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Abstract. Analytical and numerical methods have been applied 

to solve problems in engineering. However, in some practical 

cases, they usually fail when there is a certain degree of 
complexity, for instance, when there is a certain lack of 

information about the elements of the system and when the 

unknowns are functions. These types of problems are often 

called nonlinear optimization problems. As an alternative to 

solving them, evolutionary computation methods are usually 

implemented, although they do not generate an exact solution, 
and provide a series of approximations that are generally 

feasible. In this context, the objective of this work is to briefly 

highlight the most typical characteristics of these type of 
algorithms, some advantages, and the importance of its use 

today. Due to the wide variety of existing methods, it would 

become complex to explain all of them in detail, so only a 
description of the differential evolution (DE) algorithm will be 

made because it is one of the most used and because there is 

current research that seeks to improve its performance. 
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1 Introduction 
 

Currently, optimization is a useful tool between researchers and engineers in different areas of science, like the development of 

processes, design of elements, machines, and tools where it has been improved aspects such as a maximum use of the resources, 

shorter development of times, and guarantee that the generated product mostly covers the needs (Padmanabhan et al., 2011; 

Zolpakar, Yasak & Pathak, 2021; Zolpakar et al., 2020; Shaikh, Jain & Pathak, 2016; Fountas & Vaxevanidis, 2020), so that its 

performance is adequate based on the application for which it was designed. In this way, it is ensured that the presence of errors 

or defects is almost zero compared to developments based on the trial-and-error method. 

 

One of the main attributes of optimization is the ability to describe a real problem in mathematical terms, which results in the 

formulation of functions that allow the problem to be visualized in a formal way and treated in a rigorous manner (Padmanabhan 

et al., 2011). In the past, the most popular methods implemented to solve non-linear optimization problems were of the 

analytical and mathematical type, generally known as "descent" (Zolpakar, Yasak & Pathak, 2021). These are classified into the 

first-order ones, which include the gradient, conjugate gradient, and Fletcher-Reeves methods (Zolpakar et al., 2020; Shaikh et 

al., 2016). The second-order methods include Newton's methods and their variations (Fountas & Vaxevanidis, 2020). Finally, 

there are methods known as quasi-Newton, some methods are Davison-Fletcher-Powell (DFP) and Broyden-Fletcher-Golfarb-

Shanno (BFGS) [Lav et al., 2009). The problem with the above methods is that they are limited when the problem, besides 
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being non-linear, presents restrictions, which in the general case could be of non-linear type. To solve this type of problem, 

other methods known as sequential techniques of unconstrained minimization (SUMT) are usually implemented (Tham et al., 

1998). These techniques seek to formulate the problem as one without constraints, then several unrestricted problems must be 

solved to find the solution of one with constraints. In this category are the exterior penalty methods (Oguntola & Lorentzen, 

2021), the interior penalty method ( Brenner, Owens & Sung, 2008), and the extended interior penalty method (Kim & Kim, 

1993). Despite presenting a good performance for solving some practical problems, these methods are usually limited when the 

objective function does not meet two primary requirements, being derivable and unimodal (that is, it presents a single maximum 

and minimum value). This is an impediment because real-life problems sometimes cannot be expressed as differentiable 

functions and are generally multimodal. In this context, evolutionary computation methods have a relevance since, although 

they cannot give an exact solution, they can generate approximate solutions with reasonable resources to this type of problem 

with a high degree of complexity (Vikhar, 2016). 

 

Evolutionary computation methods are stochastic, that is, they use random-type processes to search for solutions. Due to this 

characteristic, it is difficult to analyze the behavior of these algorithms, so most of their properties have been discovered 

experimentally (Vikhar, 2016).. Its operation is generally based on the behavior of biological phenomena. Some of the most 

popular are Genetic Algorithms (GA) and Differential Evolution Algorithms (DE) which are based on the theory of evolution of 

species formulated by Charles Darwin, having selection, mutation, and growth as main operators. The particle swarm 

optimization (PSO) algorithm, unlike GA, is a method that is based on the behavior of insect swarms in nature, emulating the 

evolution in collective behavior resulting from a combination of individual decisions (Wang, Tan & Liu, 2018). The operators in 

this method are the velocity and the movement of the particles. Another popular algorithm is the artificial bee colony (ABC) 

algorithm; this algorithm is inspired by the behavior of bees in search of honey (Nozohour-leilabady & Fazelabdolabadi, 2016). 

