

www.editada.org

International Journal of Combinatorial Optimization Problems and

Informatics, 15(1), Jan-April 2024, 7-19. ISSN: 2007-1558.

https://doi.org/10.61467/2007.1558.2024.v15i1.375

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved.

Evolutionary computation, an alternative solution to nonlinear optimization problems

Francisco J. Espinosa-Garcia1, Ricardo Tapia-Herrera2*, Tonatiuh Cortés-Hernández3, and Jesús A. Meda-

Campaña4
1 Laboratory of Robotics and Mechatronics (LARM 2), University of Rome Tor Vergata, Rome, Italy.
2 CONAHCYT-SEPI-ESIME Zacatenco, Instituto Politécnico Nacional, Av. IPN, Col. Lindavista, Ciudad de

México, México.
3 Departamento de Mecatrónica, Universidad Politécnica de Pachuca, 43830, Zempoala, Hidalgo, México.
4 SEPI-ESIME Zacatenco, Instituto Politécnico Nacional, Av. IPN, Col. Lindavista, Ciudad de México,

México.

E-mails: fjeg_1234@hotmail.com, tonatiuh@upp.edu.mx, jmedac@ipn.mx

*Corresponding author: rtapiah@ipn.mx

Abstract. Analytical and numerical methods have been applied

to solve problems in engineering. However, in some practical

cases, they usually fail when there is a certain degree of
complexity, for instance, when there is a certain lack of

information about the elements of the system and when the

unknowns are functions. These types of problems are often

called nonlinear optimization problems. As an alternative to

solving them, evolutionary computation methods are usually

implemented, although they do not generate an exact solution,
and provide a series of approximations that are generally

feasible. In this context, the objective of this work is to briefly

highlight the most typical characteristics of these type of
algorithms, some advantages, and the importance of its use

today. Due to the wide variety of existing methods, it would

become complex to explain all of them in detail, so only a
description of the differential evolution (DE) algorithm will be

made because it is one of the most used and because there is

current research that seeks to improve its performance.

Keywords: Crossover, Fitness Function, Mutation, Population,

Selection, Differential Evolution

Article Info

Received June 28, 2023

Accepted Dec 11, 2023

1 Introduction

Currently, optimization is a useful tool between researchers and engineers in different areas of science, like the development of

processes, design of elements, machines, and tools where it has been improved aspects such as a maximum use of the resources,

shorter development of times, and guarantee that the generated product mostly covers the needs (Padmanabhan et al., 2011;

Zolpakar, Yasak & Pathak, 2021; Zolpakar et al., 2020; Shaikh, Jain & Pathak, 2016; Fountas & Vaxevanidis, 2020), so that its

performance is adequate based on the application for which it was designed. In this way, it is ensured that the presence of errors

or defects is almost zero compared to developments based on the trial-and-error method.

One of the main attributes of optimization is the ability to describe a real problem in mathematical terms, which results in the

formulation of functions that allow the problem to be visualized in a formal way and treated in a rigorous manner (Padmanabhan

et al., 2011). In the past, the most popular methods implemented to solve non-linear optimization problems were of the

analytical and mathematical type, generally known as "descent" (Zolpakar, Yasak & Pathak, 2021). These are classified into the

first-order ones, which include the gradient, conjugate gradient, and Fletcher-Reeves methods (Zolpakar et al., 2020; Shaikh et

al., 2016). The second-order methods include Newton's methods and their variations (Fountas & Vaxevanidis, 2020). Finally,

there are methods known as quasi-Newton, some methods are Davison-Fletcher-Powell (DFP) and Broyden-Fletcher-Golfarb-

Shanno (BFGS) [Lav et al., 2009). The problem with the above methods is that they are limited when the problem, besides

Espinosa-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19.

8

being non-linear, presents restrictions, which in the general case could be of non-linear type. To solve this type of problem,

other methods known as sequential techniques of unconstrained minimization (SUMT) are usually implemented (Tham et al.,

1998). These techniques seek to formulate the problem as one without constraints, then several unrestricted problems must be

solved to find the solution of one with constraints. In this category are the exterior penalty methods (Oguntola & Lorentzen,

2021), the interior penalty method (Brenner, Owens & Sung, 2008), and the extended interior penalty method (Kim & Kim,

1993). Despite presenting a good performance for solving some practical problems, these methods are usually limited when the

objective function does not meet two primary requirements, being derivable and unimodal (that is, it presents a single maximum

and minimum value). This is an impediment because real-life problems sometimes cannot be expressed as differentiable

functions and are generally multimodal. In this context, evolutionary computation methods have a relevance since, although

they cannot give an exact solution, they can generate approximate solutions with reasonable resources to this type of problem

with a high degree of complexity (Vikhar, 2016).

