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Abstract. Temperature control systems have various applications, 
from cooling to casting, and are crucial for ensuring quality in 

production. Although essential, their usage entails a significant 
energy consumption. This project focuses on implementing 

optimal control synthesized from the calculus of variations applied 

to the Hamilton-Jacobi-Bellman equation to regulate temperature 
within a finite volume place. The objective is to enhance thermal 

efficiency without compromising product quality. The approach 

not only aims to optimize energy consumption but also to ensure 

uniformity and quality in products and processes affected by 

temperature. This can be achieved by maintaining thermal stability 

at desired values and responsible resource management. In general, 
the article proposes improving efficiency and quality in 

temperature regulation, contributing to sustainable and effective 

industrial practices. 
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1 Introduction 
 

Conducting a study on optimal control applied to processes involving temperature regulation in finite volume places is of utmost 

importance in the industrial context. It plays a crucial role in ensuring quality, safety, and efficiency in processes and products. 

For instance, in the food industry, temperature control is fundamental to reduce or prevent the risk of harmful bacteria 

proliferation, thus safeguarding health. In the pharmaceutical industry, temperature control helps prevent the spread of 

pathogens in medications or the deterioration of products before their expiration date. In the gas and oil industries, thermal 

control is vital to prevent workplace accidents and ensure optimal service (Jom, 2023).  

 

In Braun (1990), the focus is on the application of thermal capacity in confined places with the purpose of mitigating operational 

costs through dynamic environmental control. Optimal temperature variations in different zones can reduce energy expenses and 

alleviate peak-hour demands. It's worth noting that the savings achieved are influenced by various factors, such as: 

• The structure of public utility tariffs. 

• Partial load characteristics of the cooling plant and air handling system. 

• Climate conditions. 

• Occupancy schedules. 

• Building's thermal capacity. 

 

Taking these factors into account, this research paves the way to explore the adaptability of a dynamic control system applied to 

buildings for thermal control, showing how through the application of optimization techniques, significant reductions in energy 

expenditure can be achieved. 
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Additionally, in Gandur Adarme (2016), the significance of heat exchangers, their application in various contexts, and the 

pressing need for operational control are addressed. The proposal is to develop advanced control strategies tailored to specific 

heat exchangers. To achieve this, dynamic modeling of systems using white box and ARMAX models is examined. Limitations 

in control and optimization are also discussed. The primary aim of these proposals is to enhance control and reduce oscillations 

in heat exchanger operations. 

 

In Madrigal, Cabello, Sagastume, & Balbis (2018), it is demonstrated that by implementing techniques such as thermography, 

computer-aided design, and finite element methods, it is possible to analyze air conditioning systems and propose improvements 

in refrigeration systems. However, the results of the study show that although thermography, simulation with software like 

Trnsys, and finite element methods (FEM) are valuable tools, they alone are insufficient for a comprehensive characterization of 

air conditioning systems. The research highlights the need for complementary approaches to achieve a more thorough 

evaluation. 

 

In the study conducted by Herrera Segura (2021), the design of feedback control systems and heat flow estimation is addressed. 

Finite element methods, PID controllers, and linear state feedback control are employed. However, the study focuses on 

temperature control, primarily in greenhouses where heat flow measurement is not carried out. The proposal of an observer is 

introduced as a complementary tool. 

 

On the other hand, in Gutiérrez & Arias (2017)., unlike previous researchers, the implementation of a control system that 

achieves optimal temperature regulation in a greenhouse is carried out. This is accomplished by using a comprehensive 

mathematical model specially tailored to the specific conditions of the environment. An optimal control is implemented in this 

specific regional model. When implemented, this control law not only increased production in the greenhouses but also achieved 

efficient energy consumption optimization. These results demonstrate a promising approach for future and diverse applications. 

 

In non-ferrous hydrometallurgy research, Liu, Yang, Zhou, Li & Sun (2023) emphasizes that electrodeposition represents a 

critical process characterized by high energy consumption. Current efficiency and electrolyte temperature emerge as crucial 

factors for its operation. However, optimal control of the electrolyte temperature faces challenges due to process complexity and 

variable fluctuations. An approach using a temporal causal network and reinforcement learning (RL) is proposed to optimize the 

electrolyte temperature under various operating conditions. A case study on zinc electrodeposition confirms the effectiveness of 

this method in maintaining the electrolyte temperature in the optimal range without the need for complex models. 

