

www.editada.org

International Journal of Combinatorial Optimization Problems and

Informatics, 14(3), Sep-Dec 2023, 91-102. ISSN: 2007-1558.

https://doi.org/10.61467/2007.1558.2023.v14i3.409

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved.

Non-bio-inspired Metaheuristics in Software Testing: A Systematic Literature Review

Ángel Juan Sánchez-García1*, Alfredo Delgado-Santiago1, Marcela Quiroz-Castellanos2, Xavier Limón1 and

Rocío Erandi Barrientos-Martínez2

1Facultad de Estadística e Informática, Universidad Veracruzana, Xalapa, Veracruz, México.
2 Instituto de Investigaciones en Inteligencia Artificial, Universidad Veracruzana, Xalapa, Veracruz, México.

dltunasd@gmail.com, {angesanchez, mquiroz, hlimon, rbarrientos}@uv.mx

Abstract. The software testing phase usually consumes a

lot of the development of software projects time in order to

find defects before release. Different strategies have been

approached to optimize this phase of the testing stage.

Metaheuristics are important in software testing due to their

ability to find optimal or near-optimal solutions in complex

situations. This research aims to analyze the current status

of the application of metaheuristics that assist in software

testing phase activities, specifically the most representative

Non-bio-inspired algorithms (NBA) are surveyed, being

Hill Climbing the most reported. The main activities of the

software testing where NBA were implemented, were test

case and test data generation and test case prioritization. It

was concluded that NBAs used on their own are only viable

in some activities of the software testing phase. As future

work, it is proposed to investigate the use of hybrid

algorithms and approaches in software testing phase.

Keywords: Metaheuristic, Software Testing, optimization,

Systematic Literature Review

Article Info

Received 11 Sep, 2023

Accepted 11 Dec, 2023

1 Introduction

The need for software systems to be free of defects is increasing. To ensure the quality of the Software, a transcendental phase is

the testing phase. Software testing is essential to ensure that the software meets the quality, reliability, and security requirements

set by the customer (Rosenblatt, 1957). Testing also helps detect bugs and defects in software (Moshe et al.,1993), before it is

released, reducing the risks and costs of software bugs. During the software development process, due to the time and cost

constraints, it is not possible to test manually the software and fix the defects (Caruana, Lawrence, Giles, 2000).

As the years go by, the systems developed in software projects become more complex, and, consequently, so do the tests. In the

testing phase, optimization algorithms have been used to generate test cases or identify defects. However, most of the strategies

used are based on evolutionary algorithms or bio-inspired algorithms. There are studies on the use of metaheuristics at the software

testing stage (Ritter, Iancu, Urcidet, 2003), approaches mainly inspired by nature. The approaches in these studies are commonly

divided into evolutionary algorithms such as Genetic Algorithms (GA) (Ritter, & Sussner, 1996; Ritter, & Urcid, 2003) among

others, as well as collective intelligence such as Particle Swarm Optimization (PSO) (Ritter, & Urcid, 2007; Sussner, 1998),

Artificial Bee Colony (ABC) (Sussner & Campiotti, 2020) and Whale optimization (Sussner & Esmi, 2011; Sussner & Esmi,

2009) among others. However, although these studies show good results in Software Testing activities, there are several other

alternatives which are not inspired by nature, but rather by physical phenomena and that could contribute to this field.

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 91-102.

92

This paper is organized as follows: Section 2 describes background and related work. Section 3 details the method used to execute

this Systematic Literature Review. In Section 4, the results obtained from this work are presented. In Section 5, a discussion of

results is presented. Finally, Section 6 draws the main conclusions and proposes future work.

2 Related Work

Artificial Intelligence is a discipline that has supported each of the phases of software development, such as requirements, design,

coding, testing and maintenance. Recently in Araújo, Oliveira, and Meira (2017), the authors carry out a Systematic Mapping

Study focused on software testing, where the authors conclude the trend of the use of Artificial Intelligence in many of the

problems of this Software phase.