Evolutionary computation methods are stochastic, that is, they use random-type processes to search for solutions. Due to this

characteristic, it is difficult to analyze the behavior of these algorithms, so most of their properties have been discovered

experimentally (Vikhar, 2016).. Its operation is generally based on the behavior of biological phenomena. Some of the most

popular are Genetic Algorithms (GA) and Differential Evolution Algorithms (DE) which are based on the theory of evolution of

species formulated by Charles Darwin, having selection, mutation, and growth as main operators. The particle swarm

optimization (PSO) algorithm, unlike GA, is a method that is based on the behavior of insect swarms in nature, emulating the

evolution in collective behavior resulting from a combination of individual decisions (Wang, Tan & Liu, 2018). The operators in

this method are the velocity and the movement of the particles. Another popular algorithm is the artificial bee colony (ABC)

algorithm; this algorithm is inspired by the behavior of bees in search of honey (Nozohour-leilabady & Fazelabdolabadi, 2016).

The main advantages of this type of algorithm are that they do not depend on the structure of the problem, that is, they can be

used for a wide range of problems so complex that they may contain simulations or experimental models. They are

parallelizable algorithms (the sequential code becomes multithreaded and/or vectorized) with the aim of using multiple

processors simultaneously. They can solve non-differentiable and multimodal problems. Unlike gradient-based algorithms, the

function's gradient is not needed. These kinds of algorithms often incorporate some form of randomness to escape local minima.

In addition, they are easy to implement.

2 Fitness function

For the implementation of an optimization process, it is important to transfer the problem to a mathematical representation that

allows the inclusion of the main objectives to be achieved. This representation is generally known as the objective function,

which is used to measure the quality of the solutions, either to maximize or minimize resources (Baresel, Sthamer & Schmidt,

2002). The general representation of an objective function incorporates various mathematical expressions and constraints as

follows:

min/max f(x), X=(x1, x2,…,xi,…,xN) , (1)

Subjected to:

gi(X) < bj, j=1, 2,… , m

xi
(L) ≤ xi ≤ xi (U), i= 1, 2,… , N.

Where f(x) represents the objective function, X is the set of variables to consider, gi (X) represents the constraints of the problem,

bj the constraint constants, m the total number of restrictions; xi
(L) and xi

(U) represent the lower and upper bounds for each

variable.

3 Differential Evolution Algorithm

The Differential Evolution (DE) Algorithm was proposed in 1994 by Kenneth Price and Rainer Stern. This is a very popular

method since it can reach the global optimum in multimodal, non-differentiable, and non-linear functions. Its main features are

that it is easy to implement, requires few adjustment parameters, and can be parallelized to handle functions with high

Espinosa-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19.

9

computational cost. The structure of the algorithm is based on perturbing the member of the population with scaled differences

from the members of the same population (Mallipeddi, et al., 2011).

The stages of this algorithm are initialization of the population (in a stochastic way), differential mutation on the population,

which is conditioned to the fulfillment of a criterion, crossing between individuals with the purpose of increasing diversity and

finally a selection is made by means of a suitable criterion (Mallipeddi, et al., 2011). Below is a brief explanation of each of the

stages mentioned. The population is randomly generated between the lower ranges xi
(L) and upper ranges xi

(U) using the following

expression:

xj,i=xi
(L) + rand (0,1) * (xi

(U) – xi
(L)),

j = 1,2, …, d,

i = 1,2, …, NP.

(2)

The mutation is an operator used to randomly alter, under a certain condition, the individuals of the previously generated

population (Mallipeddi, et al., 2011). This condition comes from the generation of a random number that must be less than the

parameter M whose value can be defined between 0 and 1. In this particular algorithm, the mutation takes two vectors Xr1, Xr2

from the population to perform a scaled difference to a third population vector Xr0. The following expression shows the

application of the operator to generate a vector called a mutant.

Vn,i = Xr0 + F * (Xr1 – Xr2). (3)

The scaling factor F is a value between 0 and 1 that controls the level at which the population will evolve, if the value is close to

zero it will converge faster than if it is close to 1 (Mallipeddi, et al., 2011). Also, there are some popular variations of this

operator, they are listed below.

