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Abstract. The microclimate inside a greenhouse forecast has been a 

case of study in recent years; an adequate forecast of variables such as 

internal temperature helps farmers prevent losses in the harvest. In this 

investigation, the forecast of the greenhouse internal temperature is 

implemented through Recurrent Neural Networks (RNN) topology 

with Long-Short Term Memory (LSTM) algorithm. The analysis is 

performed with the many to one configuration for a sequence of three 

input elements and one output element for each of the year's four 

seasons. The metrics used for the analysis and validation of the data 

were the RMSE, MAE, R2, and Ceff. These metrics provide the level 

of efficiency and goodness of the RNN-LSTM showing how the 

variables considered provide significance to the forecast of one hour 

into the future of the internal temperature. It is shown that the LSTM 

algorithm within the RNN is an effective tool for a good internal 

temperature forecast in time series for each season, significantly 

helping the forecast of climatic variables inside a greenhouse. 
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1 Introduction 

 

Recently, the time series prediction model has been actively used in several fields, including 
attempts to develop prediction models for greenhouses [1]; techniques such as computational fluid dynamics 

(CFD) have been applied focused on real-time monitoring implemented in Matlab [2]; wireless sensor network 

systems for data monitoring and use with LSTM algorithm [3]; and Backpropagation Multilayer algorithms (BP-

ML) [4].  
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Other forecasting systems used inside greenhouses have been models using empirical composition in conjunction 

with LSTM algorithms (EEMD-LSTM) [5]. In [6], models based on Recurrent Neural Networks (RNN) and in 

[7] RNN with Long-Short Term Memory (RNN-LSTM) algorithms are proposed. 

 

The main components of an LSTM network are a sequence input layer and an LSTM layer. A sequence input 

layer inputs the sequence or time-series data onto the network. An LSTM layer learns long-term dependencies 

between sequence data time steps [8-10]. Thus, the RNN model is used to carry out forecasting work from time 

series. In [1] and [11], RNNs based on an Elman structure were used to simulate the direct dynamics of 

greenhouse temperature and hygrometry. However, such studies used the current value of the target parameter 

as the input variable for the prediction model, making overfitting quite likely [12]. 

 

Consequently, RNNs are suitable for sequential data processing tasks, including financial forecasting, natural 

language processing, and weather forecasting [13-14]. The LSTM algorithm reinforces the RNN, turning it into 

a powerful tool for solving time series and pattern recognition [1] [7]. 

 

In [7] and [15], the efficiency of the suggested model is evaluated using different statistical measures such as the 

root mean square error (RMSE), mean absolute error (MAE) (also seen in [3] [16]), and the Correlation 

coefficient (R2) (used also in [17]). 

 

In this study, an approach to forecasting the internal temperature of a greenhouse is developed using external and 

internal climate data captured in a given period of time by a weather station. An RNN-LSTM has been proposed 

to forecast climatic conditions within greenhouses. The data set used for this estimation considered 

environmental variables with a sequential behavior due to their effect on the model convergency over time. 

 

 

 

 

2 Related Work 

 
Numerous investigations have been carried out with the objective of forecasting temperature, humidity, solar 

radiation, and other variables within protected environments such as greenhouses. All these are in order to 

determine the growth behavior of the crop [9]. 

 

There are several forecasting models. However, in recent years predictors based on Artificial Neural Networks 

have gained importance due to the range of tools provided by Machine Learning and the structures of 

algorithms. 

 

Dae-Hyun et. al [9]  show  comparisons  between  different  structures  considering various learning algorithms 

for the time series prediction. Abdulkarim et.al [11] show the advantage of the RNN, which can feedback the 

neuron output signal to the same neuron in the next time step. 

 

The  metrics  usually  used  to  assess  LSTM  prediction  performance  are  the mean square error (MSE), the 

mean absolute error (MAE), the mean absolute percentage error (MAPE), the square root of the mean square 

error (RMSE),and the Nash-Sutcliffe coefficient of efficiency (NSCE)[9], [11]. 

 

The LSTM algorithm has a significant advantage in expanding the memory capacity of the neural network. This 

characteristic leads to keeping a vast set of background data as a reference for the forecasting system. Keeping 

a large amount of data can significantly impact the accuracy of the prediction, reducing the RMSE and MAE 

to 0.5 and 0.004, respectively [2]. 