In a manual search of related work, a Systematic Literature Review (SLR) on Search-Based Software Testing was found (Araújo,

2012). However, this study focused specifically on the generation of test cases, concluding that metaheuristics algorithms are

indeed promising for solving a wide variety of test case generation problems (Araújo, 2012).

Another study Araújo & Sussner (2010) covers a range of studies from 2006 to 2017 on the application of Genetic Algorithms in

the software testing stage. However, this review only focuses on one type of evolutionary algorithm and one software testing

activity of the wide variety that exists in this stage, test case prioritization. As it can be seen, it is a very specific review, however,

it contributes in the way that metaheuristics help software engineers and testers in this activity.

On the other hand, another study was found (Pessoa & Maragos, 2000), which covers a range of studies published between 2003

and 2016. It also focuses on Genetic Algorithms, but they are applied in another software testing activity, generation of test data.

In Araújo & Sussner (2010), authors present a systematic literature review of the Bio-inspired (and meta-heuristic) used in a

particular area of software testing: Software Fault Prediction (SFP). They cover a range from 2007 to 2019 because they comment

that in the 2000s, there is a rise in the application of search algorithms in software engineering. From the 34 selected studies, the

authors found that the most used bioinspired metaheuristics in SFP are: Genetic Algorithm (GA), Particle Swarm Optimization

(PSO), Ant Colony Optimization (ACO), Bat Search (BS), Genetic Programming (GP) among others.

In Gómez-Flores & Sossa (2020), the authors aim to cover the last 40 years in software testing trends where there is a growing

interest in the optimization and improvement of software testing. The authors classify the trends into methods such as: Test

Generation, Empirical Evaluation, Fault Localization, Regression Testing, Mutation Testing, Program Analysis, Bug Reporting,

Algorithm Optimization, Event Tracing, and Product Line Inspection, where it is seen that an important area is the use of

optimization algorithms in software testing.

The scope of the systematic review reported in Arce, Zamora, and Sossa (2017) was test case selection in regression testing.

Specifically, the authors looked for nature-inspired approaches that would help with the test case selection problem, where

algorithms based on evolutionary algorithms, collective intelligence, and non-bioinspired algorithms were identified.

Another recent review focused on regression test case selection (TCS) is presented in Hernández, Zamora, Sossa (2018), in which

test case prioritization (TCP) was also addressed. In this work that covers recent years (2018 - 2022), it is reported that for TCS

the most reported approaches are based on multi-objective search, models and machine learning, where search algorithms are

included again (bioinspired and non-bioinspired in TCS).

Listed below are some conclusions based on the results listed in Table 1 that justify performing an SLR in software testing based

on non-bioinspired metaheuristics.

1. There are some SLRs in the area of software testing that address approaches to assist in this area but are not focused only

on specific optimization algorithms.

2. Identified SLRs that address search problems in software testing have only focused on bio-inspired metaheuristics, such

as evolutionary algorithms (usually genetic algorithms) and collective intelligence.

3. As for testing, SLRs focus on specific activities such as prioritization or selection of test cases. but they do not address

all the activities of the testing phase.

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 91-102.

93

Table 1. Related work summary.

Ref Year Coverage Target Search Applied area Number of primary studies

Araújo,

Oliveira,

Meira

2022 2010 – 2022
Type of

software test
Software testing 171

Araújo 2009 2007 – 2009
Search-based

test generation
Software testing 68

Araújo 2019 2006 – 2018
Genetic

algorithms

Test case

priorization
20

Pessoa,

&

Maragos

2018 2003 – 2016
Genetic

algorithms
Test data generation 68

Zamora,

& Sossa
2020 2007 – 2019

Bio-inspired

algorithm

Software fault

prediction
34

Sossa &

Guevara
2022 1980 – 2019

Software

testing

strategies

Software testing 14,684

Arce,

Zamora,

Fócil-

Arias, &

Sossa

2023 2007 – 2021

Nature

inspired

approaches

Test case selection 20

Arce,

Zamora,

Sossa,

&

Barrón

2023 2018 – 2022 Any technique

Test case

priorization and

selection

35

As can be seen in this section, although the use of metaheuristics in software testing seems very promising, even in the area of

Search-Based Software Engineering, no review was found that focused on non-bio-inspired metaheuristics. Furthermore, the SLRs

found are focused on a type of algorithm or on a specific test activity (generation of test cases or prioritization of test cases).