Mutation best/1 is a variation where two individuals are taken randomly from the population (Xr1, Xr2). The Xbest,g is the best

global individual of the current generation. The corresponding expression is:

Vn,i = Xbest,g + F * (Xr1 – Xr2). (4)

Mutation rand/2 unlike to Mutation best/1 implements 5 individuals taken randomly from the population (Xr0, Xr1 Xr2, Xr3 Xr4)

considering that they will be different. This strategy is commonly used when the problem needs population with more diversity.

The corresponding expression defined as:

Vn,i = Xr0 + F * (Xr1 – Xr2) + F * (Xr3 – Xr4). (5)

The crossover operator implies the choice of two individuals, the mutant vector Vn,i and the original individual Xn,i for the

exchange of segments of the population in order to maintain the diversity. The crossing vector Un,i is calculated as:

,

,

,

rand(0,1)

otherwise

n i

n i

n i

V CR
U

X


= 
 .

(6)

The CR parameter can have a value between 0 and 1.

Selection is used to find the best individuals (results of mutation and crossover operations) that should be copied for the next

generation. The selection method is Greedy of the elitist type since it makes sure to select the best solution found (Mallipeddi, et

al., 2011). In other words, xn,i will remain in the population until the next generation unless the test vector Un,i has a better fitness

value (Equation 8).

Espinosa-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19.

10

() (), , ,

, 1

, otherwise

n i n i n i

n i

n i

U f U f X
X

X
+

 
= 


(7)

The flowchart of the algorithm is shown in Figure 1.

Fig. 1. Flowchart for the Differential Evolution algorithm.

4 Implementation and Results

For the implementation of the DE algorithm, two examples are used. The first is the Rastrigin function (Valdez & Melin, 2007).

This function is non-convex and a typical example of a non-linear multimodal function. Finding the minimum is a difficult

problem due to its large search space and many existing local minima (Figure 2).

Espinosa-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19.

11

Fig. 2. Rastrigin function which presents multiple local maximal and minimal.

The problem is to minimize the function defined by:

() ()2 2

1 1 2 1 1 2 2(,) 10 10cos 2 10cos 2f x x d x x x x    = + − + −   
(8)

Subject to:

1

2

5.12 5.12

5.12 5.12

x

x

−  

−  

For implementation of the algorithm the following parameters were used: number of generations = 50, M = 0.2, CR = 0.2, F =

0.8 and the number of populations = 50. To demonstrate the heuristic characteristic and the approximation power of the

algorithms, 15 experiments were carried out, 5 with classical mutation variation, 5 with Mutation best/1 and rest with Mutation

rand/2. They were run on a computer with a Core i9 processor, 16 GB of RAM and a speed of 2.6GHz.

The obtained results are shown in Table 1.

Table 1. Obtained results from optimization process.

Test Mutation variation
1x 2x

Fitness

1 Common variation 0.9951 1.4435e-4 0.9949

2 Common variation 4.2519e-06 0.9950 0.9950

3 Common variation -0.02927 0.00536 0.17526

4 Common variation -0.01623 0.019206 0.12537

5 Common variation -0.0333e-3 0.5105e-3 0.0519e-3

6 Mutation best/1 -1.2187e-4 3.9217e-05 3.2880e-8

7 Mutation best/1 0.9951 7.3208e-06 0.9949

8 Mutation best/1 1.2089e-4 7.0949e-5 2.7799e-8

9 Mutation best/1 1.2034e-6 -0.9948 0.9949

10 Mutation best/1 -0.0016e-08 -0.2904e-08 0

11 Mutation rand/2 2.1858e-4 1.9142e-4 3.6211e-8

12 Mutation rand/2 3.9661e-5 2.6661e-4 3.2683e-7

13 Mutation rand/2 4.0018e-5 1.3885e-4 8.0563e-8

14 Mutation rand/2 -1.1672e-4 1.0008e-4 5.7736e-9

15 Mutation rand/2 2.6731e-5 -1.2218e-4 1.4167e-7

Espinosa-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19.