 

On the other hand, in Collado, Delgado, Bernal, Cárdenas, & Sáez (2023), the study aimed to improve the safety and 

performance of electronic circuits in hazardous areas with a high probability of death. The authors utilized the concept of 

nonlinear convex optimization to find the optimal operating point of transistors (BJT or MOSFET), considering the maximum 

surface temperature and nominal current. This ensures safe and efficient operation under various temperature and load 

conditions. The Karush-Kuhn-Tucker method is employed to solve the problem, and an algorithm is proposed to minimize the 

surface temperature while maintaining the necessary voltage and current levels. 

 

The study by Del Angel, Solis, Villanueva & Huacuja (2019) present various combinatorial optimization methods, specifically 

heuristic methods used to find efficient solutions for tuning the parameters of a proportional-derivative controller applied to 

temperature control. In this work, a control system simulation is introduced in which an iterative algorithm finds controller gains 

that minimize the temperature error variable in a finite number of iterations. 

 

This research aims to analyze and manage optimal energy performance in the regulation of temperature in finite volume places. 

To achieve this, the principles of thermal behavior in these environments are explored through the identification of their 

dynamics, using the Gauss-Newton algorithm, as evaluated in Section 2. In Section 3, the design of the optimal control law is 

presented, which is subject to a performance index obtained from the application of the first and second variation criteria of 

variational calculus to the Hamilton-Jacobi-Bellman equation. This equation is grounded in the theory of optimal control and 

game theory and describes the optimal value function for stochastic problems. Furthermore, in Section 4, the PID control is 

introduced in a general manner, outlining the contributions of each action of this controller, as well as its representation in the 

time domain for the continuous case and its pulse transfer function for the discrete case. Section 5 presents the results of the 

implementation of both controllers, along with the conditions for experimental validation. Additionally, a comparative 

performance study is presented, based on a series of performance indices related to the error variable. Finally, in Section 6, the 

conclusions drawn from this work are provided. 
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2 Experimental platform construction 
 

This section addresses the construction of the experimental platform, describing the main components used, their dimensions, as 

well as the sensors and actuators along with their characteristics. Subsequently, it describes the process of model identification 

for the platform, which is obtained by applying the Gauss-Newton algorithm to a set of experimental data obtained from the 

response to a step input. 

 

For the experimental validation of the control laws synthesized in this work, a platform with a cubic geometry was constructed 

using 9 mm thick MDF (Medium-Density Fiberboard) cut with a laser. This material and design provide strength and precision 

for analyzing temperature control in finite places. MDF was chosen for its thermal insulation properties and ease of 

manipulation, and laser cutting ensures precise dimensions. The platform has a total area of 96.4 cm² with openings to 

accommodate a fan, a 40-watt light bulb, and a DS18B20 temperature sensor. The incandescent bulb generates heat to simulate 

a heat source, creating a regulated thermal gradient controlled by the control system. 

 

Regarding heat generation, a set of measurement and actuation devices of utmost importance for the platform's operation has 

been implemented. Specifically, a DS18B20 digital temperature sensor has been strategically placed on one of the faces of the 

platform. This location has been carefully selected, positioning it opposite to the thermal actuator. The DS18B20, being a high-

precision component, plays a critical role by providing highly reliable measurements of the internal temperature of the 

experimental enclosure Koestoer, Saleh, Roihan & Harinaldi (2019). This thermometric information is of vital relevance as it 

serves as a fundamental basis for continuous monitoring and constant feedback of the control system, ensuring precise and 

efficient control of the temperature gradient generated by the heat source inside the enclosure. 

 

Regarding heat generation, a 9-blade fan operating at 5V has been chosen. This component is placed on the face opposite to the 

temperature sensor inside the enclosure. Its main function is to introduce a stream of ambient temperature air into the interior of 

the experimental place. This process allows for the regulation and maintenance of the internal temperature at predefined levels 

according to the experiment's requirements. 

