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Abstract. In the biological area, the short reproductive 

cycle in rodents is useful because it allows analyzed 

electrophysiological properties, behaviors, or drug effects 

through the changes observed during this period. This 

cycle is composed of 4 stages in which the classification is 

determined by vaginal cytology. 

Although automatic approaches have been used for the 

classification of these stages, they are computationally 

expensive and require a great number of images for 

adequate performance. 

In this paper, we test different models of dendritic neural 

networks (DNN) trained by stochastic gradient descent to 

classify a short number of images and four classical 

contrast enhancement methods. We extract texture features 

and use standard and DNN classifiers to recognize the 

images. 

From the experiments, it seems that DNNs have a more 

stable behavior concerning the standard classifiers 

according to the standard deviation presented, being this a 

desirable property for a model. We consider that DNN 

could be an adequate alternative for the classification of 

estrous cycle images. 
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1 Introduction 

 
Computational vision is applied in different areas [1,2,3]. In Biology, the analysis of rodent tissues is useful to 

study physiological processes because these are carrying on short periods. The reproduction is an ideal 

process for researching changes along a cycle, such as fertility rates, effects of treatments, or environmental 

diverse conditions, among others [4,5]. The reproductive cycle in rodents is named Estrous cycle, it is formed 

by four phases: proestrus P, estrus E, metestrus M and diestrus D. Knowledge of these stages is important for 

interpretations of female animals’ data, whereas their identification is through the observation of cells in 

vaginal smears where properties like type, number, shape, size, and proportion of cells are evaluated [6,7]. 

However, recognition is a manual task performed by an expert, so the analysis is subjective due to the 
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particular skills of each examiner. Furthermore, the analysis is time consuming. Thus, computational vision 

techniques are helpful to address the automatic recognition problem of estrous cycle. 

 

One aspect that has influenced the low use of these techniques is the scarce amount of correctly labeled data 

for an adequate validation of the models. Proposals found so far include a quantitative method for assessing 

Estrous cycle stages  [8]. However, the method focuses on showing trends between diverse cell types in each 

stage. A proposal that enables more efficient cycle stage data analysis and pattern visualization is propose in 

[9], while in [10] the visual classification of the estrous cycle images is addressed by using support vector 

machines, multilayer perceptron networks, and convolutional neural networks [11]. On the other hand, neural 

networks with dendritic processing have been used in recent years to solve different classification problems 

[12,13,14]. The main feature of dendritic neural networks (DNNs) is that they generate closed decision 

boundaries with a single processing unit [15,16,17,18], which is useful for solving nonconvex problems 

without hidden layers. This simplicity represents an advantage over CNNs due to the computational savings 

involved. In [19,20], these networks use the fusion of linear units and a type of DNN as a form of hybrid 

network. 

 

In this work, for the first time, we evaluate the performance of dendritic neural networks on the classification 

of estrous cycle images from texture features. These features have been selected due to their rotation, scale, 

and translation invariance properties. It is important to mention that our objective is to know the impact of 

these models for pattern classification in data sets for a problem that has been little explored, and not to 

exceed the classification rate of previous works [10,11]. In the next section, the materials and methods are 

described. Section 3 presents the proposed methodology. In section 4, experiments and results are shown. 

Conclusions are included in section 5. 

 

 

2  Materials 
 

In this section, we provide the theoretical concepts that support this research work. First, we describe the 

methods applied to the data for the construction of the datasets used in the experiments. Subsequently, the 

general characteristics of the classifiers evaluated are described. 

 
2.1 Contrast enhancement methods 

 

The simplest kinds of image processing are point methods, where each output pixel value depends on an input 

pixel value; including some globally recovered information or parameters. Common techniques of image 

enhancement as histogram equalization (HE), adaptive histogram equalization (AHE), and local saturation 

(LS) are in this category. We decided to use these because the aim is to enhance details over small or regular 

areas in the images [21]. 

