

www.editada.org

International Journal of Combinatorial Optimization Problems and

Informatics, 13(4), Dec 2022, 36-46. ISSN: 2007-1558.

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved.

Spiking Neural Network implementation of LQR control on underactuated system

J. A. Juárez-Lora1, Humberto Sossa1, Victor H. Ponce-Ponce1, Elsa Rubio-Espino1, Ricardo Barrón Fernández1

1 Instituto Politecnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz, Esq. Miguel

Othón de Mendizábal | Col. Nueva Industrial Vallejo, Delegación Gustavo A. Madero | C.P. 07738 | Ciudad de

México, México

jjuarezl2020@cic.ipn.mx, hsossa@cic.ipn.mx, vponce@cic.ipn.mx, erubio@cic.ipn.mx, rbarron@cic.ipn.mx

Abstract. Adaptability, learning capabilities, and space-

energy efficient hardware are required in robotic

architectures, which must deal with changing dynamic

environments. Nowadays, learning algorithms are

implemented in Von Neumann Architectures, which

separate storage from processing units, making them not

appropriate for artificial neural networks (ANN), resulting

in inefficient implementations. This writing presents a

neural architecture proposal designed to implement a

control loop in a mobile wheeled under-actuated inverted

pendulum system, using spiking neural networks, linear

quadratic regulator control technique, and a neural

framework that allows us to define the neuron ensembles

specification to represent specific control signals. The

intention is to study how typical control theory algorithms

can be translated into neural structures, aiming for

neuromorphic implementation.

Keywords: Robotics, Neural Networks, Spiking Neural

Networks, Machine Learning, Neurorobotics,

Neurocomputing.

Article Info
Received March 24, 2022

Accepted August 12, 2022

1 Introduction

4.0 Industry has brought a massive proliferation in the usage of sensors and data acquisition devices for

monitoring and analysis purposes, leading to an overpass of data recollection. This challenges current

computation and storage capacities to provide Big Data process techniques and solutions for intelligent decision

making. New analysis and processing techniques, such as artificial neural networks, have proven to be very

useful in online learning scenarios [1].

Spiking neural networks (SNN), also known as artificial third-generation neural networks, intend to emulate

physical, chemical, and biological mechanisms that enable computation and Hebbian learning ocurring in

biological living systems. These models have optimal characteristics for hardware implementation [1,2] as it

promises huge parallel computing capacity, in addition to low energetic usage, setting a path towards online

learning platforms implementation with size and power restriction applications, such as robotics.

Neurorobotics [3,4] is a discipline that takes as a challenge to design control mechanisms, hardware, and

implementation techniques for robotic applications, which must learn to adapt their behavior to changes in

themselves or the environment dynamics. This situation can be seen in biological systems with growing limbs,

holding a heavy object, alien to its composition, or perhaps aging, which modifies friction in the arm or leg

joints.

mailto:jjuarezl2020@cic.ipn.mx

Juárez-Lora et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(4) 2022, 36-46.

37

Due to its analog nature, there is a lack of ease-of-access platforms for neuromorphic computation. At [31],

the authors propose hardware architectures, including neurons and memristors, and how these components can

be interconnected as an array scheme to achieve large-scale spiking systems using synaptic time-dependant

plasticity (STDP). Multiple research architectures proposals have emerged from this article, both analog and

digital. At [32], a synaptic array of 4096 memristive devices is proposed. A memristor analog crossbar circuit

is used to emulate a single layer perception for the MNIST image classification. In the analog domain, digital

efforts such as Loihi [15] or Spinnaker AI hardware accelerators have been created in private research

initiatives. As the industry focuses on typical von Neumann Architectures, these platforms are not widely

available for acquisition or commercialization.

However, simulation platforms allow academic researchers to design and study neural structures. The Human

Brain Project [5] is an organization of researchers who have created a neurorobotics platform [6] that connects

a simulated brain to a simulated or physical body, allowing researchers to explore how to control movement,

stimuli reaction, and learning from a virtual or natural environment. Another platform primarily focused on

SNN implementation is called Nengo [7-9], a tool that allows to build and design SNNs architectures. The user

can define neural models, its own learning rules, optimization methods, reuse of subnetworks, and data input,

and even has libraries for exporting these models to neuromorphic hardware or FPGA implementations.