 

For the simultaneous control of both actuators, the fan, and the light bulb, an H-bridge with the L298N model has been 

implemented to control the fan's rotation speed. The connection is made following these instructions: Initially, the common 

grounds are connected to both the Arduino and the power source, ensuring a common ground reference. Subsequently, the 

necessary current in the fan is ensured using the L298N H-bridge, which is connected between the Arduino output and the fan. 

Additionally, a light intensity regulator, known as DIMMER, is incorporated to manage the voltage supplied to the light bulb. 

Its main function is to adjust the amount of electrical energy supplied to the light source, which in turn controls the brightness or 

luminous intensity emitted. This configuration allows for precise control of the light intensity emitted by the light bulb. The 

combination of these elements, the L298N and the DIMMER, enables effective control of both actuators, allowing for precise 

and controlled temperature regulation within the enclosure according to the experiment's requirements. 

 
Fig 1. Experimental platform. 

 

For the identification of the mathematical model of the system, the Gauss-Newton algorithm is employed. This iterative method 

is widely used in the field of control engineering and numerical optimization. Its primary objective is to estimate the parameters 

of a mathematical model that best fit a set of experimental data, thereby minimizing the difference between the observations and 

the model predictions. 
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The iterative process of the Gauss-Newton algorithm begins with an initial estimate of the model parameters, represented by the 

vector θ. Through successive iterations, the parameters are adjusted to minimize the mean squared error between the 

experimental observations and the model predictions , This is achieved by updating the parameter vector in each 

iteration, as shown below: 

 

      (1) 

 

Where:  

•  is the parameter vector in the iteration .  

•   is the Jacobian matrix of the model evaluated at . 

•  is the residual vector between the observations and the model predictions in iteration  

 

This algorithm plays a vital role in parameter identification from experimental data, and it is essential in the optimization and 

tuning of control systems and dynamic system modelling. It relies on initializing values, calculating residuals and the Jacobian, 

and updating parameters in each iteration until convergence. 

 

In this study, parameters of a mathematical model for a wind turbine were adjusted using the Gauss-Newton algorithm. 

Experimental data were compared with predictions from the fitted model, and the fit was evaluated using the coefficient of 

correlation. Following the parameter identification and tuning process, the selected mathematical model exhibited a high 

correlation with the experimental data and a significant fit to the system's responses, achieving a correlation value of 94.45%. 

 

By applying the Gauss-Newton algorithm to the experimental data representing the response to a step input, the mathematical 

model of the system is estimated. This model is identified as a second-order transfer function with underdamped poles in the 

following form: 

 

       (2) 

 

Where:  

• K is the numerator of the transfer function (indicating that the function has no zeros). 

•  is the natural undamped frequency. 

• ζ is the damping coefficient. 

• s represents the complex variable 's' in the Laplace domain. 

 

with the parameters identified in the Gauss-Newton algorithm defined as K = 2.9394,  = 95.067 and ζ = 0.3913. 

 
Fig 2. Second-order model. 

 

The graphical representation clearly demonstrates that the correlation coefficient between the identified model and the 

experimental data is significantly high. This ensures that the identified model consistently reproduces the behaviour of the 

experimental platform when subjected to control laws that have been numerically validated. 
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3 Optimal Control Scheme 

 
In this section, we present the synthesis of optimal control using the calculus of variations on the Hamilton-Jacobi-Bellman 

equation. It's important to mention that the Hamilton-Jacobi-Bellman (HJB) equation is a fundamental equation in the theory of 

optimal control and game theory. It describes the value function of a stochastic optimal control problem. This equation is crucial 

in dynamic optimization and is used to find the optimal control strategy in a dynamic system in the presence of uncertainty. The 

Hamilton-Jacobi-Bellman equation is typically presented in the context of a stochastic optimal control problem involving 

various components. Below, we provide a synthesis of optimal control using the criteria of the first and second variation in the 

calculus of variations. Consider a time-invariant linear system in its standard state-places form, as presented below: 