 

HE enhances the contrast of images by transforming the values in an intensity image so that the histogram of 

the output image approximately matches a specified histogram, uniform distribution by default. Whereas, 

AHE performs contrast-limited adaptive histogram equalization. Unlike HE, it operates on small data regions 

(or tiles) rather than the entire image. On the other hand, LS increases the image contrast by mapping the 

values of the input intensity image to new values, hence n% of the data is saturated at low and high intensities 

of the input data. Furthermore, we use an automatic contrast enhancement (ACE) proposed in previous work 

[22], which enhances the contrast on local areas through a histogram approximation using differential 

evolution. An advantage of this method is the possibility of defining in which areas of the image we want to 

contrast enhancement. Thus, clearer or darker regions (Cr or Dr) can be selected for the enhancement.  

 

2.2 Classifiers 

 

Most classifiers used in machine learning require features extracted previously in a manual or semi-automatic 

way. Classifiers as multilayer perceptron (MLP), random forest (RF), and the smooth dendrite morphological 

neurons (SDMN) are of this type. The firsts are known for their good performance in diverse applications, 

whereas the SDMN is a last generation net recently proposed by [23] that has a good generalization capacity. 
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Convolutional neural networks (CNNs) are the most representative approach for automatic classification due 

to they automatically extract features and perform classification. These models do not need previous image 

processing or explicit feature extraction. Instead, they use the image to find adequate descriptors for image 

classification. It is assumed that learning occurs by using patterns directly from the input image data 

exclusively, without considering previous knowledge. 

 

Dendritic neural networks (DNN) are neural classifiers that can enclose patterns on a closed decision 

boundary with only one neuron. The Dendritic morphological neuron (DMN) creates a hyper box by finding 

the values for two opposite vertexes, and it uses lattice algebra operators like min, max, addition, and 

subtraction [15,24]; the classification performance of this net is evaluated and improved in [25]. In addition, 

there are hybrid models with DMN and linear neurons [18,19,20]. Another DNN is the Dendritic ellipsoidal 

neuron which uses the Mahalanobis distance to determine the decision boundary to enclose the patterns into a 

hyper ellipsoid [21]. As a simplification of this model, a dendritic spherical neuron that only uses the centroid 

and radius to classify the pattern is proposed in [22]; and a combination of DEN-perceptron and DSN-

perceptron is proposed in [23] as a new hybrid architecture for classification.  

 

2.3 Dendritic Morphological Neuron 

 

Dendritic Morphological Neuron (DMN) segments the input space into hyperboxes of 𝑁 dimensions where 

𝑁 ∈ 𝐼+. After processing the data, the output 𝑑𝑐(𝑥) is given by the equations (1) and (2): 

𝑑𝑐(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐

(ℎ𝑘,𝑐(𝑥)) (1) 

ℎ𝑘,𝑐(𝑥) = 𝑚𝑖𝑛
2

(𝑚𝑖𝑛
𝑁

(𝑥𝑖 − 𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥 − 𝑥𝑖)) , 𝑖 = {0,1,2, … 𝑛} 
(2) 

Here, ℎ𝑘,𝑐(𝑥) is the output of a dendrite, 𝑘 indicates a specific dendrite and 𝑘 ∈ 𝐼+, 𝑐 represents the class and 

𝑐 ∈ 𝐼+, 𝑥 is an input vector and 𝑥 ∈ 𝑁 , 𝑤𝑚𝑖𝑛  and 𝑤𝑚𝑎𝑥  are the weight vectors that represent the opposite 

vertices of the hyperbox, If  ℎ𝑘,𝑐 ≥ 0, it belongs to the class, otherwise, it does not belong to it as it shows 

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Architecture of Dendrite Morphological Neuron. (b) Example of an hyperbox in 2D. 