The main advantages of this type of algorithm are that they do not depend on the structure of the problem, that is, they can be 

used for a wide range of problems so complex that they may contain simulations or experimental models. They are 

parallelizable algorithms (the sequential code becomes multithreaded and/or vectorized) with the aim of using multiple 

processors simultaneously. They can solve non-differentiable and multimodal problems. Unlike gradient-based algorithms, the 

function's gradient is not needed. These kinds of algorithms often incorporate some form of randomness to escape local minima. 

In addition, they are easy to implement. 

 

 

2 Fitness function 
 

For the implementation of an optimization process, it is important to transfer the problem to a mathematical representation that 

allows the inclusion of the main objectives to be achieved. This representation is generally known as the objective function, 

which is used to measure the quality of the solutions, either to maximize or minimize resources (Baresel, Sthamer & Schmidt, 

2002). The general representation of an objective function incorporates various mathematical expressions and constraints as 

follows: 

 

min/max f(x),  X=(x1, x2,…,xi,…,xN) , (1) 

Subjected to:  

gi(X) < bj,  j=1, 2,… , m 

xi
(L) ≤ xi ≤  xi (U), i= 1, 2,… , N. 

 

 

Where f(x) represents the objective function, X is the set of variables to consider, gi (X) represents the constraints of the problem, 

bj the constraint constants, m the total number of restrictions; xi
(L) and xi

(U) represent the lower and upper bounds for each 

variable. 

 

 

3 Differential Evolution Algorithm 
 

The Differential Evolution (DE) Algorithm was proposed in 1994 by Kenneth Price and Rainer Stern. This is a very popular 

method since it can reach the global optimum in multimodal, non-differentiable, and non-linear functions. Its main features are 

that it is easy to implement, requires few adjustment parameters, and can be parallelized to handle functions with high 



Espinosa-García et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19. 

9 

 

computational cost. The structure of the algorithm is based on perturbing the member of the population with scaled differences 

from the members of the same population (Mallipeddi, et al., 2011).  

 

The stages of this algorithm are initialization of the population (in a stochastic way), differential mutation on the population, 

which is conditioned to the fulfillment of a criterion, crossing between individuals with the purpose of increasing diversity and 

finally a selection is made by means of a suitable criterion (Mallipeddi, et al., 2011). Below is a brief explanation of each of the 

stages mentioned. The population is randomly generated between the lower ranges xi
(L) and upper ranges xi

(U) using the following 

expression: 

 

 

xj,i=xi
(L) + rand (0,1) * (xi

(U) –  xi
(L)), 

j = 1,2, …, d, 

i = 1,2, …, NP. 

(2) 

 

The mutation is an operator used to randomly alter, under a certain condition, the individuals of the previously generated 

population (Mallipeddi, et al., 2011). This condition comes from the generation of a random number that must be less than the 

parameter M whose value can be defined between 0 and 1. In this particular algorithm, the mutation takes two vectors Xr1, Xr2 

from the population to perform a scaled difference to a third population vector Xr0. The following expression shows the 

application of the operator to generate a vector called a mutant. 

 

Vn,i = Xr0 + F * (Xr1 – Xr2). (3) 

The scaling factor F is a value between 0 and 1 that controls the level at which the population will evolve, if the value is close to 

zero it will converge faster than if it is close to 1 (Mallipeddi, et al., 2011). Also, there are some popular variations of this 

operator, they are listed below. 

 

Mutation best/1 is a variation where two individuals are taken randomly from the population (Xr1, Xr2). The Xbest,g is the best 

global individual of the current generation. The corresponding expression is: 

 

Vn,i = Xbest,g + F * (Xr1 – Xr2). (4) 

 

Mutation rand/2 unlike to Mutation best/1 implements 5 individuals taken randomly from the population (Xr0, Xr1 Xr2, Xr3 Xr4) 

considering that they will be different. This strategy is commonly used when the problem needs population with more diversity. 

The corresponding expression defined as:  

 

Vn,i = Xr0 + F * (Xr1 – Xr2) + F * (Xr3 – Xr4). (5) 

 

The crossover operator implies the choice of two individuals, the mutant vector Vn,i and the original individual Xn,i for the 

exchange of segments of the population in order to maintain the diversity. The crossing vector Un,i is calculated as: 

 

,

,

,

rand(0,1)

otherwise

n i

n i

n i

V CR
U

X


= 
 . 