 

Singh [16] implements the RNN-LSTM to work with time series to forecast the Temperature and Relative 

Humidity inside a greenhouse. For the temperature model, the metrics implemented for its validation were the 

MAE, RMSE, and , obtaining MAE values of 0.488 for the temperature forecast, guaranteeing that the 

reliability of the forecast is within ±1°C. The RMSE obtained is 0.865, and the coefficient of determination 
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is 0.953, which indicates that the general dispersion is small and does not cause a significant error with the 

observed temperature. 

The  RNN-LSTM  training  datasets  can  be  selected  in  two  ways.  One way can be with 90% of the data 

sequence and the remaining 10% for testing and validation of the network. The other way is with 80% of the 

data sequence for training and the remaining 20% for network testing and validation. All the data must be 

normalized [3]. 

 
3 METHODOLOGY 

 

The present research work presents new contributions for the modeling of the dynamic system using RNN and 

Deep Learning, with the use of the Long Short Term Memory (LSTM) algorithm. This type of Recurrent Neural 

Network was proposed in Hochreiter and Schmidhuber in 1997 [18]. In which a memory cell and input, output 

vector, and a forget gate were introduced, such networks do not present the leakage gradient problem and can 

preserve the information for more extended periods [18] [19]. 

 

The RNN-LSTM topology is based on a generalization of the feedforward neural network that has internal 

memory. The RNN is recurring in nature as it performs the same function for each data input (Figure 1) [20], 

while the output of the current input depends on the last calculation. After the output is produced, it is copied 

and sent back to the recurring network. It considers the current input and the output calculated for the previous 

input to make a decision. The ADAM algorithm was adopted to make the calculation of the LSTM network 

more efficient. 

 The training set was used to fit the models and predictions corresponding to the validation set, then the mean 

square error (RMSE) of those predicted values was measured [21]. 

 

 
Figure 1. RNN Structure. 

Within the RNN-LSTM structure (Figure 2), it first takes X0 from the input sequence and then generates h0, 

which together with X1 is the input for the next step. So h0 and X0 is the input for the next step. Similarly, h0 of 

the following is the input with X2 for the next step, and so on. This way, it keeps remembering the context during 

training. 

 
Figure 2. LSTM Structure, Copyright 2020, MathWorks Inc. 

 

The data flow behavior over time t is shown in table 1. It can be seen that the Activation function is a sigmoid 

function. 

Table 1. LSTM structure equations 

Nomenclature Definition Formula 

 Input Gate  

 Forget Gate  

 Candidate Gate  

 Output Gate  
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The number of units in the hidden layer will influence the adjustment effect. The batch size must be selected in 

a way that allows the NN training to converge. Also, if the batch is too large, the required memory will increase 

significantly [7]. 

 

The criteria for evaluating the goodness of the network based on the fit are shown in Table 2 [22]. 

 

Table 2. Metrics for the evaluation of the RNN-LSTM 

Evaluation RMSE  

Very good ≤ 0.30 ≥ 0.91 

Good 0.30 – 0.40 0.84 - 0.91 

Acceptable 0.40 – 0.50 0.75 - 0.84 

Not acceptable > 0.5 < 0.75 

 

The data collection of the climatic variables was carried out in a greenhouse with a curved roof (165m2 in area, 

27.5m long, 6m wide) located in Mezquitera Sur, at Juchipila, Zacatecas, Mexico. This type of greenhouse is 

traditionally used without any climate control equipment inside and with natural ventilation. 

 

 A Davis Vantage Pro2 meteorological station was used, which monitored internal and external relative 

humidity and temperature, solar radiation, outdoor temperature, wind direction, wind speed, and time of day. 

The training and validation were made in a PC with Intel (R) Core (TM) i5-9300H 2.40 GHz quad-core 

processor with a 16 GB memory. The operating system was Windows 10 64-bit. Matlab software, applying the 

LSTM Networks library, was used for design. 

 

The data collection was carried out from July 12, 2020, to July 12, 2021, with sampling in 5-minute intervals, 

which included the parameters of external and internal climatic variables of interest, taking 105,120 samples 

for training and testing of the RNN-LSTM. 

 

The climatic variables considered in the research work were external temperature (To) in °C, relative humidity 

(Ho) in %, interior relative humidity (Hi) in %, internal dew point (Di) in %, External solar radiation (Rs) in 

W/m2. These climatic variables were selected after a series of trials where the RMSE could be within acceptable 

values. The climatic variables selected presented a sequenced behavior of the data during periods of 24 hours of 

observation. 