 
2.4 Dendrite Ellipsoidal Neuron 

 
This neuron uses the Mahalanobis distance to determine if the output 𝜏𝑗 belongs to a class or not, where : 

𝜏𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘(𝜏𝑗
𝑘) (3) 

𝜏𝑘
𝑗

= (𝑥𝑖 − 𝜇𝑘)𝑇 ∑(𝑥𝑖 − 𝜇𝑘)

−1

𝑘

 

 

(4) 

Here, 𝜏𝑗
𝑘 is the output of a dendrite, µ𝑘 is a mean vector, and ∑−1

𝑘  is a covariance matrix and associated 

with the 𝑘-th cluster, 𝐾 = 1, . . . , 𝑘, and 𝑥𝑖 is the input pattern.  A pattern is assigned to the class whose 

(a) (b) 
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dendrite output outputs the minimum distance that is  ff ℎ𝑘,𝑐 < 0, then the input or if  ℎ𝑘,𝑐 = 0,  otherwise, it 

is declared to be outside of the class as it shows Figure 2. 

 

          

 

 

 

 

 

 

 

 

 

Figure 2. (a) Architecture of Dendrite Ellipsoidal Neuron. (b) Example of an hyperellipsoid in 2D 

 
2.5 Dendrite Spherical Neuron 

 
DSN compares the distance of every input data to the center of the hypersphere against its radius as it shows 

the equations (5) and (6):  

𝑑𝑗(𝑥) = 𝑚𝑎𝑥 (ℎ𝑖,𝑗(𝑥)) , 𝑖 = 1, . . . 𝑙𝑗 (5) 

ℎ𝑖,𝑗(𝑥) = 𝑟𝑖,𝑗 − ‖𝑥 − 𝑐𝑖,𝑗‖
2
 (6)  

Where, ||∗|| is the Euclidean norm. 𝑐𝑖,𝑗 ∈ 𝑅𝐷 is the centroid of the dendrite, and 𝑟 is the radius. If  ℎ𝑖,𝑗(𝑥) < 0 

we say that the input does not belong to the class. However, if a number greater or equal to zero is obtained, it 

means that the pattern belongs to the class, as it shows Figure 3. 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Architecture of Dendrite Spherical Neuron. (b) Example of a hyperspheres in 2D 

 
2.6 Hybrid architectures 

 
From the above three neurons combine with a classical perceptron we get 6 different models, two of them, 

morphological-linear neural network and linear-morphological neural network proposed by G. Hernandez 

[19], and another four inspired in these two model by changing the dendrite part by DSN or DEN 

architectures. To include all of them, we are going to refer to the name of dendrite-linear neural networks and 

linear-dendrite neural networks. 

 

2.6.1 Dendrite-linear neural networks 

 
The first part of this architecture is a dendrite processing that could be either DMN, DEN or DSN dendrite 

neural networks as feature extractor and then a perceptron layer as an output with a sigmoid function for bi-

classes problems and softmax layer for multi-class problems. Thus, we can define the model with: 

 

𝑌(𝑥) = 𝜌(∑ (𝑤𝑖𝑓𝑖(𝒙) + 𝑏)𝑘
𝑖=1 )      (7) 

 

(a) (b) 

(a) 
(b) 
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Where 𝑓𝑖(𝑥) is one of  the outputs of equations: 2, 4, or 6 with 𝑡𝑎𝑛ℎ as activation function; i is the number of 

dendrites and 𝜌 is the activation function that fits the problem. In figure 4 we can see the tree kinds of hybrid 

neurons for multiclass classification. 