A small tour in neurorobotics literature points towards the implementation of primitive tasks. In [10], an

adaptive control method proposed in [11] is used, allowing them to control a three-link arm in simulation, using

a spiking neural network structure designed to estimate the inverse jacobian dynamics. Here, the authors name

part of their proposed neural network as a biological name part in order to match specific tasks made by

biological brains. In [12], control of a simulated robotic arm, without path planning, is achieved using SNNs

and motor primitives. In [13], a biologically inspired spiking neural network (SNN) for soft-grasping to control

a robotic hand, used for robots interacting with objects shaped for humans, is presented. For the last example,

in [14], a hardware adaptive control implementation of a Kinova Jaco robotic arm using the Loihi platform [15]

is shown. These three examples have something in common; these are complete actuated systems.

In this work, an implementation of a linear quadratic regulator (LQR) control strategy using SNN is presented

as an introductory example of how SNNs structures can be used to process control signals, specifically, for

under-actuated systems, in order to show which obstacles must be tackled in order to perform precise control

signal representation. The Mobile Wheeled Inverted Pendulum (MWIP) is an easily controllable system for a

human with a bit of practice but a challenge in control theory. Although some of these under-actuated systems

show controllability under linearization around a certain equilibrium point, the control tasks entitle arbitrary

output reference trajectory tracking, taking the system state away from the equilibrium point, thus overcoming

a traditional obstacle to linearization-based control of nonlinear systems [16]

The structure of the article is described next. Section 2 illustrates the robotic MWIP plant, a typical control loop

strategy (LQR) used for stabilization, and its implementation using a neural modeling approach. Section 3

describes simulation parameters, configurations, and results. Section 4 boards conclusion and future work.

2 Materials and Methods

Up next, the control problem is described. First, the model dynamics and a typical control algorithm for the

system are presented. Then, to construct a matching SNN, neuron models, encoding/decoding process from the

continuous to the spiking domain, and a framework that allows us to interconnect a group of neurons to represent

our closed control loop signals is summarized.

2.1 Dynamic model of the plant

Figure 1 shows the graphical representation of the MWIP (Mobile Wheeled Inverted Pendulum). Here,

xw, yware the wheel coordinates, 𝑥𝑏 , 𝑦𝑏 are the mass center coordinates of the bar, α is the plane's angle

inclination, 𝑚𝑏 , 𝑚𝑤 stand for the bar and the wheel's mass, respectively, 𝐼𝑏 , 𝐼𝑤 are the moments of inertia from

the bar and the wheel, L is the bar's length, r is the radius of the wheel, and 𝜃𝑤 , 𝜃𝑏 are the states of the system,

which stand for the rotation's angle of the wheel, and the bar's inclination, respectively.

Juárez-Lora et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(4) 2022, 36-46.

38

Fig. 1 2D MWIP model, extracted from [17].

The robotic system corresponds to a second-order underactuated system [18]. Starting from the modeling

dynamics using Euler - Lagrange technique in [17], lead to a system with the following depiction:

M(q)q̈ + C(q, q̇)q̇ + g(q) = Bu (1)

where M(⋅) is the inertia matrix, C(⋅) groups the Coriolis terms, g(⋅) gravity forces and control terms, and B

illustrates how a control signal u is fed to the system. For a surface without inclination, α = 0, Equation (1) is

extended as:

(
(mb + mw)r2 + Iw mbLr cos(θb)

mbLr cos(θb) mbL
2 + Ib

) (
θẅ

θb̈

) + (0 −mbLrθḃ sin(θb)

0 0
)(

θẇ

θḃ

) + (
0

−mbgL sin(θb)
) = (

1
−1

)u (2)

At Equation (2), B = [1,−1]T due to the control torque u is equivalent but in opposite direction, as the motor

is mounted at the shaft of the wheel, also connected to the bar. In order to obtain the accelerations of the system,

we rewrite equation (2) as:

q̈ = M(q)−1[(Bu − C(q , q̇)q − g(q)] (3)

Both second order differential equations can be represented in four first-order equations, rewriting the system

in a space state manner, by setting x = [x1, x2, x3, x4] = [θw, θẇ, θb, θḃ]. The system can be linearized in its

equilibrium states θb = θẇ = θḃ = 0, which is equivalent to a pendulum in an upright position. Therefore, the

linealized system results in the form ẋ = Ax + Bu:

A =

[

0 1 0 0

0 0
−gL2mb

2r

z
0

0 0 0 1

0 0 −
gLmb

2r2 + gLmwmbr
2 + IwgLmb

z
0]

B =

[

0
mbL

2 − mbrL + Ib

z
0

−
Iw + mbr

2 + mwr2 − Lmbr

z]

With:

z = IbIw + IwL2mb + Ibmbr
2 + Ibmwr2 + L2mbmwr2

It can be easily shown that the system is fully controllable and observable.

