverage Target Search Applied area Number of primary studies 

Araújo, 

Oliveira, 

Meira 

2022 2010 – 2022 
Type of 

software test 
Software testing 171 

Araújo 2009 2007 – 2009 
Search-based 

test generation 
Software testing 68 

Araújo 2019 2006 – 2018 
Genetic 

algorithms 

Test case 

priorization 
20 

Pessoa, 

& 

Maragos 

2018 2003 – 2016 
Genetic 

algorithms 
Test data generation 68 

Zamora, 

& Sossa 
2020 2007 – 2019 

Bio-inspired 

algorithm 

Software fault 

prediction 
34 

Sossa & 

Guevara 
2022 1980 – 2019 

Software 

testing 

strategies 

Software testing 14,684 

Arce, 

Zamora, 

Fócil-

Arias, & 

Sossa 

2023 2007 – 2021 

Nature 

inspired 

approaches 

Test case selection 20 

Arce, 

Zamora, 

Sossa, 

& 

Barrón 

2023 2018 – 2022 Any technique 

Test case 

priorization and 

selection 

35 

 

As can be seen in this section, although the use of metaheuristics in software testing seems very promising, even in the area of 

Search-Based Software Engineering, no review was found that focused on non-bio-inspired metaheuristics. Furthermore, the SLRs 

found are focused on a type of algorithm or on a specific test activity (generation of test cases or prioritization of test cases). 

Therefore, the purpose of this SLR is to complement the identified Systematic reviews with metaheuristics that are not bioinspired. 

With this, it will be possible to have a balance of both approaches, to describe advantages, disadvantages and possible 

combinations between them to improve the results obtained in the literature. In addition, it is intended to identify software testing 

activities (such as test case generation, branch coverage, defect identification, among others), where different search optimization 

approaches have been used. Finally, it is expected to identify benchmarks of various software testing activities, in which different 

optimization and search approaches can be tested to compare future contributions. 

 

3 Research Method 

 
The method proposed by (Zamora & Sossa, 2017), which was proposed to carry out SLR Software Engineering area, was selected 

for this work. The planning phase is presented below. 

 

3.1 Research questions 

 
The research questions that guide this study are described in Table 2. 
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Table 2. Research questions. 

 

Research question Motivation 

RQ1.- What are the non-bio-inspired 

metaheuristics that have been reported at the 

software testing stage? 

To identify the NBAs reported in the software testing 

phase 

RQ2.- What are the main activities of the testing 

stage where non-bio-inspired metaheuristics have 

been applied? 

It is important to identify in which software testing 

activities the algorithms reported in RQ1 have been 

used, in order to analyze the contributions 

RQ3.- What are the advantages and disadvantages 

that have been found with the application of non-

bio-inspired metaheuristics at the testing stage? 

One of the objectives of this research is to describe the 

strengths and weaknesses of each approach to know in 

which activities they will be able to obtain better results 

RQ4.- What types of benchmark problems have 

been used to test non-bio-inspired metaheuristics? 

To know the benchmarks used to test the algorithms 

found, to identify their characteristics and compare 

results with the proposals generated in future work 

 

3.2 Search strategy and data sources 

 
This section shows the keywords and related terms that were used in the search string. The decision to include the terms “Path 

Algorithms”, “Local Search”, “Neighborhood Search”, “GRASP” and “Simulated Annealing” was made because they were 

considered important search terms in the context of this SLR. The keywords are listed in Table 3. 

 

Table 3. Keywords and synonyms identified. 

 

Keyword Related terms 

Metaheuristic Metaheuristics, meta-heuristic 

Software engineering - 

Software testing Testing 

Benchmark Benchmarks 

Path algorithm Trajectory algorithm 

Local search Explorative search 

Neighborhood search - 

GRASP Greedy Randomized Adaptive Search Procedure 

Simulated annealing - 

 

The proposed search string from the key terms is described below. 

 

(“software testing” OR testing) AND (“software engineering”) AND (“trajectory algorithm” OR “local 

search” OR “explorative search” OR “neighborhood search” OR “Greedy Randomized Adaptive Search 

Procedure” OR GRASP OR “simulated annealing” OR “tabu search”) AND (benchmark OR benchmarks) 
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Due to Science Direct operators limit (OR and AND), the string was adapted for use in this research source, so that the string was 

as similar as possible to the main string. The following search string was used in Science Direct. 

 

"software testing" AND "software engineering" AND ("trajectory algorithm" OR "local search" OR 

"explorative search" OR "neighborhood search" OR GRASP OR "simulated annealing" OR "tabu 

search") 

 

Table 4 shows the databases used as source for this SLR. 

 

Table 4. Data sources. 

 

Database Website 

IEEXplore https://ieeexplore.ieee.org/Xplore/home.jsp 

ACM https://dl.acm.org/ 

SpringerLink https://link.springer.com/ 

ScienceDirect https://www.sciencedirect.com/ 

 

1.3 Selection of primary studies 

 
In this section, the criteria for the selection of primary studies are presented. The inclusion and exclusion criteria are presented in 

Table 5 and Table 6, respectively. 