 

 

                       (3) 

 

In which is the state vector, is the output vector,  is the control signal vector, , ,  

and  are related to the system's dynamics. The objective is to find the control u(t) that minimizes energy consumption 

while subject to a performance index: 

 

     (4) 

 

Where Q>0 and R>0 are matrices of appropriate dimensions that penalize state convergence and energy consumption, 

respectively, and they satisfy an algebraic Riccati equation (Bellman, 1966). Given the Hamilton-Jacobi-Bellman equation, 

which is written as: 

 

      (5) 

 

Where  is the integrand of the performance index, and  is known as the Bellman function. Now, a 

quadratic form of the Bellman function is proposed as follows: 

 

       (6) 

 

Where its temporal derivative results as follows: 

 

      (7) 

 

And substituting this derivative into the Hamilton-Jacobi-Bellman equation, we have: 

 

     (8) 

 

Therefore, when evaluating this equation along the trajectories of the system (3), we have: 

 

,    (9) 

 

which can be rewritten as: 

 

.   (10) 

 

 

From which it follows that  and we have: 

 

.   (11) 
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Upon closer examination of this equation, it's clear that it can be minimized with respect to the control u(t), thus formulating the 

problem as: 

 

.  (12) 

 

The minimization process can be achieved by taking the partial derivative of this equation with respect to u(t), leading to: 

 

     (13) 

 

This equation is dimensionally scalar and, therefore, simplifies to: 

 

,       (14) 

 

From this equation, it is possible to obtain the control u(t), subject to the performance index (4), as: 

 

,       (15) 

 

And at the same time ensure that this control minimizes the performance index, as the second partial derivative of the Hamilton-

Jacobi-Bellman equation yields: 

 

        (16) 

 

It is evident that this control takes the form of a state feedback as follows: 

 

        (17) 

 

Where  and the matrix , satisfies the Lyapunov equation, thus ensuring the asymptotic stability of the 

closed-loop system with control u(t). 

 

4 Description of the Proportional-Integral-Derivative (PID) Controller 
 

In this section, a succinct exposition of the PID (Proportional-Integral-Derivative) controller is presented. This implementation 

is undertaken to ease a comparative performance analysis in relation to optimal control methods specifically devised and 

penalized for temperature regulation, as proposed within the framework of this study. 

 

The PID controller is a type of controller used in automatic control systems to keep a variable such as temperature, speed, 

position, among others, at a desired setpoint value by adjusting the control input. The acronym "PID" is related to the three 

fundamental control actions it performs (Astrom, 1995): 

1. P (Proportional): The proportional action adjusts the controller's output in proportion to the current error, 

which is the difference between the measured value and the desired setpoint. The larger the error, the greater 

the proportional correction. This helps reduce the present error but may lead to a small steady-state error if 

used alone. 

2. I (Integral): The integral action considers the accumulation of past errors over time and adjusts the output to 

reduce the accumulated error. This is especially useful for eliminating steady-state errors and improving long-

term accuracy. 

3. D (Derivative): The derivative action considers the rate of change of the error and adjusts the output to 

prevent oscillations or rapid changes in the controlled variable. Helps stabilize the system and reduce transient 

response. 

 

Together, the PID controller calculates the control signal as the weighted sum of the proportional, integral, and derivative 

actions, as follows: 

 

      (18) 



Calderon-Lopez et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 14(3) 2023, 147-156. 

153 

 

 

• u(t) is the control signal sent to the process or system. 

• e(t) is the current error (the difference between the desired value and the measured value) 

• Kp, Ki, and Kd are the tuning coefficients for the proportional, integral, and derivative actions, respectively. 

 

The proper tuning of these coefficients is essential for the optimal performance of the PID controller in a specific system. PID 

controllers are widely used in various industrial and automation applications due to their simplicity and effectiveness in 

controlling a wide range of dynamic systems. The equation describing the pulse transfer function of the digital PID controller is 

often referred to as the positional representation of the PID control scheme in the form Ogata (1996): 

 

      (19) 

 

5 Results and Discussion 
 

A The control laws analyzed in this work are implemented through the Arduino Integrated Development Environment (IDE). 