Therefore, the purpose of this SLR is to complement the identified Systematic reviews with metaheuristics that are not bioinspired.

With this, it will be possible to have a balance of both approaches, to describe advantages, disadvantages and possible

combinations between them to improve the results obtained in the literature. In addition, it is intended to identify software testing

activities (such as test case generation, branch coverage, defect identification, among others), where different search optimization

approaches have been used. Finally, it is expected to identify benchmarks of various software testing activities, in which different

optimization and search approaches can be tested to compare future contributions.

3 Research Method

The method proposed by (Zamora & Sossa, 2017), which was proposed to carry out SLR Software Engineering area, was selected

for this work. The planning phase is presented below.

3.1 Research questions

The research questions that guide this study are described in Table 2.

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 91-102.

94

Table 2. Research questions.

Research question Motivation

RQ1.- What are the non-bio-inspired

metaheuristics that have been reported at the

software testing stage?

To identify the NBAs reported in the software testing

phase

RQ2.- What are the main activities of the testing

stage where non-bio-inspired metaheuristics have

been applied?

It is important to identify in which software testing

activities the algorithms reported in RQ1 have been

used, in order to analyze the contributions

RQ3.- What are the advantages and disadvantages

that have been found with the application of non-

bio-inspired metaheuristics at the testing stage?

One of the objectives of this research is to describe the

strengths and weaknesses of each approach to know in

which activities they will be able to obtain better results

RQ4.- What types of benchmark problems have

been used to test non-bio-inspired metaheuristics?

To know the benchmarks used to test the algorithms

found, to identify their characteristics and compare

results with the proposals generated in future work

3.2 Search strategy and data sources

This section shows the keywords and related terms that were used in the search string. The decision to include the terms “Path

Algorithms”, “Local Search”, “Neighborhood Search”, “GRASP” and “Simulated Annealing” was made because they were

considered important search terms in the context of this SLR. The keywords are listed in Table 3.

Table 3. Keywords and synonyms identified.

Keyword Related terms

Metaheuristic Metaheuristics, meta-heuristic

Software engineering -

Software testing Testing

Benchmark Benchmarks

Path algorithm Trajectory algorithm

Local search Explorative search

Neighborhood search -

GRASP Greedy Randomized Adaptive Search Procedure

Simulated annealing -

The proposed search string from the key terms is described below.

(“software testing” OR testing) AND (“software engineering”) AND (“trajectory algorithm” OR “local

search” OR “explorative search” OR “neighborhood search” OR “Greedy Randomized Adaptive Search

Procedure” OR GRASP OR “simulated annealing” OR “tabu search”) AND (benchmark OR benchmarks)

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 91-102.

95

Due to Science Direct operators limit (OR and AND), the string was adapted for use in this research source, so that the string was

as similar as possible to the main string. The following search string was used in Science Direct.

"software testing" AND "software engineering" AND ("trajectory algorithm" OR "local search" OR

"explorative search" OR "neighborhood search" OR GRASP OR "simulated annealing" OR "tabu

search")

Table 4 shows the databases used as source for this SLR.

Table 4. Data sources.

Database Website

IEEXplore https://ieeexplore.ieee.org/Xplore/home.jsp

ACM https://dl.acm.org/

SpringerLink https://link.springer.com/

ScienceDirect https://www.sciencedirect.com/

1.3 Selection of primary studies

In this section, the criteria for the selection of primary studies are presented. The inclusion and exclusion criteria are presented in

Table 5 and Table 6, respectively.

Table 5. Inclusion criteria.