12

Based on the results of Table 1, the best-obtained result was 0.0519x10-3 using the common variation corresponding to

iteration 5, in addition 80% of the approximates have a fitness of 1x10-1. Referring to Mutation best/1 the results are divided

into 40% corresponding to 1x10-1, 40% in the range 1x10-8, and 20% with an error of 0. Using the Mutation rand/2 variation

the results show that 40% of solutions are in the range of 1x10-7, 40% in the range of 1x10-8, and 20% in the range of 1x10-9.

In general, considering the performance of the algorithm all the approximations obtained are acceptable (i.e., the solutions are

closer to zero).

Regardless of the mutation strategy used, the algorithm yields 15 possible results, where 40% represents solution with an error

of 1x10-1, 6.6% with an error of 1x10-3, 13.3% with fitness of 1x10-7, 26.6% results with 1x10-8 of error and 6.6% results in a

range of 1x10-9. Fortunately, the best global result has a fitness of 0, which means that the algorithm was able to find an exact

solution. The performance of the algorithm in this iteration is shown in Figure 3. As can be seen, from the beginning (i.e.,

from iteration 1) the fitness obtained is very close to zero (in the range of 1x10-15). Finally, the algorithm converges to zero in

iteration 7. It is considered fast due that on average the best solutions obtained converge after iteration 20 and they are just

approximations.

Fig. 3. Convergence of best fitness for differential evolution.

The second example is more complex. Here, the problem is to find the lengths of a mechanism implemented in a finger. The

optimization problem was taken from (Espinosa-Garcia et al., 2021). Basically, the problem is achieved that the point Pd

(Figure 4) follows the target points obtained from the flexion-extension movement. The values of the target points are shown

in Table 2.

Espinosa-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19.

13

Fig. 4. Parameters representation for the proposed four-bar mechanism (Espinosa-Garcia

et al., 2021).

Table 2. Desired points (Espinosa-Garcia et al., 2021).

 Pd1 Pd2 Pd3 Pd4 Pd5

x 0 -17.95 -35.92 -38.03 34.77

y 47.76 34.40 21.67 7.36 -12.43

The problem is to minimize the following expression:

() () ()
2 2

1

min
n

i i i i

x x y y

i

Pd P Pd P h x
=

 − + − +
  

F

Subjected to:

(9)

a)
1

1 1 1...i i i n  + +   where 1i = and 5.n =

b)  ,i i ix Li Ls
 where  1 2 3 4 5 6, , , , ,X x x x x x x=

where and represent the path generated by the mechanism. As can be seen, in Equation 9 parameter h(x) has been added

in order to evaluate the sequence condition for the input angle (represented by). If the condition is true h(x) = 0,

otherwise h(x) = 1. are the ranges for the design variables. Also, the corresponding equations to calculate the

points throw the optimization process are shown below.

0 1 1cosxB a =
(10)

0 1 1sinyB a =
(11)

0 2 2cosx xC B a = +
 (12)

Espinosa-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19.

14

0 2 2siny yC B a = +

 (13)

30 3 cosx xP C a   += +

 (14)

30 3 siny yP C a   += +

 (15)

Where and represent the path generated by the mechanism. As can be seen, in Equation 9 parameters h(x) have been

added in order to evaluate the sequence condition for the input angle (represented by). If the condition is true then h(x) =

0, otherwise h(x) = 1. are the ranges for the design variables. Also, the corresponding equations to calculate the

points throw the optimization process are shown below:

Design variables:
1 5
1 1 1 2 0 0,..., , , , , ,a a x y   

 

Desired points:
() ()1 5 1 5, ,..., ,xd xd yd ydP P P P 
  shown in Table 2

Limits of the variables:  1 20,50a 
,  2 6,16a 

,  0 5,15x  −
,  0 20,20y  −

,  65,180  −
, and  0,2 

The parameters used for the algorithm are:

Generation number: 300

Crossover value: 0.6

Mutation value: 0.1

Population: 100

Scale factor: 0.5

In this case 30 experiments were carried out, 10 per each mutation variation. The program was executed on a computer with a

Core i9 processor, 16 GB of RAM and a speed of 2.6GHz.

The obtained results are shown in Tables 3, 4, and 5. They show the number of the test, values of each parameter and their

fitness value.

Table 3. Obtained results from optimization process using rand/1 strategy.