(6) 

The CR parameter can have a value between 0 and 1. 

 

Selection is used to find the best individuals (results of mutation and crossover operations) that should be copied for the next 

generation. The selection method is Greedy of the elitist type since it makes sure to select the best solution found (Mallipeddi, et 

al., 2011). In other words, xn,i will remain in the population until the next generation unless the test vector Un,i has a better fitness 

value (Equation 8).  
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( ) ( ), , ,

, 1

, otherwise

n i n i n i

n i

n i

U f U f X
X

X
+

 
= 
  

(7) 

The flowchart of the algorithm is shown in Figure 1. 

 

 

 
Fig. 1. Flowchart for the Differential Evolution algorithm.  

 

4 Implementation and Results  

 

For the implementation of the DE algorithm, two examples are used. The first is the Rastrigin function (Valdez & Melin, 2007). 

This function is non-convex and a typical example of a non-linear multimodal function. Finding the minimum is a difficult 

problem due to its large search space and many existing local minima (Figure 2). 
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Fig. 2. Rastrigin function which presents multiple local maximal and minimal. 

 

 

The problem is to minimize the function defined by: 

 

( ) ( )2 2

1 1 2 1 1 2 2( , ) 10 10cos 2 10cos 2f x x d x x x x    = + − + −     
(8) 

Subject to: 

 

1

2

5.12 5.12

5.12 5.12

x

x

−  

−    
 

For implementation of the algorithm the following parameters were used: number of generations = 50, M = 0.2, CR = 0.2, F = 

0.8 and the number of populations = 50. To demonstrate the heuristic characteristic and the approximation power of the 

algorithms, 15 experiments were carried out, 5 with classical mutation variation, 5 with Mutation best/1 and rest with Mutation 

rand/2. They were run on a computer with a Core i9 processor, 16 GB of RAM and a speed of 2.6GHz. 

 

The obtained results are shown in Table 1.  

Table 1. Obtained results from optimization process. 

Test Mutation variation 
1x  2x  

Fitness 

1 Common variation 0.9951 1.4435e-4 0.9949 

2 Common variation 4.2519e-06 0.9950 0.9950 

3 Common variation -0.02927   0.00536 0.17526 

4 Common variation -0.01623 0.019206 0.12537 

5 Common variation -0.0333e-3 0.5105e-3 0.0519e-3 

6 Mutation best/1 -1.2187e-4 3.9217e-05 3.2880e-8 

7 Mutation best/1 0.9951 7.3208e-06 0.9949 

8 Mutation best/1 1.2089e-4 7.0949e-5 2.7799e-8 

9 Mutation best/1 1.2034e-6 -0.9948 0.9949 

10 Mutation best/1 -0.0016e-08 -0.2904e-08 0 

11 Mutation rand/2 2.1858e-4 1.9142e-4 3.6211e-8 

12 Mutation rand/2 3.9661e-5 2.6661e-4 3.2683e-7 

13 Mutation rand/2 4.0018e-5  1.3885e-4 8.0563e-8 

14 Mutation rand/2 -1.1672e-4 1.0008e-4 5.7736e-9 

15 Mutation rand/2 2.6731e-5 -1.2218e-4 1.4167e-7 
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Based on the results of Table 1, the best-obtained result was 0.0519x10-3 using the common variation corresponding to 

iteration 5, in addition 80% of the approximates have a fitness of 1x10-1. Referring to Mutation best/1 the results are divided 

into 40% corresponding to 1x10-1, 40% in the range 1x10-8, and 20% with an error of 0. Using the Mutation rand/2 variation 

the results show that 40% of solutions are in the range of 1x10-7, 40% in the range of 1x10-8, and 20% in the range of 1x10-9. 

In general, considering the performance of the algorithm all the approximations obtained are acceptable (i.e., the solutions are 

closer to zero). 

 

Regardless of the mutation strategy used, the algorithm yields 15 possible results, where 40% represents solution with an error 

of 1x10-1, 6.6% with an error of 1x10-3, 13.3% with fitness of 1x10-7, 26.6% results with 1x10-8 of error and 6.6% results in a 

range of 1x10-9. Fortunately, the best global result has a fitness of 0, which means that the algorithm was able to find an exact 

solution. The performance of the algorithm in this iteration is shown in Figure 3. As can be seen, from the beginning (i.e., 

from iteration 1) the fitness obtained is very close to zero (in the range of 1x10-15). Finally, the algorithm converges to zero in 

iteration 7. It is considered fast due that on average the best solutions obtained converge after iteration 20 and they are just 

approximations. 