ID Description

IC1 The study was published between 2017 and 2023

IC2 Full access to the study

IC3
The title or abstract of the study contains the search term ‘software testing’ and its synonyms with

another search term

IC4 Reading the abstract, the study hints at answering at least one research question

Table 6. Exclusion criteria.

ID Description

EC1 Studies that are not written in the English language

EC2 Studies that are outreach articles, posters, books, chapters, presentations, abstracts, or tutorials

EC3 Duplicated studies

3.4 Selection procedure

The selection procedure was made up of the following four stages:

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 91-102.

96

• Stage 1: Primary studies are filtered according to IC1 and IC2.

• Stage 2. The primary studies are removed according to EC1 and EC2.

• Stage 3. Primary studies are filtered according to IC3 and IC4.

• Stage 4. The primary studies are removed according to EC3.

4 Results

The search process was carried out according to the SLR planning, executing search string in each of the selected sources. As it

is shown in Table 7, the greatest reduction of studies occurred during Stage 3 of the selection process due to the terms that appeared

in the title or abstract of the papers.

Table 7. Application of inclusion and exclusion criteria by stage.

Database First results Stage 1 Stage 2 Stage 3 Stage 4

ACM 2,079 1,208 83 7 7

IEEEXplore 139 75 25 10 10

SpringerLink 2,408 2,103 76 3 3

ScienceDirect 329 144 119 5 5

Total 4,595 3,530 303 25 25

The list of references of the 25 primary studies selected for analysis can be found in [21] and the template for data extraction from

each primary study can be found in [22]. Figure 1 shows the proportion of the type of paper found (journal paper or conference

paper).

Figure 1. Distribution by publication type.

It is worth mentioning that no dominant journal or conference was found. That is, each primary study belongs to a different Journal

or conference. Figure 2 shows the distribution of the years of publication of the selected studies, with 2018 being the most

dominant year on this topic.

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 91-102.

97

Figure 2. Distribution by year in selected databases.

Next, the report of the results obtained by answering each research question is presented.

4.1 RQ1. What were the non-bio-inspired metaheuristics that have been reported at the

software testing stage?

Figure 3 shows the frequency of the algorithms found in this research. Several types of Non-bioinspired algorithms were identified:

Hill climbing, Random search, Simulated annealing, Greedy Algorithm, LIPS (Linearly Independent Path-based Search),

Neighborhood Search and Ls-Sampling, Gradient descendent and Tabu search, being Search based approaches the most studied

in the Software testing stage.

Figure 3. Frequency of reported algorithms.

Hill climbing tends to be used for use case prioritization by software engineering practitioners, whose require a good solution and

not the best solution. This algorithm is one of the simplest to understand although it is mentioned that it is used in problems where

there are not many local optima. In primary studies, simulated annealing is introduced for combinatorial optimization (such as test

case prioritization) because by not always establishing the best options, it tends to escape local optima and allows a broader

exploration of the solution space. Greedy search is presented as an option due to its simplicity and the obtaining of results in less

time and with lower computational cost.

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 91-102.

98

4.2 RQ2. What are the main activities of the testing stage where non-bio-inspired

metaheuristics have been applied?

The purpose of this research question is to identify the different activities of the testing stage where the Algorithms detected in

RQ1 were applied. Figure 4 shows the most addressed testing phase activities.

Figure 4. Activities of testing phase.

Four activities were reported for the software testing phase where NBAs assist; most of the algorithms were used for test case

prioritization. This activity focuses on identifying and classifying test cases so that the most important and critical ones will be

tested first. Test case prioritization is a challenging task, but it can be optimized using appropriate strategies. The key is to identify

the critical test cases and prioritize them based on their importance to the business and their potential impact on the system. The

algorithms found for this task were Hill Climbing (Arce, Zamora, Sossa, & Barrón, 2018; Arthur, & Vassilvitskii, 2007; Xiao,

Rasul & Vollgraf, 2017), Greedy Algorithm (Arce, Zamora, Sossa, & Barrón, 2018; Xiao, Rasul, & Vollgraf, 2017), Random

Search (Xiao, Rasul, & Vollgraf, 2017), Simulated Annealing (Arthur & Vassilvitskii, 2007) and Neighborhood search (Arthur

& Vassilvitskii, 2007) were used for this activity.