Test
1a 2a 4a

rd
0x 0y

Fitness

1 24.3030 14.9157 33.9725 22.4005 12.3148 5.0415 1.5822

2 15.9999 33.8358 31.6758 21.8271 1.5648 -1.0905 3.1967

3 30.5232 15.9999 42.1660 24.3338 12.0337 4.0333 5.1349

4 27.8374 7.9933 29.7973 31.4786 11.7794 -8.0003 0.4487

5 24.1767 10.1415 37.5128 32.1154 13.6280 19.3293 0.0013

6 25.8764 15.1561 28.2025 28.3689 14.3245 -8.2985 0.0419

7 45.1694 15.9996 32.0971 25.4870 2.2419 12.1034 4.0285

8 21.5547 7.9514 42.9915 34.8578 1.4869 16.0489 0.0114

9 33.0984 15.9021 37.1562 24.4691 0.3884 17.1464 0.0296

10 31.8459 13.8851 40.7737 24.3860 -3.5149 -5.5112 0.0007

Espinosa-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19.

15

Table 4. Obtained results from optimization process using best/1 strategy.

Test
1a 2a 4a

rd
0x 0y

Fitness

1 24.6394 11.4333 23.8129 27.4862 8.9658 -13.3401 1.3154

2 23.1392 14.1194 35.8427 23.0909 14.9603 13.7722 0.0005

3 22.5589 12.7767 35.5301 24.3581 7.6679 16.9083 0.9389

4 27.2767 14.7712 41.6917 24.4053 2.3028 7.2225 0.2843

5 26.1739 9.7601 36.8427 26.9694 5.9285 11.9301 0.1257

6 28.2679 11.6685 26.5740 25.1131 0.9931 17.7730 0.0016

7 32.3392 11.2852 40.4987 27.1674 4.6405 -16.3323 0.0224

8 38.5588 15.8412 43.1319 25.3202 -2.6399 -9.4468 0.0503

9 28.3632 9.0977 32.4859 34.8396 1.0317 -7.805 0.4091

10 28.3192 15.3181 28.9841 25.5605 6.4878 16.2565 0.0000546

Table 5. Obtained results from optimization process using rand/2 strategy.

Test
1a 2a 4a

rd
0x 0y

Fitness

1 34.1180 15.9919 40.1431 20.3649 14.2975 3.5804 0.0005

2 21.6259 10.9888 32.9151 26.8714 2.4709 19.4979 0.0088

3 28.3207 10.0225 25.6173 28.2256 -3.7477 12.5013 0.0018

4 27.8586 8.5352 42.5234 25.4989 9.4493 -13.1548 0.0005

5 35.5704 15.7778 44.4807 25.6712 3.0291 -4.4687 0.0001

6 28.7880 13.5139 39.1024 28.2531 7.2513 13.8420 0.0004

7 26.2914 9.7418 24.3337 32.9169 5.6564 -5.9788 0.0379

8 29.5902 9.0022 23.1935 26.7245 2.5706 0.9389 0.1415

9 23.4158 10.2971 30.3672 23.9450 14.4005 -9.8019 5.37471E-6

10 25.5396 10.6529 23.8024 26.8969 2.5183 -12.406 0.0001

Based on the results of Table 3 corresponding to the rand/1 strategy, the results show that 40% of the solutions are unfeasible

(tests 1, 2, 3, and 7) and just 60% feasible. From the 60%, 10% of the solutions are in the range of 1x10 -1 (test 4), 30% has a

fitness value with error of 1x10-2, 10% in order to 10x10-3 and other 10% corresponds to the error in range of 1x10-4. The best

result was obtained in test 10. Figure 4 shows the convergence of the test. The initial value is high (1600), after iteration 5 the

fitness value is 1000 after that, the value continues decreases to zero. Final value is obtained in generation 48 (with a value of

7x10-4).

From Table 4, the unfeasible results represent 10%. Referring to the feasible solutions, 40% are in the range of 1x10-1, 20% in

the range of 1x10-2, 10% 1x10-3, 10% 1x10-4 and 10% 1x10-5. The convergence of the best fitness obtained in test 10 is shown

in Figure 5. The same as the fitness of Figure 4 the initial value is high (1580). The difference with respect to Figure 4, the

algorithm approaches to zero faster because it achieves the best value in generation 40. Moreover, the test is stopped in

generation 240 instead of 300 because the algorithm cannot improve the value of the fitness.

Espinosa-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19.

16

Fig. 4. Convergence of best fitness rand/1 strategy.

Fig. 5. Convergence of best fitness best/1 strategy.

Fig. 6. Convergence of best fitness rand/2 strategy.

Espinosa-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19.