 

The data were grouped by seasons of the year (summer, autumn, winter, and spring, with 91 days per season) in 

order to test an RNN-LSTM for each season. The number of combinations tested was obtained from the five 

variables of interest in arrangements of three input elements. The RNN-LSTM was trained with the 80-20 

arrangement, which includes 80% training data and 20% test data. From the 80-20 sequence, the parameters of 

interest are obtained for their respective analysis based on the results of the training model presented. 

 

 The goal is to predict the internal temperature, one hour into the future. The RNN-LSTM structure was defined 

with 250 hidden layers. 

 

Square Mean Error (RMSE), the Percentage Absolute Mean Error (MAPE), the Determination Coefficient (R2), 

and the efficiency Coefficient (Ceff) were used to evaluate the generated RNN-LSTM goodness. 

 

4 Experimental Results 

 

The statistics metrics for the RNN-LSTM goodness achieved for the summer season are shown in Table 3; 

metrics for autumn are presented in Table 4; Table 5 shows results for winter, and finally, Table 6 presents 

metrics for spring: 

 

Table 3. Values obtained to determine the efficiency of the RNN-LSTM in the summer season 

Input sequence RMSE MAE R2 Ceff 

Hi-Id-To 0.3333 0.0050 0.9991 0.9991 

Hi-Ho-To 0.9231 0.0194 0.9929 0.9925 
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Hi-To-Rs 1.4508 0.0361 0.9824 0.9822 

Id-Rs-To 1.6820 0.0288 0.9764 0.9737 

Ho-To-Rs 3.4302 0.0454 0.9018 0.8830 

Hi-Id-Rs 0.3306 0.0046 0.9991 0.9991 

Hi-Id-Ho 0.4203 0.0062 0.9985 0.9985 

Hi-Rs-Ho 1.5805 0.0432 0.9792 0.9790 

Id-Rs-Ho 1.6487 0.0317 0.9773 0.9749 

Id-Ho-To 1.5953 0.0325 0.9788 0.9792 

 

The results found for the autumn season (Table 4) were: 

 

Table 4. Values obtained to determine the efficiency of the RNN-LSTM in the autumn season 

Input sequence RMSE MAE R2 Ceff 

Hi-Id-To 0.3822 0.0090 0.9993 0.9993 

Hi-Ho-To 1.4106 0.0355 0.9904 0.9912 

Hi-To-Rs 5.9674 0.0788 0.8282 0.7461 

Id-Rs-To 3.3693 0.0615 0.9452 0.9239 

Ho-To-Rs 1.8026 0.0495 0.9843 0.9857 

Hi-Id-Rs 0.3968 0.0095 0.9992 0.9992 

Hi-Id-Ho 0.3992 0.0105 0.9990 0.9990 

Hi-Rs-Ho 3.4420 0.1764 0.9428 0.9472 

Id-Rs-Ho 3.3554 0.0708 0.9457 0.9225 

Id-Ho-To 3.3050 0.0677 0.9473 0.9284 

 

The results found for the winter season (Table 5) were: 

 

Table 5. Values obtained to determine the efficiency of the RNN-LSTM in the winter season 

Input 

sequence 
RMSE MAE R2 Ceff 

Hi-Id-To 0.3899 0.0103 0.9982 0.9982 

Hi-Ho-To 1.7979 0.0418 0.9877 0.9889 

Hi-To-Rs 2.3246 0.0525 0.9794 0.9758 

Id-Rs-To 4.1677 0.0736 0.9338 0.9189 

Ho-To-Rs 2.0006 0.0464 0.9848 0.9859 

Hi-Id-Rs 0.3311 0.0100 0.9974 0.9973 

Hi-Id-Ho 0.3872 0.0103 0.9981 0.9981 

Hi-Rs-Ho 3.5499 0.1386 0.9520 0.9499 

Id-Rs-Ho 2.2684 0.0630 0.9804 0.9798 

Id-Ho-To 1.7366 0.0550 0.9885 0.9899 

 

The results found for the spring season (Table 6) were: 

 

Table 6. Values obtained to determine the efficiency of the RNN-LSTM in the spring season 