On the other hand, test data generation and test case generation are two separate but related tasks. The main difference between

the two tasks is that the first one focuses on the creation of specific data to be used in the tests, while the second one focuses on

defining the test cases and the steps to follow to evaluate a specific functionality or characteristic of the product. system. Hill

Climbing (Krizhevsky & Hinton, 2009) and Simulated Annealing (Krizhevsky & Hinton, 2009) algorithms were used for test data

generation, and algorithms like LIPS Chollet(2015) was used in test cases generation. The findings of this research indicate that,

compared with bio-inspired algorithms, NBAs algorithms did not perform well doing in this activity.

According to the findings NBAs were used to sort and group test cases into test suites. Only the use of LS-Sampling (Dua and

Graff, 2017) was reported for this activity of the software testing stage. Search-based approaches showed the most versatility for

performing software testing stage activities.

4.3 RQ3. What are the advantages and disadvantages found with the application of bio-

inspired algorithms at the testing stage?

In primary studies, the algorithms were predominantly compared with Bio-inspired algorithms. The findings from these

comparisons commonly indicated that NBA did not exhibit a noteworthy improvement when compared to Bio-inspired algorithms.

Nonetheless, because of their simplicity, i.e., the small amount of code required for their execution, these algorithms are well-

suited for specific or limited tasks.

Another advantage mentioned is the number of parameters to tune. In bioinspired algorithms (such as evolutionary algorithms and

collective intelligence), there are parameters such as population size, number of iterations (or generations), selection of mutation

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 91-102.

99

and crossover operators, among others. Some testers tend to prefer non-bioinspired metaheuristics to avoid investing effort in

parameterizing the optimization algorithms.

However, in large systems according to the findings, it is more advisable to use multi-objective approaches due to the number of

functionalities they cover. Most of the reported algorithms were used to test case prioritization.

4.4 RQ4. What types of benchmark problems have been used to test non-bio-inspired

metaheuristics?

Most of the NBAs were tested with specific problems, i.e., problems proposed by the authors to simulate a real-life scenario

(Arthur & Vassilvitskii, 2007; Xiao, Rasul, & Vollgraf, 2017; Chollet, 2015). Triangle was used in two studies (Xiao, Rasul &

Vollgraf, 2017; Dua and Graff, 2017). One study was tested with the Corpus SF110 benchmark (Dua and Graff, 2017). The

proportion of these benchmarks can be seen in Figure 5.

Figure 5. Reported benchmark to compare search algorithms.

5 Discussion

The present study was motivated by the following issues:

1. There is no SLR that presents non-bioinspired metaheuristics applied to software testing.

2. There is no SLR that summarizes the activities in the software testing phase, where non-bioinspired metaheuristics have

been applied.

3. Most SLRs are based on bioinspired metaheuristics (such as evolutionary algorithms and collective intelligence).

Therefore, compared to the related work in Section 2, this SLR summarizes the non-bioinspired metaheuristics of software testing

activities as well as the benchmarks where they have been tested.

With respect to Table 3, the most reported metaheuristics are Hill climbing, simulated annealing and Greedy search, due to their

simplicity with respect to bioinspired metaheuristics. Figure 4 shows that test case prioritization is the activity in the testing phase

most addressed by these metaheuristics is test case prioritization (which test case should be executed first or has a dependency on

others) due it is a combinatorial optimization problem.

Finally, in the software industry, there is no outstanding benchmark for testing metaheuristics. That is, each organization uses its

own systems to test the results of optimization algorithms.

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 91-102.