Juárez-Lora et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(4) 2022, 36-46.

39

2.2 Linear Quadratic Regulator

Given a desired state vector 𝑥𝑑, a control law 𝑢 = −𝐾_𝑟 (𝑥 − 𝑥_𝑑) is proposed to achieve a stabilization task.

Here, 𝐾𝑟 can be chosen to move the closed-loop eigenvalues of the system as far as desired on the left half of

the complex plane. The Linear Quadratic Regulator [19] (LQR hereinafter) consists in to deliver full state

feedback control law method that minimizes the following cost function:

 J(t) = (∫ (x − xd)
T∞

0
Q(x − xd) + uTRu)dt (4)

Equation (4) balances the energetic cost of an effective state regulation, which is intended to be low, and a

quicker control response, which is intended to be fast. These objectives are regulated by Q = QT ≥ 0 and R =
RT ≥ 0 respectively, and they can be selected as wished to prioritize control objectives. As bigger is Q, it will

move the system to the desired vector state as soon as possible, this is, closed loop poles would be as far as

desired in the left plane, and vice versa. As big as R might be, lower control signals will be priority, while J =
lim
t→∞

x(t) = 0. As J(⋅) is a quadratic function, there exists an analytic solution for control weights in Kr given

by:

 Kr = R−1BP (5)

Where P is the Ricatti's algebraic equation solution:

 PA + APT − PBR−1BTP + Q = 0 (6)

In order to solve equation (6) there are several software implemented methods [20,21], which start from a

known A, B for a ẍ = f(q, q̇, u) system dynamics.

2.3 Neural network Modelling

Diverse models of neuron dynamics are available in the literature, from Hodgin & Huxley model [25], which

is biologically plausible but has a higher computational cost of implementation, to simpler yet useful models

such as Leaky Integrate and Fire (LIF), based on a simple equivalence between an RC circuit and membrane’s

voltage [25]. For the instant the switch closes, an input voltage is converted to an input current I_syn by the

membrane’s resistance 𝑅𝑚and fed into a membrane’s capacitance 𝐶𝑚, which will integrate its voltage 𝑉𝑚 as:

RmCm
dVm

dt
= EL − Vm + RmIsyn (7)

The membrane’s voltage accumulates up to a certain threshold value 𝑣𝑡ℎ. Then, the neuron quickly depolarizes,

𝑉𝑚 = 0, and a spike is produced. For a given 𝐼𝑠𝑦𝑛 value, the neuron will spike at a different frequency. An input

signal x(t), bounded from a minimum 𝑥min to a maximum value 𝑥max, defines the amount of current to be

provided. This process is called Encoding. Rate-based encoding algorithms interpolate [𝑥min,𝑥𝑚𝑎𝑥] with a

minimium and maximum spike frequency [𝑓min,𝑓𝑚𝑎𝑥] of one neuron [25]. However, other encoding methods,

such as population encoding [27], consider n neurons in a group, called ensemble, to encode x(t) into the spike

domain. Each neuron from the ensemble will be fed in such a way that the input signal domain is equally divided

between the 𝑛 neurons. This is called spike-based sparse coding, and it can be seen in Figure 2. More neurons

imply better signal processing, as the signal domain is divided between more neurons. The resulting network

structure approximates the original input signal according to neural heterogeneity, stochasticity, and

connectivity, which affect its performance [26].

In order to design and implement the neural network, the principles developed in Neural Engineering

Framework (NEF) [27,28] are used. NEF can be seen as a 'neural compiler' that guarantees an optimal

approximation of the defined dynamic equations by the user-defined ensembles. For a given set of signals x(t) ∈
ℝq, representing the plant’s space state vector of dimension 𝑞, an ensemble of 𝑛 neurons will encode these

signals into the spike domain, and then these spikes are used to reconstruct the original signal. This can be seen

Juárez-Lora et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(4) 2022, 36-46.

40

in Figure 3. The synaptic weights W ∈ ℝnxn matrix are composed as W = EDf, where E = [eI, … , en]
T ∈ ℝn×q

is an encoding matrix and Df = [d1, … , dn]
T ∈ ℝq×n a decoder matrix.