 

   
 

                                  (a)                                               (b)                                                     (c) 

 

Figure 4. (a)Architecture of a DMN-Linear neuron, (b)Architecture of a DEN-Linear neuron and 

(c)Architecture of a DSN-Linear neuron 

 

2.6.2 Linear-dendrite neural networks 
 

For this second architecture we change the order of the unit, using a layer of perceptron as feature extractor 

and then dendrites unit as output layer with a sigmoid function for bi-classes problems and softmax layer for 

multi-class problems. Thus, we can define the model with: 

 

𝑦𝑖(𝑥) = 𝑾𝒕 𝒙 + 𝒃𝑖       (8) 

 

𝑌𝑐(𝑥) = 𝑓(𝑦𝑖)      (9) 

 

Where 𝑦𝑖  is the output of the perceptron layer, W is a matrix of weights, 𝒃𝒊  is a vector of bias; 𝑌𝑐(𝑥) is the 

output of the hybrid neuron 𝑓(𝑦𝑖) is a layer of one of de dendrites models, could be equation 2, 4 or 6 with a 

sigmoid as  activation function for bi-class classification and softmax for multi-class classification. In figure 5 

we can see the tree kinds of hybrid neurons for multiclass classification. 

 

    
 

                                  (a)                                               (b)                                                     (c) 

 

Figure 5. (a)Architecture of a Linear-DMN neuron, (b)Architecture of a Linear-DEN neuron and 

(c)Architecture of a Linear-DSN neuron 

 

 

3 Methodology 

 
In this work we use a balanced dataset of 344 images with 86 for each stage of the estrous cycle. Images were 

acquired with an optical microscope using a magnification of 400X and a camera Logitech C170. These 

images are in .jpg format with a resolution of 100 ×90 [26]. From the dataset, we use the G band images 

because this shows better contrast concerning the R and B bands. Datasets used in the experiments are built 

applying the contrast enhancement methods ACE (Cr, and Dr), HE, AHE, and LS. ACE was implemented 

according to [22], and the methods remainder are computed with the functions histeq, adapthisteq, and 

imadjust, respectivetly from the image processing toolbox of Matlab with the default parameters for these 
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functions. Additionally, a dataset is built from the images of band G without applying contrast enhancement. 

In this way, we obtain six datasets for the experiments. Error! Reference source not found. shows the 

images obtained from the methods applied.  

 

 
Figure 6. Images of datasets used. Row 1. Band G, row 2. ACE (Cr), row 3. ACE (Dr), row 4. HE, row 5. 

AHE, and row 6. LS. 

 

  
 

Figure 7. General flowchart of the proposed methodology 
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First, we apply the contrast enhancement methods mentioned in the previous section. In addition, we consider 

images without applying the contrast enhancement to compare. After that, textural features based on the gray 

level co-occurrence matrix (GLCM) are extracted. These features are used by the classifiers MLP, RF, SDMN 

and, DNN. On the other hand, to compare with an automatic classification method, we use a CNN. Finally, 

we assessment the classification performance for each image class P, E, M, and D, which depict the four 

phases of the estrous cycle. To test the classifiers MLP, RF, SDMN, and DNN we use textural features since 

the images are in grayscale; whereas CNN uses the images directly. Figure 7 shows the general flowchart of 

the proposed methodology. 

 

The textural features for the experiments are computed from the gray level-co-occurrence using eight gray 

levels. Because the GLCM probabilities represent the conditional joint probabilities of all pairwise 

combinations of gray levels in the spatial windows of interest given the parameters interpixel distance (δ) an 

orientation (θ), we adjust δ = 1, and θ = {0, 45, 90, 135}. 

 

We use seven shift-invariant features suggested by [27]: uniformity, entropy, dissimilarity, inverse difference, 

inverse difference moment, and correlation. These features are computed for each value of θ. Later, we 

average the four interpixel orientations for each feature, thus we obtain seven features for each image. These 

features are used independently by each classifier. For the MLP, we consider one hidden layer with 50 

neurons and the activation function traingdx from the Matlab toolbox. These parameters were obtained by 

experimentation. RF was initialized with 500 trees and the classification is performed by majority vote as in 

[28]. SDMN was used with the parameters suggested in [23]. On the other hand, for DNN and hybrid 

neurons, we performed a grid search for hyper parameter tuning to evaluate from four to a hundred dendrites, 

with the optimizers: RMSprop, SGD and Adam, and tanh as activation function to handle negative values. 