100

6 Conclusions and future work

Metaheuristics are optimization techniques that are widely used in various areas of engineering, including software testing. In this

paper, a Systematic Literature Review was performed in order to present the state of non-bioinspired metaheuristics in the area of

Software testing. The importance of metaheuristics in software testing lies in their ability to generate optimal or near-optimal

solutions in complex and dynamic situations, where other techniques cannot offer a satisfactory solution. Additionally,

metaheuristics can help improve the efficiency and effectiveness of software testing by reducing the time and resources required

to perform tests. These techniques can also help identify and fix defects more quickly, which can improve software quality and

reduce costs associated with maintenance and repairs.

According to the information gathered in this SLR, non-bio-inspired metaheuristics mean a great improvement to the software

testing process, however, bio-inspired algorithms are still superior in this aspect (Dua and Graff, 2017). In carrying out this

research, the use of hybrid algorithms was detected, showing a significant improvement (according to the benchmarks) in the

efficiency when performing activities in the testing process.

Research in the software testing phase is very extensive and there is continuous work in this regard. There are open problems such

as the selection of test cases that must be executed in order not to repeat paths in a program or system. This is complicated because

as the cyclomatic complexity increases in a function or procedure, the number of options grows considerably. In addition, there

are numerous types of testing at different levels of the system and with different objectives (regression, white box, black box, unit,

usability, security), which means that metaheuristics must be identified and selected at each type and level of testing. testing a

system.

It is proposed as future work the research of hybrid algorithms and approaches, since according to studies (Arce et al., 2019;

Zhang, 2000), they represent a significant improvement over the use of individual approaches.

References

Araújo, R. A. (2012). A morphological perceptron with gradient-based learning for Brazilian stock market forecasting. Neural

Networks, 28, 61-81.

Araújo, R. A., & Sussner, P. (2010). An increasing hybrid morphological-linear perceptron with pseudo gradient-based learning

and phase adjustment for financial time series prediction. In: Proceedings of the 2010 IEEE World Congress on Computational

Intelligence, Vol. IJCNN, Barcelona, Spain, 2010, pp. 807–814.

Araújo, R. A., & Sussner, P. (2010). An increasing hybrid morphological-linear perceptron with pseudo gradient-based learning

and phase adjustment for financial time series prediction. In: Proceedings of the 2010 IEEE World Congress on Computational

Intelligence, Vol. IJCNN, Barcelona, Spain, 2010, pp. 807–814.

Araújo, R.A., Oliveira, A.L.I, Meira, S. (2017). A morphological neural network for binary classification problems. Engineering

Applications of Artificial Intelligence, 65, 12–28.

Arce, F., Mendoza-Montoya, O., Zamora, E., Antelis, J.M., Sossa, H., Cantillo-Negrete, J., Carino-Escobar, R.I., Hernández,

L.G., & Falcón, L.E. (2019). Dendrite Ellipsoidal Neuron Trained by Stochastic Gradient Descent for Motor Imagery

Classification. In: Carrasco-Ochoa J., Martínez-Trinidad J., Olvera-López J., Salas J. (eds) Pattern Recognition. MCPR 2019.

Lecture Notes in Computer Science, vol 11524. Springer, Cham.

Arce, F., Zamora, E., Fócil-Arias, C., & Sossa, H. (2019). Dendrite ellipsoidal neurons based on k-means optimization. Evolving

Systems, 10(3), 381-396. https://doi.org/10.1007/s12530-018-9248-6.

Arce, F., Zamora, E., Sossa, H. (2017). Dendrite Ellipsoidal Neuron. In: 2017 International Joint Conference on Neural Networks

(IJCNN), Anchorage, AK, 2017, pp. 795-802.

Arce, F., Zamora, E., Sossa, H., & Barrón, R. (2018). Differential evolution training algorithm for dendrite morphological neural

networks. Applied Soft Computing Journal, 68, 303-313. https://doi.org/10.1016/j.asoc.2018.03.033.

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 91-102.

101

Arthur, D., & Vassilvitskii, S. (2007). K-means++: the advantages of careful seeding In: Proceedings of the Eighteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pp. 1027-1035. Society for Industrial and Applied Mathematics,

Philadelphia (2007).