Fig. 2 Spike-based sparse coding. A reconstruction of the signal is obtained from combining filtered spike

trains together, and spikes are timed to make the reconstruction accurate. Extracted from [26]

Fig. 3 Neural Engineering Framework: n neurons represent q signals. Synapses then are tuned to properly

represent an input signal. Extracted from [7]

The neurons will produce spikes which will modify the weights. The spikes are produced by feeding a current

input Isyn to each neuron defined by:

Isyn(t) = αi < ei, x(t) > +βi

ai(t) = G[Isyn] (8)

Here αi > 0 are gains, eI can be seen as the vector value for which the neuron responds with the highest

frequency of spikes [30], and is set to be ||ei||2 = 1, βi(i = 1,2, … , n) are biases in order to distribute the

signal’s domain. Equation (7) defines a high-dimensional nonlinear projection of x(t), by taking its dot product

with an encoding matrix E and injecting the result as current into n neurons. G[⋅] represents the neuron

dynamics, which describe how spikes are produced for a given input current. In this article, we consider the LIF

model from Eq. (7), but other neuron models with fixed 𝑣𝑡ℎ are usable with NEF[7]. Ensembles are connected

through synwhich values must be found to represent the desired signals properly. Spiking activity would

perform modifications on Df selected to reconstruct the original signal x̂(t) from the spiking activity. This can

be accomplished by the implementation of learning rules, such as the Bernerstone-Cooper-Monroe (BCM

henceforth) theory [23,24], which describes how synaptic plasticity on cortical neurons is stabilized by the

average postsynaptic activity, or Synaptic Time-Dependant Plasticity (STDP), which sets the change of the

synapse value as a function of the pre and postsynaptic spikes [31]. The reconstruction of the signal is performed

as:

x̂(t) = (x ∗ h)(t) ≈ ∑ (ai ∗ h)(t)N
i=1 di (9)

Where * stands for convolution operation of the spikes with h(t) modeling a synapse conductance as a a low-

pass function with time constant τ:

h(t) =
1

τ
e

−t

τ (10)

Juárez-Lora et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(4) 2022, 36-46.

41

As, ideally x(t) = x̂(t), synaptic weights can be found as as a least squares optimization problem, under the

assumption of knowing the corresponding spiking activity:

Df = argminD∈Rq× n∫ ‖f(Isyn) − ∑ (ri(v) + η)di
n
{i=1} ‖

2

2
dv (11)

Where η is white gaussian noise with a variance σ2, and ri(v) replaces neural activity triggered by an input

signal as an average firing rate of the i − th neuron for a given input Isyn(x(t)), modeled as:

ri(v) = lim
t→∞

1

t
∫ ait

′dt′
t

0
 (12)

Eq. (12) demands a priori simulation of the spiking activity to obtain the firing rate of each neuron and,

subsequently, the average firing rate of the ensemble. However, solving the LIF differential equation (8) with

initial condition parameters allows us to get a function relating current with spike frequency, which can be used

to obtain the frequency response of a neuron, and then obtain the average of the ensemble for a given input [33]

3 Experimental results

In this section, a description of the proposed network structure is described, and how was implemented in the

specialized software tool. Then, the parameters of the MWIP and the control task are detailed.

3.1 Spiking neural network proposal

Fig. 4 SNN structure proposed for the control simulation, implemented on Nengo

Figure 4 shows the implemented SNN using the simulation software Nengo [22], which provides libraries for

defining and connecting ensembles, learning rules, and synaptic activity. The software allows the designer to

modify each ensemble radii to define the represented function domain. Each signal representing a space state

variable of our control loop would be encoded/decoded by a neuron ensemble, whose radius would be

determined by the signal’s minimum and maximum values. In practice, these are limited by the robot’s capacity,

as its motor has a maximum angular velocity and acceleration. By default, this radius is set between [-1,1].

However, the user can redefine it to fit the actual signal domain from the state space. Next, each of the elements

of the proposed structure is described in Table 1. The neurons in this structure are based on the LIF model, with

the parameters implemented in the library [9]. Aditionally, two python3 (v3.8) scripts, using Numpy (v1.20)

where embebbed on the Nengo (v3.1) simulation:

• Reference: A small function which return the desired vector state xd

• MWIP Animation: Node used for MWIP simulation, with one control input (u) and four outputs

(θw, θẇ, θb, θḃ)

Juárez-Lora et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(4) 2022, 36-46.