17

The results of Table 5 show 100% of feasible solutions, the quality of this can be described as follows: 10% in range of 1x10-1,

10% corresponds to range 1x10-2, 20% in range of 1x10-3, 50% with value of 1x10-4 and 10% in range of 1x10-6. Unlike the

other cases, the solutions presented are closer to zero. In this case the best fitness was found in test 9. The convergence graph is

shown in Figure 6. Unlike the other cases, the initial fitness value is high (4000). But the convergence is faster than others

because the fitness value is closer to zero in generation 26. In terms of percentage, the convergence of this obtained best is

41.66% faster than the best of Table 1, and 50% faster than the best of Table 2.

In order to get a better view of the results obtained, Figure 7 shows the plot of the trajectories corresponding to the desired

trajectory, the trajectory obtained in the original work, and the trajectories obtained using the DE algorithm.

Fig. 7. Comparison between the best results obtained and desired points.

Based on plots of Figure 7 to indicate the desired path (Dpath) some blue markers are used. As can be seen, the trajectory

obtained by the optimization process using GA (Espinosa-Garcia et al., 2021) is not closer to the Dpath. Referring to the best

options obtained with different mutation variations are closer to the Dpath. The best result obtained by rand/1 is shown in color

green, in color yellow the best obtained used best/1 is shown. Likewise, for the best result obtained by rand/2 strategy purple

markers are used. On the other hand, it is important to mention that the parameters and sources to find these solutions were less

than the presented in (Espinosa-Garcia et al., 2021), Table 6 shows a comparative.

Table 6. Comparison between parameters.

 Generations Crossover value Mutation value Population

GA 1000 0.6 0.1 200

DE 300 0.2 0.1 100

Considering the parameters shown in Table 2, with the DE algorithm, the population parameter was reduced by 70% and the

population by 50.

5 Conclusions

The differential evolutionary (DE) algorithm is a heuristic approach that compared with other heuristic methods like Genetic

Algorithms (GA), particle swarm optimization (PSO) or Artificial Bee Colony algorithm (ABC) has advantages, DE found the

Espinosa-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19.

18

true global minimum regardless, fast convergence, and fewer control parameters. In this work these features are shown through

two non-lineal optimization problems. The first example was a common test function (Rastrigin function), used to generate

approximations. For this case, 15 tests were carried out, considering 5 for each mutation strategy. The results show feasible

solutions, where the accuracy is determined for the mutation strategy implemented. Fortunately, in a test using the best/1

mutation strategy a fitness function with zero value was found, being this result, the best solution. Here it can be seen the

potential of this algorithm because in other works do not find an exact solution, all of them are just approximations.

In addition, an optimization example of a mechanism for a robotic finger design is presented. This example is more complex

because some restrictions must be satisfied to generate a feasible solution. In the original work the authors used a genetic

algorithm as a method for solving the problem, but the obtained results have an error of 0.9908mm. But in this paper, using the

results of the DE algorithm, the results obtained are better. It can be proved in Figure 7 because all the trajectories are closer to

the desired path. The trajectory generated by the GA also is presented in red color, but the solution presents a major error.

Moreover, the initial parameters like generation number in original work is 1000 and in this work the parameter is 300. The

same occurs with the number of population while in GA the parameter is 200, with DE algorithm the value is half, reducing the

computational resources. In the other hand, as main advantage of the usage of these kind algorithms is the variety of the

approximations generated, because all of them represent a possible solution of a mechanism, which selection will depend on the

designer needs and precision of the task to develop.

References

Baresel, A., Sthamer, H., & Schmidt, M. (2002). Fitness function design to improve evolutionary structural testing. En Proceedings

of the 4th Annual Conference on Genetic and Evolutionary Computation (pp. 1329-1336).

Brenner, S. C., Owens, L., & Sung, L. Y. (2008). A weakly over-penalized symmetric interior penalty method. Electronic

Transactions on Numerical Analysis, 30, 107-127.

Espinosa-Garcia, F. J., Tapia-Herrera, R., Lugo-González, E., & Arias-Montiel, M. (2021). Development of a robotic hand based on

a palm with a metamorphic mechanism for extending the thumb’s functionality. Journal of the Brazilian Society of Mechanical

Sciences and Engineering, 43(8), 404.

Fountas, N. A., & Vaxevanidis, N. M. (2020). Intelligent 3D tool path planning for optimized 3-axis sculptured surface CNC

machining through digitized data evaluation and swarm-based evolutionary algorithms. Measurement: Journal of the International

Measurement Confederation, 158, 107678.