Caruana,R., Lawrence,S., Giles, L. (2000). Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping.

In Proceedings of the 13th International Conference on Neural Information Processing Systems (NIPS’00) (pp. 386-387). MIT

Press, Cambridge, MA, USA.

Chollet, F. (2015). Keras. https://keras.io

Dua, D. and Graff, C. UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

Gómez-Flores, W., & Sossa JH (2020). Towards Dendrite Spherical Neurons for Pattern Classification. In: Figueroa Mora, K.,

Anzurez-Marín, J., Cerda, J., Carrasco-Ochoa, J., Martínez-Trinidad, J., & Olvera-López, J. (eds) Pattern Recognition, MCPR

2020. Lecture Notes in Computer Science, vol 12088. Springer, Cham.

Hernández, G., Zamora, E., Sossa, H. (2018). Morphological-Linear Neural Network. 2018 IEEE International Conference on

Fuzzy Systems (FUZZ-IEEE), Rio de Janeiro, 2018, pp. 1-6.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. Technical Report (2009)

https://www.cs.toronto.edu/ kriz/cifar.html

Leshno, M., Lin, V. Y., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward networks with a nonpolynomial activation

function can approximate any function. Neural Networks, 6(6), 861-867.

Pessoa, L. F. C., & Maragos, P. (2000). Neural networks with hybrid morphological/rank/linear nodes: a unifying framework with

applications to handwritten character recognition. Pattern Recognition, 33, 945–960.

Ritter, G. X., & Sussner, P. (1996). An introduction to morphological neural networks. In Proceedings of the 13th International

Conference on Pattern Recognition, Vienna, Austria, (pp. 709-717).

Ritter, G. X., & Urcid, G. (2003). Lattice algebra approach to single-neuron computation. IEEE Transactions on Neural Networks,

14(2), 282-295.

Ritter, G. X., & Urcid, G. (2007). Learning in Lattice Neural Networks that Employ Dendritic Computing. In V.G. Kaburlasos &

G.X. Ritter (Eds.), Computational Intelligence Based on Lattice Theory. Studies in Computational Intelligence (Vol. 67). Springer,

Berlin, Heidelberg.

Ritter, G. X., Iancu, L. Urcidet, G. (2003). Morphological perceptrons with dendritic structure. In The 12th IEEE International

Conference on Fuzzy Systems, FUZZ 2003, Volume 2, (pp. 1296-1301).

Rosenblatt, F. (1957). The Perceptron-a perceiving and recognizing automaton. Cornell Aeronautical Laboratory, Report 85-460-

1.

Sossa, J. H., & Guevara, E. (2014). Efficient training for dendrite morphological neural networks. Neurocomputing, 131, 132-142

Sussner, P. (1998). Morphological perceptron learning. In Proceedings of the IEEE International Symposium on Intelligent

Control, Gaithersburg, MD, (pp. 477482).

Sussner, P., & Campiotti, I. (2020). Extreme learning machine for a new hybrid morphological/linear perceptron. Neural

Networks, 123, 288-298.

Sussner, P., & Esmi, E. (2009). Introduction to morphological perceptrons with competitive learning. In: Proceedings of the

International Joint Conference on Neural Networks, Atlanta, GA, 2009, pp. 3024-3031.

Sussner, P., & Esmi, E. (2011). Morphological perceptrons with competitive learning: Lattice theoretical framework and

constructive learning algorithm. Information Sciences, 181(10), 1929-1950.

Sánchez-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 91-102.

102

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms.

2017, arXiv:1708.07747 (Preprint). https://github.com/zalandoresearch/fashion-mnist

Zamora, E., & Sossa, J. H. (2017). Dendrite morphological neurons trained by stochastic gradient descent. Neurocomputing, 260,

2017, 420-431.

Zhang, G. P. (2000). Neural networks for classification: a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 30(4), 451-462, Nov. 2000.