 

 
Fig. 3. Convergence of best fitness for differential evolution. 

 

 

The second example is more complex. Here, the problem is to find the lengths of a mechanism implemented in a finger. The 

optimization problem was taken from (Espinosa-Garcia et al., 2021). Basically, the problem is achieved that the point Pd 

(Figure 4) follows the target points obtained from the flexion-extension movement. The values of the target points are shown 

in Table 2. 
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Fig. 4. Parameters representation for the proposed four-bar mechanism (Espinosa-Garcia 

et al., 2021). 

 

Table 2. Desired points (Espinosa-Garcia et al., 2021). 

 Pd1 Pd2 Pd3 Pd4 Pd5 

x        0           -17.95    -35.92    -38.03    34.77     

y 47.76             34.40 21.67 7.36 -12.43 

 

The problem is to minimize the following expression: 

 

( ) ( ) ( )
2 2

1

min
n

i i i i

x x y y

i

Pd P Pd P h x
=

 − + − +
  

 

F 

Subjected to: 

(9) 

a) 
1

1 1 1...i i i n  + +    where 1i =  and 5.n =  

b)  ,i i ix Li Ls
 where  1 2 3 4 5 6, , , , ,X x x x x x x=

 

 

where  and  represent the path generated by the mechanism. As can be seen, in Equation 9 parameter h(x) has been added 

in order to evaluate the sequence condition for the input angle (represented by ). If the condition is true h(x) = 0, 

otherwise h(x) = 1.  are the ranges for the design variables. Also, the corresponding equations to calculate the 

points throw the optimization process are shown below. 

  

0 1 1cosxB a =  
(10) 

0 1 1sinyB a =  
(11) 

0 2 2cosx xC B a = +  
 (12)  
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0 2 2siny yC B a = +
 

 (13)  

30 3 cosx xP C a   += +
 

 (14)  

30 3 siny yP C a   += +
 

 (15)  

Where  and  represent the path generated by the mechanism. As can be seen, in Equation 9 parameters h(x) have been 

added in order to evaluate the sequence condition for the input angle (represented by ). If the condition is true then h(x) = 

0, otherwise h(x) = 1.  are the ranges for the design variables. Also, the corresponding equations to calculate the 

points throw the optimization process are shown below: 

 

Design variables: 
1 5
1 1 1 2 0 0,..., , , , , ,a a x y   

   

Desired points:
( ) ( )1 5 1 5, ,..., ,xd xd yd ydP P P P 
   shown in Table 2 

Limits of the variables:  1 20,50a 
,  2 6,16a 

,  0 5,15x  −
,  0 20,20y  −

,  65,180  −
, and   0,2 

 

 

The parameters used for the algorithm are: 

 

Generation number: 300 

Crossover value: 0.6 

Mutation value: 0.1 

Population: 100 

Scale factor: 0.5 

 

In this case 30 experiments were carried out, 10 per each mutation variation. The program was executed on a computer with a 

Core i9 processor, 16 GB of RAM and a speed of 2.6GHz. 

 

The obtained results are shown in Tables 3, 4, and 5. They show the number of the test, values of each parameter and their 

fitness value. 

Table 3. Obtained results from optimization process using rand/1 strategy. 

 

Test 
1a  2a  4a  

 

rd 
0x  0y  

 

Fitness 

1 24.3030    14.9157    33.9725    22.4005    12.3148     5.0415     1.5822 

2 15.9999    33.8358    31.6758    21.8271      1.5648    -1.0905     3.1967 

3 30.5232    15.9999    42.1660    24.3338    12.0337     4.0333     5.1349 

4 27.8374     7.9933    29.7973    31.4786    11.7794    -8.0003     0.4487 

5 24.1767    10.1415    37.5128    32.1154    13.6280       19.3293 0.0013 

6 25.8764    15.1561    28.2025    28.3689    14.3245        -8.2985 0.0419 

7 45.1694                    15.9996 32.0971 25.4870 2.2419 12.1034 4.0285 

8 21.5547                   7.9514 42.9915 34.8578 1.4869 16.0489 0.0114 

9 33.0984                    15.9021 37.1562 24.4691 0.3884 17.1464 0.0296 

10 31.8459                       13.8851    40.7737    24.3860    -3.5149     -5.5112     0.0007 
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Table 4. Obtained results from optimization process using best/1 strategy. 