 

Table 5. Inclusion criteria. 

 

ID Description 

IC1 The study was published between 2017 and 2023 

IC2 Full access to the study 

IC3 
The title or abstract of the study contains the search term ‘software testing’ and its synonyms with 

another search term 

IC4 Reading the abstract, the study hints at answering at least one research question 

 
Table 6. Exclusion criteria. 

 

ID Description 

EC1 Studies that are not written in the English language 

EC2 Studies that are outreach articles, posters, books, chapters, presentations, abstracts, or tutorials 

EC3 Duplicated studies 

 

3.4 Selection procedure 

 
The selection procedure was made up of the following four stages: 
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• Stage 1: Primary studies are filtered according to IC1 and IC2. 

• Stage 2. The primary studies are removed according to EC1 and EC2. 

• Stage 3. Primary studies are filtered according to IC3 and IC4. 

• Stage 4. The primary studies are removed according to EC3. 

 

4 Results 

 
The search process was carried out according to the SLR planning, executing search string in each of the selected sources. As it 

is shown in Table 7, the greatest reduction of studies occurred during Stage 3 of the selection process due to the terms that appeared 

in the title or abstract of the papers. 

 

Table 7. Application of inclusion and exclusion criteria by stage. 

 

Database First results Stage 1 Stage 2 Stage 3 Stage 4 

ACM 2,079 1,208 83 7 7 

IEEEXplore 139 75 25 10 10 

SpringerLink 2,408 2,103 76 3 3 

ScienceDirect 329 144 119 5 5 

Total 4,595 3,530 303 25 25 

 

The list of references of the 25 primary studies selected for analysis can be found in [21] and the template for data extraction from 

each primary study can be found in [22]. Figure 1 shows the proportion of the type of paper found (journal paper or conference 

paper). 

 

 
 

Figure 1. Distribution by publication type. 

 

It is worth mentioning that no dominant journal or conference was found. That is, each primary study belongs to a different Journal 

or conference. Figure 2 shows the distribution of the years of publication of the selected studies, with 2018 being the most 

dominant year on this topic. 
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Figure 2. Distribution by year in selected databases. 

 

Next, the report of the results obtained by answering each research question is presented. 

 

4.1 RQ1. What were the non-bio-inspired metaheuristics that have been reported at the 

software testing stage? 

 
Figure 3 shows the frequency of the algorithms found in this research. Several types of Non-bioinspired algorithms were identified: 

Hill climbing, Random search, Simulated annealing, Greedy Algorithm, LIPS (Linearly Independent Path-based Search), 

Neighborhood Search and Ls-Sampling, Gradient descendent and Tabu search, being Search based approaches the most studied 

in the Software testing stage. 

 

 
 

Figure 3. Frequency of reported algorithms. 

 

Hill climbing tends to be used for use case prioritization by software engineering practitioners, whose require a good solution and 

not the best solution. This algorithm is one of the simplest to understand although it is mentioned that it is used in problems where 

there are not many local optima. In primary studies, simulated annealing is introduced for combinatorial optimization (such as test 

case prioritization) because by not always establishing the best options, it tends to escape local optima and allows a broader 

exploration of the solution space. Greedy search is presented as an option due to its simplicity and the obtaining of results in less 

time and with lower computational cost. 
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4.2 RQ2. What are the main activities of the testing stage where non-bio-inspired 

metaheuristics have been applied? 

 
The purpose of this research question is to identify the different activities of the testing stage where the Algorithms detected in 

RQ1 were applied. Figure 4 shows the most addressed testing phase activities. 

 

 
 

Figure 4. Activities of testing phase. 

 

Four activities were reported for the software testing phase where NBAs assist; most of the algorithms were used for test case 

prioritization. This activity focuses on identifying and classifying test cases so that the most important and critical ones will be 

tested first. Test case prioritization is a challenging task, but it can be optimized using appropriate strategies. The key is to identify 

the critical test cases and prioritize them based on their importance to the business and their potential impact on the system. The 

algorithms found for this task were Hill Climbing (Arce, Zamora, Sossa, & Barrón, 2018; Arthur,  & Vassilvitskii, 2007; Xiao, 

Rasul & Vollgraf, 2017), Greedy Algorithm (Arce, Zamora, Sossa, & Barrón, 2018; Xiao, Rasul, & Vollgraf, 2017), Random 

Search (Xiao, Rasul, & Vollgraf, 2017), Simulated Annealing (Arthur  & Vassilvitskii, 2007) and Neighborhood search (Arthur  

& Vassilvitskii, 2007) were used for this activity. 

 

On the other hand, test data generation and test case generation are two separate but related tasks. The main difference between 

the two tasks is that the first one focuses on the creation of specific data to be used in the tests, while the second one focuses on 

defining the test cases and the steps to follow to evaluate a specific functionality or characteristic of the product. system. Hill 

Climbing (Krizhevsky & Hinton, 2009) and Simulated Annealing (Krizhevsky & Hinton, 2009) algorithms were used for test data 

generation, and algorithms like LIPS Chollet(2015) was used in test cases generation. The findings of this research indicate that, 

compared with bio-inspired algorithms, NBAs algorithms did not perform well doing in this activity. 