 

 

4 Experiments and Results 
 

The experiments were performed on a CPU i9, 64GB RAM, Windows10, graphics processing unit (GPU) 

GeForceGTX 1080, Matlab and phyton. 

 

For the experiments with the CNN, we use a structure composed by four convolutional and max-pooling 

layers. The feature maps are flattened and reduced to an output of size four. Data augmentation is used on the 

training set. The augmentation operations include horizontal and vertical reflexion. Accordingly, we have the 

addition of a random number of augmented images to the training set in each epoch. The number of filters in 

the four convolutional layers are 4, 8, 16, and 32. The training process is stopped when the validation loss 

does not decrease for 20 epochs. In all experiments, we use 50% of data for training, 20% for validation, and 

the remainder for testing. Five-fold cross-validation is used to assess the training performance, and the best 

net model from the five-fold validation is selected and used with the test set to assess the net performance. To 

evaluate the global classification performance, we repeat the experiment ten times. 

 

Table 1 Accuracy of classifiers SDMN, MLP, RF, and CNN 

Method 

 

SDMN % MLP % RF % CNN % 

Band G 62.50    ±3.55 69.23    ±4.04 64.42    ±2.82 68.27    ±4.26 

AHE 68.33    ±4.88 70.19    ±3.91 61.54    ±1.78 62.50    ±7.74 

HE 61.67    ±3.01 53.85    ±3.04 55.77    ±2.43 49.04    ±9.27 

LS 69.17    ±5.18 67.31    ±2.80 69.23    ±3.43 58.65    ±5.04 

ACE (Dr) 69.17    ±4.90 63.46    ±1.50 61.54    ±2.87 48.08    ±5.64 

ACE (Cr) 71.25    ±4.49 67.31    ±3.71 61.54    ±2.02 48.08    ±8.19 

Mean 67.02    ±4.34 65.23    ±3.17 62.34    ±2.56 55.77    ±6.69 

Min 61.67    ±3.01 53.85    ±1.50 55.77    ±1.78 48.08    ±4.26 

Max 71.25    ±5.18 70.19    ±4.04  69.23    ±3.43 68.27    ±9.27 
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Results of classification experiments for the datasets—Band G, AHE, HE, LS, ACE(Dr), ACE(Cr)— are 

presented in Table 1. Note that results in ACE(Cr) reached the best performance. In general the methods in 

which the output image does not tend to binarization are adequate for classifying when textural features are 

used. On the other hand, the average by classifier shows that classifiers with better performace are SDMN and 

MLP, whereas the worst performance is achieved by the CNN. 

 

Furthermore, we show in  

Figure 8. Confusion matrix of the best solution. Row1: stage P, Row2: stage E, Row3: stage M, Row4: stage 

D the confusion matrix for the best solution (this is, accuracy=71.25 for SDMN in Table 1). We observed that 

the stage P is the best recognized, while the stage E obtains poor classification results. 

 

 
 

Figure 8. Confusion matrix of the best solution. Row1: stage P, Row2: stage E, Row3: stage M, Row4: stage 

D 

Regarding CNN, the features are automatically extracted by the net, and the contrast enhancement methods 

are not useful for classifying, as we can see in Table 1. Finally, it is to note that method HE shows poor 

performance in all tests. Experiments with DNN include the hybrid models: P-DMN, P-DSN, P-DEN, DMN-

P, and DSN-P, as well as the standard DMN and DSN models. The results shown in Tables 2 and 3 show that 

although the performance achieved does not exceed the results of previous experiments, in all cases, the 

DNNs have a more consistent behavior for the previously tested methods. This can be noticed in the low 

average values of the standard deviation, which concerning those shown in Table 1, are significantly lower.  

 

Of the DNN variants tested, the P-DSN model showed the best performance reaching 67.11% accuracy, as 

well as the lowest standard deviation relative to the other variants evaluated. 