42

Table 1. Neuron ensembles of the proposed structure.

Ensemble of neurons

Description Number of

neurons

Radius

Cerebellum This ensemble will encode the state vector

from de MWIP. Called like this in a similar

fashion as [10]

1000 × 4 (−10,10)rad

s

Error For encoding the difference between actual

and reference vector state

100 × 4 (−π, π) rad

Control U Neuron ensemble which represents the

control signal for each state variable.
1000 × 4 (-350, 350)N/m

Total of neurons 8400

Algorithm 1. SNN Control Loop simulation process

Algorithm 1: SNN Control Loop

Data: x_initial, x_desired, Kr, timeline, dt

Result: x_historial, u_historial

x ← x_initial
E ← Matrix[q, n](random)

𝐷𝑓 ← Matrix[n, q](Equation 11)

For t in timeline:

Error_spikes = Encode(x(t) – x_desired(t))

Error = Decode(Error_spikes)

u_spikes = Encode(-𝐾𝑟 × 𝐸𝑟𝑟𝑜𝑟)

u = Decode(u_spikes)

�̇� = 𝐴𝑥(𝑡) + 𝐵𝑢

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑥 ̇)(𝑑𝑡)

x_historial.append(x(t))

u_historial.append(u(t))

end For

In summarizing, the synaptic weights are obtained on the initialization, using the NEF optimization described

in section 2. Each space state signal would be encoded into spikes to be processed by the net, returning the

pertinent decoded control signal. The implemented execution algorithm is shown in Algorithm 1.

3.2 Simulation Scenario

In order to evaluate the architecture performance, the MWIP starts from an initial state xinitial = [4,0,0.1,0],
with a desired vector state xd = [6,0,0,0]. Table 2 shows the MWIP model parameters used and g = 9.81m/s2.

For the control loop, u = −K(x − xd), setting Q = I and R = 0.001, the matrix 𝐾𝑟 =
 [−100,−323.3434, −542.0927, −541.08], using the described methods in [20,21]. The simulation period has

a duration of t = 20s using euler integration with a timestep of 0.1ms.

Table 2. MWIP model parameters used for simulation

Parameter mb mw L r Iw Ib

Value
1[kg] 2[kg] 1.2[m] 0.25[m]

10 [
N

m
] 10 [

N

m
]

Figure 5a) shows the generated tuning curve for one of the ensembles used in this architecture. 5b) shows the

reconstructed signal and 5c) the current neural activity

Juárez-Lora et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(4) 2022, 36-46.

43

Fig. 5 a) Tuning curve for ensemble error q0, described at Table (1) b) Represented output value c) Spiking

activity of 10 neurons from 1000 neurons available in the ensemble, elaborated with Nengo simulated

software

Figure 6 shows the MWIP space state evolution, where the initial values successfully evolve towards the desired

vector state, with a smooth transition and finishing with a relatively small error. Due to spike-based sparse

coding, the control signal is stochastic and noisy (Comparing Fig 6 and Fig.7), But it successfully achieves the

control task.

3.3 Varying the desired position

Synaptic weights were optimized to represent the signal’s domain based on the ensemble radius described in

Table 1, providing the appropriate stimuli for each ensemble and allowing the network to perform correctly for

bounded error and control signals. However, as the difference between the MWIP’s initial condition 𝑥 and the

desired position 𝑥𝑑 increases, the corresponding error and control signals go beyond the encodable domain. In

order to test how far the system can go, 100 simulations of 10 seconds each are performed with the same

parameters as before, except for 𝑥𝑑 = [𝜃𝑤
𝑑 , 0,0,0], in which the desired angular position of the wheel value 𝜃𝑤

𝑑

varies from 2 to 7 radians. MWIP initial state remains as 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = [4,0,0.1,0], represented as a red dotted

vertical line in Fig. 8, which shows the Root Mean Squared value of steady-state error at 𝑡 = 10𝑠:

𝑅𝑀𝑆 = √∑(𝑥𝑑 − 𝑥)2 (13)

Here we can observe an inner region where error tends to almost zero values, which means that for this desired

state range, all the error and control signals were encodable, and the MWIP could reach the desired state.

Outside this region, as the desired state goes further, error and control signals are out of the set radii, and the

ensembles cannot encode and decode these signals properly, leading to divergence.