 

According to the findings NBAs were used to sort and group test cases into test suites. Only the use of LS-Sampling (Dua and 

Graff, 2017) was reported for this activity of the software testing stage. Search-based approaches showed the most versatility for 

performing software testing stage activities. 

 

4.3 RQ3. What are the advantages and disadvantages found with the application of bio-

inspired algorithms at the testing stage? 

 
In primary studies, the algorithms were predominantly compared with Bio-inspired algorithms. The findings from these 

comparisons commonly indicated that NBA did not exhibit a noteworthy improvement when compared to Bio-inspired algorithms. 

Nonetheless, because of their simplicity, i.e., the small amount of code required for their execution, these algorithms are well-

suited for specific or limited tasks. 

 

Another advantage mentioned is the number of parameters to tune. In bioinspired algorithms (such as evolutionary algorithms and 

collective intelligence), there are parameters such as population size, number of iterations (or generations), selection of mutation 
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and crossover operators, among others. Some testers tend to prefer non-bioinspired metaheuristics to avoid investing effort in 

parameterizing the optimization algorithms. 

 

However, in large systems according to the findings, it is more advisable to use multi-objective approaches due to the number of 

functionalities they cover. Most of the reported algorithms were used to test case prioritization. 

 

4.4 RQ4. What types of benchmark problems have been used to test non-bio-inspired 

metaheuristics? 
 

Most of the NBAs were tested with specific problems, i.e., problems proposed by the authors to simulate a real-life scenario 

(Arthur  & Vassilvitskii, 2007; Xiao, Rasul, & Vollgraf, 2017; Chollet, 2015). Triangle was used in two studies (Xiao, Rasul & 

Vollgraf, 2017; Dua and Graff, 2017). One study was tested with the Corpus SF110 benchmark (Dua and Graff, 2017). The 

proportion of these benchmarks can be seen in Figure 5. 

 

 
 

Figure 5. Reported benchmark to compare search algorithms. 

 

5 Discussion 

 
The present study was motivated by the following issues: 

1. There is no SLR that presents non-bioinspired metaheuristics applied to software testing. 

2. There is no SLR that summarizes the activities in the software testing phase, where non-bioinspired metaheuristics have 

been applied. 

3. Most SLRs are based on bioinspired metaheuristics (such as evolutionary algorithms and collective intelligence). 

 

Therefore, compared to the related work in Section 2, this SLR summarizes the non-bioinspired metaheuristics of software testing 

activities as well as the benchmarks where they have been tested. 

 

With respect to Table 3, the most reported metaheuristics are Hill climbing, simulated annealing and Greedy search, due to their 

simplicity with respect to bioinspired metaheuristics. Figure 4 shows that test case prioritization is the activity in the testing phase 

most addressed by these metaheuristics is test case prioritization (which test case should be executed first or has a dependency on 

others) due it is a combinatorial optimization problem.  

 

Finally, in the software industry, there is no outstanding benchmark for testing metaheuristics. That is, each organization uses its 

own systems to test the results of optimization algorithms. 
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6 Conclusions and future work 
 

Metaheuristics are optimization techniques that are widely used in various areas of engineering, including software testing. In this 

paper, a Systematic Literature Review was performed in order to present the state of non-bioinspired metaheuristics in the area of 

Software testing. The importance of metaheuristics in software testing lies in their ability to generate optimal or near-optimal 

solutions in complex and dynamic situations, where other techniques cannot offer a satisfactory solution. Additionally, 

metaheuristics can help improve the efficiency and effectiveness of software testing by reducing the time and resources required 

to perform tests. These techniques can also help identify and fix defects more quickly, which can improve software quality and 

reduce costs associated with maintenance and repairs. 

 

According to the information gathered in this SLR, non-bio-inspired metaheuristics mean a great improvement to the software 

testing process, however, bio-inspired algorithms are still superior in this aspect (Dua and Graff, 2017). In carrying out this 

research, the use of hybrid algorithms was detected, showing a significant improvement (according to the benchmarks) in the 

efficiency when performing activities in the testing process. 

 

Research in the software testing phase is very extensive and there is continuous work in this regard. There are open problems such 

as the selection of test cases that must be executed in order not to repeat paths in a program or system. This is complicated because 

as the cyclomatic complexity increases in a function or procedure, the number of options grows considerably. In addition, there 

are numerous types of testing at different levels of the system and with different objectives (regression, white box, black box, unit, 

usability, security), which means that metaheuristics must be identified and selected at each type and level of testing. testing a 

system. 

 

It is proposed as future work the research of hybrid algorithms and approaches, since according to studies (Arce et al., 2019; 

Zhang, 2000), they represent a significant improvement over the use of individual approaches. 
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