 

Test 
1a  2a  4a  

 

rd 
0x  0y  

 

Fitness 

1 24.6394                  11.4333 23.8129 27.4862 8.9658   -13.3401 1.3154 

2 23.1392    14.1194                       35.8427    23.0909      14.9603    13.7722     0.0005 

3 22.5589                        12.7767    35.5301    24.3581    7.6679     16.9083     0.9389 

4 27.2767                         14.7712    41.6917    24.4053     2.3028    7.2225     0.2843 

5 26.1739                        9.7601   36.8427    26.9694     5.9285       11.9301 0.1257 

6 28.2679    11.6685       26.5740                    25.1131    0.9931         17.7730 0.0016 

7 32.3392                                   11.2852 40.4987 27.1674 4.6405 -16.3323 0.0224 

8 38.5588                                      15.8412 43.1319 25.3202 -2.6399 -9.4468 0.0503 

9 28.3632               9.0977 32.4859 34.8396 1.0317   -7.805 0.4091 

10 28.3192                 15.3181 28.9841 25.5605 6.4878   16.2565                      0.0000546 

 

Table 5. Obtained results from optimization process using rand/2 strategy. 

 

Test 
1a  2a  4a  

 

rd 
0x  0y  

 

Fitness 

1 34.1180                                      15.9919 40.1431 20.3649 14.2975   3.5804 0.0005 

2 21.6259                        10.9888                       32.9151    26.8714      2.4709    19.4979     0.0088 

3 28.3207                                          10.0225 25.6173 28.2256 -3.7477 12.5013 0.0018 

4 27.8586     8.5352    42.5234    25.4989     9.4493   -13.1548     0.0005 

5 35.5704                     15.7778 44.4807 25.6712 3.0291 -4.4687 0.0001 

6 28.7880    13.5139    39.1024    28.2531     7.2513    13.8420     0.0004 

7 26.2914                     9.7418 24.3337 32.9169 5.6564 -5.9788 0.0379 

8 29.5902                    9.0022 23.1935 26.7245 2.5706 0.9389   0.1415 

9 23.4158               10.2971 30.3672 23.9450 14.4005 -9.8019 5.37471E-6 

10 25.5396    10.6529    23.8024    26.8969     2.5183   -12.406                     0.0001 

 

Based on the results of Table 3 corresponding to the rand/1 strategy, the results show that 40% of the solutions are unfeasible 

(tests 1, 2, 3, and 7) and just 60% feasible. From the 60%, 10% of the solutions are in the range of 1x10 -1 (test 4), 30% has a 

fitness value with error of 1x10-2, 10% in order to 10x10-3 and other 10% corresponds to the error in range of 1x10-4. The best 

result was obtained in test 10. Figure 4 shows the convergence of the test. The initial value is high (1600), after iteration 5 the 

fitness value is 1000 after that, the value continues decreases to zero. Final value is obtained in generation 48 (with a value of 

7x10-4).  

 

From Table 4, the unfeasible results represent 10%. Referring to the feasible solutions, 40% are in the range of 1x10-1, 20% in 

the range of 1x10-2, 10% 1x10-3, 10% 1x10-4 and 10% 1x10-5. The convergence of the best fitness obtained in test 10 is shown 

in Figure 5. The same as the fitness of Figure 4 the initial value is high (1580). The difference with respect to Figure 4, the 

algorithm approaches to zero faster because it achieves the best value in generation 40. Moreover, the test is stopped in 

generation 240 instead of 300 because the algorithm cannot improve the value of the fitness. 
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Fig. 4. Convergence of best fitness rand/1 strategy. 

 

 

 
Fig. 5. Convergence of best fitness best/1 strategy. 

 

 
Fig. 6. Convergence of best fitness rand/2 strategy. 
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The results of Table 5 show 100% of feasible solutions, the quality of this can be described as follows: 10% in range of 1x10-1, 

10% corresponds to range 1x10-2, 20% in range of 1x10-3, 50% with value of 1x10-4 and 10% in range of 1x10-6. Unlike the 

other cases, the solutions presented are closer to zero. In this case the best fitness was found in test 9. The convergence graph is 

shown in Figure 6. Unlike the other cases, the initial fitness value is high (4000). But the convergence is faster than others 

because the fitness value is closer to zero in generation 26. In terms of percentage, the convergence of this obtained best is 

41.66% faster than the best of Table 1, and 50% faster than the best of Table 2. 