Fountas, N. A., & Vaxevanidis, N. M. (2020). Intelligent 3D tool path planning for optimized 3-axis sculptured surface CNC

machining through digitized data evaluation and swarm-based evolutionary algorithms. Measurement: Journal of the International

Measurement Confederation, 158, 107678.

Kim, S. J., & Kim, J. H. (1993). Finite element analysis of laminated composites with contact constraint by extended interior penalty

methods. International Journal of Numerical Methods in Engineering, 36(20), 3421-3439.

Lav, A. H., Goktepe, A. B., & Lav, M. A. (2009). Backcalculation of flexible pavements using soft computing. En K.

Gopalakrishnan, H. Ceylan, & N. O. Attoh-Okine (Eds.), Intelligent and Soft Computing in Infrastructure Systems Engineering

(Studies in Computational Intelligence, vol. 259). Berlin, Heidelberg: Springer.

Mallipeddi, R., Suganthan, P. N., Pan, Q. K., & Tasgetiren, M. F. (2011). Differential evolution algorithm with ensemble of

parameters and mutation strategies. Applied Soft Computing, 11(2), 1679-1696.

Nozohour-leilabady, B., & Fazelabdolabadi, B. (2016). On the application of artificial bee colony (ABC) algorithm for optimization

of well placements in fractured reservoirs; efficiency comparison with the particle swarm optimization (PSO) methodology.

Petroleum, 2(1), 79-89.

Oguntola, M. B., & Lorentzen, R. J. (2021). Ensemble-based constrained optimization using an exterior penalty method. Journal of

Petroleum Science and Engineering, 207, 109165.

Padmanabhan, S., Srinivasa, R. V., Asokan, P., Arunachalam, S., & Page, T. (2011). Design optimization of bevel gear pair.

International Journal of Design Engineering, 4(4), 364-393.

Espinosa-García et al. / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19.

19

Padmanabhan, S., Srinivasa, R. V., Asokan, P., Arunachalam, S., & Page, T. (2011). Design optimization of bevel gear pair.

International Journal of Design Engineering, 4(4), 364-393.

Shaikh, J. H., Jain, N. K., & Pathak, S. (2016). Investigations on surface quality improvement of straight bevel gears by

electrochemical honing process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering

Manufacture, 230, 1242–1253.

Shaikh, J. H., Jain, N. K., & Pathak, S. (2016). Investigations on surface quality improvement of straight bevel gears by

electrochemical honing process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering

Manufacture, 230, 1242–1253.

Tham, J. Y., Ranganath, S., Ranganath, M., & Kassim, A. A. (1998). A novel unrestricted center-biased diamond search algorithm

for block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 8(4), 369-377.

Valdez, F., & Melin, P. (2007). Parallel evolutionary computing using a cluster for mathematical function optimization. En NAFIPS

2007-2007 Annual Meeting of the North American Fuzzy Information Processing Society (pp. 598-603). IEEE.

Vikhar, P. A. (2016). Evolutionary algorithms: A critical review and its prospects. En 2016 International Conference on Global

Trends in Signal Processing, Information Computing and Communication (pp. 261-265). IEEE.

Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft Computing, 22, 387-408.

Zolpakar, N. A., Lodhi, S. S., Pathak, S., & Sharma, M. A. (2020). Application of multi-objective genetic algorithm (MOGA)

optimization in machining processes. En K. Gupta & M. Gupta (Eds.), Optimization of Manufacturing Processes. Springer Series in

Advanced Manufacturing. Springer.

Zolpakar, N. A., Lodhi, S. S., Pathak, S., & Sharma, M. A. (2020). Application of multi-objective genetic algorithm (MOGA)

optimization in machining processes. En K. Gupta & M. Gupta (Eds.), Optimization of Manufacturing Processes. Springer Series in

Advanced Manufacturing. Springer.

Zolpakar, N. A., Yasak, M. F., & Pathak, S. (2021). A review: use of evolutionary algorithm for optimization of machining

parameters. International Journal of Advanced Manufacturing Technology, 115, 31-47.

Zolpakar, N. A., Yasak, M. F., & Pathak, S. (2021). A review: use of evolutionary algorithm for optimization of machining

parameters. International Journal of Advanced Manufacturing Technology, 115, 31-47.