 

 

Table 2.  Accuracy of experimental results of  hybrid DNN 

Method 

 

P-DMN % P-DSN % P-DEN DMN-P% DEN-P % DSN-P % 

Band G 64.90   ±1.62 67.11   ±0.71 66.25   ±1.84 64.32   ±1.09 63.84   ±3.87  65.09   ±1.92 

AHE 61.34   ±1.96 62.50   ±1.48 62.98   ±2.02 59.61   ±2.01 57.49   ±1.82 60.38   ±2.18 

HE 48.26   ±1.59 47.88   ±1.65   49.51   ±1.78 50.86   ±2.08 47.30   ±2.91 50.67   ±1.29 

LS 62.78   ±4.30 63.17   ±1.36 66.05   ±2.47 64.23   ±1.65 64.42   ±5.72 65.19   ±3.95 

ACE (Dr) 61.44   ±1.69 63.36   ±1.69 54.51   ±8.33 62.30   ±1.76 58.07   ±6.79 65.38   ±1.60 

ACE (Cr) 61.53   ±1.72 62.30   ±2.81 63.84   ±2.11 61.05   ±2.14 58.26   ±3.74 59.03   ±2.55 

Mean 60.04   ±2.14 61.05   ±1.61 60.52   ±3.09 60.40   ±1.79 58.23   ±4.14 60.95   ±2.25 

Min 48.26   ±1.59 47.88   ±1.65 49.51  ±1.78 50.86   ±2.08 47.30   ±2.91 50.67   ±1.29 

Max 64.90   ±1.62 67.11   ±0.71 66.25  ±1.84 64.32   ±1.09 64.42   ±5.72 65.38   ±1.60 

 

 

It is to note from the images in Figure 6, the HE contrast enhancement method produces images with high 

contrast, such that some regions of the images with a minimal difference in their gray levels are considered 

the same region. As a consequence, the texture descriptors are not suitable for correct classification in all the 

classifiers used. On the other hand, the low performance of CNNs can be attributed to the similarity between 

the distribution of gray levels in the four classes of images, and the low number of images used. 
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Table 3.  Accuracy of experimental results of  DMN and DSN 

Method 

 

DMN % DEN % DSN % 

Band G 55.09    ±2.01 57.69    ±0.76 62.88    ±1.37 

AHE 57.69    ±1.92 57.30    ±4.16 62.88    ±1.67 

HE 51.73    ±1.76 48.46    ±0.76 51.25    ±1.29 

LS 50.09    ±3.37 62.69    ±2.91 65.28    ±3.28 

ACE (Dr) 61.34    ±2.22 55.76    ±2.46 63.26    ±1.91 

ACE (Cr) 58.94    ±3.94 57.49    ±4.45    62.5    ±2.19 

Mean 55.81    ±2.54 56.56   ±2.58 61.34    ±1.95 

Min 50.09    ±3.37 48.46    ±0.76 51.25    ±1.29 

Max 61.34    ±2.22 62.69    ±2.91 65.28    ±3.28 

 

 

5 Conclusions and considerations for Future work 
 

This work proposes use dendritic neural nets for classifying the four stages in the reproductive cycle on 

rodents (estrous cycle). The objective is to evaluate the performance of the DNN regard another classifiers 

commonly used in literature. From the results, it is worth to note that DNNs provide greater consistency 

relative to standard classifiers, although slightly lower performance. This is important because depicts the 

stable behavior of the model, which is clear from the fact that the average standard deviation for most of the 

dendritic networks tested was lower than for the MLP, RF, and CNN methods, except for the DEN-P network. 

 

It is also observed that the use of contrast enhancement techniques is not relevant in the performance of 

DNNs, and minimally so in standard classifiers. Since the performance is low for all the classifiers evaluated, 

it is clear that a feature relevance analysis is required to improve the classification rate. 

 

In future work, we like to improve the classification rate through an analysis of the features selection of 

images and, evaluate the performance of classifiers with larger, unbalanced datasets. 
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