 

In order to get a better view of the results obtained, Figure 7 shows the plot of the trajectories corresponding to the desired 

trajectory, the trajectory obtained in the original work, and the trajectories obtained using the DE algorithm. 

 

 
Fig. 7. Comparison between the best results obtained and desired points. 

 

Based on plots of Figure 7 to indicate the desired path (Dpath) some blue markers are used. As can be seen, the trajectory 

obtained by the optimization process using GA (Espinosa-Garcia et al., 2021) is not closer to the Dpath. Referring to the best 

options obtained with different mutation variations are closer to the Dpath. The best result obtained by rand/1 is shown in color 

green, in color yellow the best obtained used best/1 is shown. Likewise, for the best result obtained by rand/2 strategy purple 

markers are used. On the other hand, it is important to mention that the parameters and sources to find these solutions were less 

than the presented in (Espinosa-Garcia et al., 2021), Table 6 shows a comparative. 

Table 6. Comparison between parameters. 

 Generations Crossover value Mutation value Population 

GA 1000 0.6    0.1    200    

DE 300 0.2 0.1 100 

 

Considering the parameters shown in Table 2, with the DE algorithm, the population parameter was reduced by 70% and the 

population by 50. 

 

 

5 Conclusions 

 
The differential evolutionary (DE) algorithm is a heuristic approach that compared with other heuristic methods like Genetic 

Algorithms (GA), particle swarm optimization (PSO) or Artificial Bee Colony algorithm (ABC) has advantages, DE found the 
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true global minimum regardless, fast convergence, and fewer control parameters. In this work these features are shown through 

two non-lineal optimization problems. The first example was a common test function (Rastrigin function), used to generate 

approximations. For this case, 15 tests were carried out, considering 5 for each mutation strategy. The results show feasible 

solutions, where the accuracy is determined for the mutation strategy implemented. Fortunately, in a test using the best/1 

mutation strategy a fitness function with zero value was found, being this result, the best solution. Here it can be seen the 

potential of this algorithm because in other works do not find an exact solution, all of them are just approximations. 

 

In addition, an optimization example of a mechanism for a robotic finger design is presented. This example is more complex 

because some restrictions must be satisfied to generate a feasible solution. In the original work the authors used a genetic 

algorithm as a method for solving the problem, but the obtained results have an error of 0.9908mm. But in this paper, using the 

results of the DE algorithm, the results obtained are better. It can be proved in Figure 7 because all the trajectories are closer to 

the desired path. The trajectory generated by the GA also is presented in red color, but the solution presents a major error. 

Moreover, the initial parameters like generation number in original work is 1000 and in this work the parameter is 300. The 

same occurs with the number of population while in GA the parameter is 200, with DE algorithm the value is half, reducing the 

computational resources. In the other hand, as main advantage of the usage of these kind algorithms is the variety of the 

approximations generated, because all of them represent a possible solution of a mechanism, which selection will depend on the 

designer needs and precision of the task to develop. 

 

 

References 
 

Baresel, A., Sthamer, H., & Schmidt, M. (2002). Fitness function design to improve evolutionary structural testing. En Proceedings 

of the 4th Annual Conference on Genetic and Evolutionary Computation (pp. 1329-1336). 

 

Brenner, S. C., Owens, L., & Sung, L. Y. (2008). A weakly over-penalized symmetric interior penalty method. Electronic 

Transactions on Numerical Analysis, 30, 107-127. 

 

Espinosa-Garcia, F. J., Tapia-Herrera, R., Lugo-González, E., & Arias-Montiel, M. (2021). Development of a robotic hand based on 

a palm with a metamorphic mechanism for extending the thumb’s functionality. Journal of the Brazilian Society of Mechanical 

Sciences and Engineering, 43(8), 404. 

 

Fountas, N. A., & Vaxevanidis, N. M. (2020). Intelligent 3D tool path planning for optimized 3-axis sculptured surface CNC 

machining through digitized data evaluation and swarm-based evolutionary algorithms. Measurement: Journal of the International 

Measurement Confederation, 158, 107678. 

 

Fountas, N. A., & Vaxevanidis, N. M. (2020). Intelligent 3D tool path planning for optimized 3-axis sculptured surface CNC 

machining through digitized data evaluation and swarm-based evolutionary algorithms. Measurement: Journal of the International 

Measurement Confederation, 158, 107678. 