Within this environment, a PID controller has been created and configured, without the need to resort to pre-established libraries 

or those available in the Arduino IDE. Instead, the trapezoidal rule has been programmed for integral calculation, and the Euler's 

backward finite difference rule for derivative approximation. 

 

This section presents the experimental conditions, the penalization for optimal control, the tuning of PID controller gains, and 

the results of implementing both control laws for temperature regulation within the experimental setup. For the experimental 

analysis, a point-to-point regulation task was performed, where the initial temperature was set according to the ambient 

temperature as T(t0) = 24°C, while the desired temperature was defined as Tdes = 51°C. For the control action, control actions 

(15) and (18) were implemented. For optimal control, the penalty pair (Q, R) is proposed as: 

 

 
 

R = 0.2, and with the matrix P defined as: 

 

 
 

This set of matrices associated with the optimal controller satisfies a Riccati algebraic equation and minimizes the performance 

index (4). On the other hand, the PID control gains are determined as follows: Kp=64.5, Kd=28.4, and Ki=22.7 through a pole 

assignment process. Below, the temperature and error graphs associated with both experiments are presented: 

 

 

       Fig 3. Measured temperature, optimal control.                Fig 4. Error signal, optimal control. 

 

As an example of these experiments, a video is presented through the following link: https://youtu.be/fj9UGhSuoY4. 
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Fig 5. Measured temperature, PID control.                   Fig 6. Error signal, PID control. 

 

While stability is the most crucial criterion for any control law implemented in a physical system, the comparative study 

conducted here primarily focuses on the application of different error-based criteria. These criteria are often used as quantitative 

measures of system performance and help select controller settings for specific tasks or operations. Among the most important 

error-based criteria verified in this work are the following (O'dwyer, 2009): 

 

A. Integral of the Absolute Error (IAE) 

 

A system whose control parameters are penalized with this criterion exhibits optimal performance because the damping value is 

linked to energy consumption. This criterion can be easily implemented in discrete control systems through the following 

summation expression: 

 

      (19) 

 

Table 1. Integral of the Absolute Error 

 

 

 

 

 

 

B. Integral of time times absolute error (ITAE)                                                                   

 

Systems penalized by this criterion exhibit significant initial errors in regulation tasks due to moderate penalization in the 

response. This leads to transient responses with low overshoot and appropriate damping. The evaluation of this criterion in 

systems is easily achieved through a specific operation. 

 

      (20) 

 

Table 2. Integral of time times absolute error 

Controller ITAE 

PID 407044.8797 

LQR 239608.7398 

 

 

 

 

Controller IAE 

PID 3470.1348 

LQR 2839.8538 
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B. Integral of the Squared Error (ISE) 

 

Minimizing this criterion is said to make the system optimal and minimize energy consumption because the minimum value of 

the integral is obtained for a damping value that compromises between over-damped and critically damped values. Applying the 

trapezoidal rule to the absolute error results in the following summation expression for the discrete case: 

 

      (21) 

 

Table 3.  Integral of the Squared Error 

Controller ISE 

PID 54568.3212 

LQR 47199.7094 

 

C. Integral of time multiplied square-error (ITSE) 

 

This criterion is used for control parameters penalized based on the response to a step input, where the error starts at x(t0), can 

have a criterion that increases over time, penalizing the error more significantly. For discrete systems, the integral that defines 

this cost criterion is expressed in terms of the trapezoidal rule as: 

 

      (22) 

 

Table 4. Integral of time multiplied square-error 

Controller ITSE 

PID 3322158.655 

LQR 2397825.648 

 

6 Conclusions 
 

With a strong mathematical foundation and the application of mechatronics, both a PID controller and an optimal controller 

were successfully implemented. When comparing their responses, it is evident that the system controlled by the optimal 

controller reaches the desired temperature in a significantly shorter time and demonstrates more efficient energy consumption 

compared to the PID controller. This finding underscores the importance of using advanced control approaches with adjustments 

that penalize energy consumption to achieve optimal performance in temperature control systems, without sacrificing state 

convergence. 
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