Input sequence RMSE MAE R2 Ceff 

Hi-Id-To 0.4587 0.0119 0.9997 0.9925 

Hi-Ho-To 3.4945 0.0946 0.9405 0.9340 

Hi-To-Rs 2.3948 0.0550 0.9721 0.9742 

Id-Rs-To 2.0974 0.0366 0.9786 0.9809 

Ho-To-Rs 2.8181 0.0705 0.9613 0.9623 

Hi-Id-Rs 0.6445 0.0140 0.9970 0.9970 

Hi-Id-Ho 0.6932 0.0220 0.9952 0.9918 

Hi-Rs-Ho 2.7469 0.0659 0.9633 0.9588 

Id-Rs-Ho 2.3074 0.0511 0.9741 0.9777 

Id-Ho-To 2.8519 0.0550 0.9604 0.9659 
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From the metrics obtained, it was observed that three of the ten sequences yielded good forecast results of 
the greenhouse internal temperature. In Table 7, a comparison of statistical meter between this work and others 
found in the literature for the same application is shown. 

 

Table 7. Comparison of parameters obtained. 

Implemented model RMSE MAE R2 Ceff 

Hi-Id-To (summer) 0.3333 0.0049 0.9991 0.9991 

Hi-Id-Rs (spring) 0.6445 0.0140 0.9970 0.9970 

Hi-Id-Ho (spring) 0.6932 0.0220 0.9952 0.9918 

[5] (RNN ) 1.7963 1.3431 - - 

[5] (LSTM) 1.8044 1.3521 - - 

[5] (EEMD-LSTM) 0.7098 0.5336 - - 

[6] (RNN) 0.865 0.488 0.953 - 

[4] (ML-BPP) 0.711 0.558 0.980 - 

[2] (CFD) 2.3518 2.0312 - - 

 

The results of Table 7 show that the model applied with RNN-LSTM is suitable for forecasting the internal 
temperature one hour ahead. Even when two combinations reach unacceptable RMSE values in the spring season, 
the Hi-Id-To combination maintains acceptable RMSE results in all four seasons of the year. 

Figure 3.a shows the Ti forecast for the Hi-Id-To combination for the summer, and figure 3.b shows the Ti 
forecast for the Hi-Id-Rs combination in the spring.  

 

Figure 3.a Ti forecast for the Hi-Id-To combination for the summer. 

 

Figure 3.b Ti forecast for the Hi-Id-Rs combination in the spring. 

Figure 4.a shows the behavior of RMSE and MAE for the Hi-Id-To combination during the summer season as 
well as figure 4.b shows the behavior of RMSE and MAE for the same combination within the season of winter. 
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Figure 4.a Behavior of RMSE and MAE for the Hi-Id-To 

 

Figure 4.b behavior of RMSE and MAE for the same combination within the season. of winter 

Figure 5 shows the behavior of the Ti predicted for a time greater than one hour, this prediction was made for 
the Hi-Id-To combination in the summer season. 

 

Figure 5. Average forecast sequence. 

 

5 Conclusions and Directions for Further Research 

 
From the results obtained, it is observed that three of the ten of the analyzed combinations present acceptable 

results, from this it is determined that the combination of Hi-Id-To variables turns out to be effective for the 
forecast of the internal temperature in the four seasons of the year, reaching values of up to RMSE = 0.3333 
and Ceff = 0.9991 being acceptable within the validation for the RNN-LSTM, showing that this model is a better 
predictor compared to techniques such as CFD,    EEMD-LSTM and even the RNN or the LSTM algorithm 
separately, likewise it is observed that the difference between the predicted values and the observed values for 
Ti is small, this is corroborated by the values obtained by the MAE of up to 0.0049 between forecast and 
observation. as well as the coefficient of determination R2 with results of up to 0.9991, this value being an 
indicator of a good correlation between data, the Ceff presents good results as However, the literature shows it; 
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however, for this study it was not possible to compare it since comparative research was not contemplated or 
some only estimated the coefficient of relation R2. 

The model applied in this research (RNN-LSTM), shows that, in order to make a forecast with acceptable 
results, a cycle of 91 days (approximate duration of each season) and samples at intervals of every 5 minutes 
for the climatic variables of interest, is an appropriate period in the adequate prediction for the internal 
temperature (Ti) in a greenhouse. 

For future work, it is considered to make the comparison of the efficiency against other predictors such as 
Convolutional Neural Networks with Long-Short Term Memory algorithm (CNN-LSTM), Support Vector 
Regression (SVR). 
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