 

Kim, S. J., & Kim, J. H. (1993). Finite element analysis of laminated composites with contact constraint by extended interior penalty 

methods. International Journal of Numerical Methods in Engineering, 36(20), 3421-3439. 

 

Lav, A. H., Goktepe, A. B., & Lav, M. A. (2009). Backcalculation of flexible pavements using soft computing. En K. 

Gopalakrishnan, H. Ceylan, & N. O. Attoh-Okine (Eds.), Intelligent and Soft Computing in Infrastructure Systems Engineering 

(Studies in Computational Intelligence, vol. 259). Berlin, Heidelberg: Springer. 

 

Mallipeddi, R., Suganthan, P. N., Pan, Q. K., & Tasgetiren, M. F. (2011). Differential evolution algorithm with ensemble of 

parameters and mutation strategies. Applied Soft Computing, 11(2), 1679-1696. 

 

Nozohour-leilabady, B., & Fazelabdolabadi, B. (2016). On the application of artificial bee colony (ABC) algorithm for optimization 

of well placements in fractured reservoirs; efficiency comparison with the particle swarm optimization (PSO) methodology. 

Petroleum, 2(1), 79-89. 

 

Oguntola, M. B., & Lorentzen, R. J. (2021). Ensemble-based constrained optimization using an exterior penalty method. Journal of 

Petroleum Science and Engineering, 207, 109165. 

 

Padmanabhan, S., Srinivasa, R. V., Asokan, P., Arunachalam, S., & Page, T. (2011). Design optimization of bevel gear pair. 

International Journal of Design Engineering, 4(4), 364-393. 

 



Espinosa-García et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 15(1) 2023, 7-19. 

19 

 

Padmanabhan, S., Srinivasa, R. V., Asokan, P., Arunachalam, S., & Page, T. (2011). Design optimization of bevel gear pair. 

International Journal of Design Engineering, 4(4), 364-393. 

 

Shaikh, J. H., Jain, N. K., & Pathak, S. (2016). Investigations on surface quality improvement of straight bevel gears by 

electrochemical honing process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering 

Manufacture, 230, 1242–1253. 

 

Shaikh, J. H., Jain, N. K., & Pathak, S. (2016). Investigations on surface quality improvement of straight bevel gears by 

electrochemical honing process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering 

Manufacture, 230, 1242–1253. 

 

Tham, J. Y., Ranganath, S., Ranganath, M., & Kassim, A. A. (1998). A novel unrestricted center-biased diamond search algorithm 

for block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 8(4), 369-377. 

 

Valdez, F., & Melin, P. (2007). Parallel evolutionary computing using a cluster for mathematical function optimization. En NAFIPS 

2007-2007 Annual Meeting of the North American Fuzzy Information Processing Society (pp. 598-603). IEEE. 

 

Vikhar, P. A. (2016). Evolutionary algorithms: A critical review and its prospects. En 2016 International Conference on Global 

Trends in Signal Processing, Information Computing and Communication (pp. 261-265). IEEE. 

 

Wang, D., Tan, D., & Liu, L. (2018). Particle swarm optimization algorithm: an overview. Soft Computing, 22, 387-408. 

 

Zolpakar, N. A., Lodhi, S. S., Pathak, S., & Sharma, M. A. (2020). Application of multi-objective genetic algorithm (MOGA) 

optimization in machining processes. En K. Gupta & M. Gupta (Eds.), Optimization of Manufacturing Processes. Springer Series in 

Advanced Manufacturing. Springer. 

 

Zolpakar, N. A., Lodhi, S. S., Pathak, S., & Sharma, M. A. (2020). Application of multi-objective genetic algorithm (MOGA) 

optimization in machining processes. En K. Gupta & M. Gupta (Eds.), Optimization of Manufacturing Processes. Springer Series in 

Advanced Manufacturing. Springer. 

 

Zolpakar, N. A., Yasak, M. F., & Pathak, S. (2021). A review: use of evolutionary algorithm for optimization of machining 

parameters. International Journal of Advanced Manufacturing Technology, 115, 31-47. 

 

Zolpakar, N. A., Yasak, M. F., & Pathak, S. (2021). A review: use of evolutionary algorithm for optimization of machining 

parameters. International Journal of Advanced Manufacturing Technology, 115, 31-47. 

 