4 Conclusions and Directions for Further Research

This article uses plausible neurological models to assemble a neural structure that can perform control regulation

tasks over a robotic underactuated system. Control theory meets neuroscience, as neural architectures are

designed by allocating resources to specific requirements in a control loop algorithm, signal representation and

state estimation. It is shown that a correct radius specification for each ensemble reflects on the precision of its

output control signal. Nonetheless, the produced output control signal for the robotic system has a stochastic

noisy nature, similar to output control strategies such as sliding modes [17]. While noise added by the neural

dynamics might be problematic, it adds a small value, avoiding singular matrices during the encoding and

decoding process used in NEF [7]. This also might be beneficial to avoid an overfitting case, and foster a quick

update in synapses. We consider this work leads to possible future research, like a Kalman filter implementation

in SNN networks for signal cleaning, or online dynamics estimation of the plant in order to compute the control

signal, exploring other control techniques such as ADRC [29] for unknown plant dynamics and possible

neuromorphic implementation in FPGA or ASIC devices.

a)

b)

a) b) c)

Juárez-Lora et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(4) 2022, 36-46.

44

5 Acknowledgements

This work was supported by the Instituto Politécnico Nacional (IPN) and Secretaría de Investigación y Posgrado

(SIP-IPN) under the projects: 20210124, 20221780, 20211657, 20220268, 20212044, 20221089, 20210788 and

20220226, the Comisión de Operación y Fomento de Actividades Académicas (COFAA-IPN), also the Consejo

Nacional de Ciencia y Tecnología (CONACYT-México) and 6005 (FORDECYT-PRONACES). Juárez-Lora

would like to thank to CONACYT for the grant proportioned for his PhD studies.

Fig. 6. Evolution of the Vector State a) simple control loop simulation without SNN. b) using the proposed

SNN structure

Fig. 7. Evolution of control signal for each state. A) simple control loop simulation without SNN. b) simulating

the proposed SNN structure

Fig. 8 Resulting RMS value, varying the desired state from a fixed initial state between 100 iterations.

a)
b)

0 2 4 6 8 10 12 14 16 18 20

time[s]

-1

0

1

2

3

4

5

6

7

S
p
a

c
e

 s
ta

te
 r

a
d
,

ra
d

/s

Segway vector space without SNN implementation

w

w

b

b

0 2 4 6 8 10 12 14 16 18 20

time[s]

-300

-200

-100

0

100

200

300

400

C
o

n
tr

o
l
s
ig

n
a
l
[N

/m
]

Control signal without SNN implementation

control q
0

control q
1

control dq
0

control dq
1

a) b)

Juárez-Lora et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(4) 2022, 36-46.

45

6 Data Avilability

The name of the repository and accession number can be found below: Github

https://github.com/AlejandroJuarezLora/IJCOPI.git.

References

1. Yexin Yan, Terrence Stewart, Xuan Choo, Bernhard Vogginger, Johannes Partzsch, Sebastian Hoeppner, Florian

Kelber, Chris Eliasmith, Steve Furber, and Christian Mayr. Comparing loihi with a spinnaker 2 prototype on low-

latency keyword spotting and adaptive robotic control. Neuromorphic Computing and Engineering, 2021. URL:

https://iopscience.iop.org/article/10.1088/2634-4386/abf150, doi:10.1088/2634-4386/abf150.

2. Jesus L. Lobo, Javier Del Ser, Albert Bifet, Nikola Kasabov, Spiking Neural Networks and online learning: An

overview and perspectives, Neural Networks, Volume 121, 2020, Pages 88-100, ISSN 0893-6080,

https://doi.org/10.1016/j.neunet.2019.09.004

3. Galindo, S., Toharia, P., Robles, O., Ros, E., Pastor, L., & Garrido, J. (2020). Simulation, visualization and analysis

tools for pattern recognition assessment with spiking neuronal networks. Neurocomputing.

4. Bogdan, P., Marcinnò, B., Casellato, C., Casali, S., Rowley, A., Hopkins, M., Leporati, F., D'Angelo, E., & Rhodes,

O. (2021). Towards a Bio-Inspired Real-Time Neuromorphic Cerebellum. Frontiers in Cellular Neuroscience, 15, 130.

5. Amunts, J. (2019). The Human Brain Project—Synergy between neuroscience, computing, informatics, and brain-

inspired technologies. PLOS Biology, 17, 1-7.

6. Falotico, E., Vannucci, L., Ambrosano, A., Albanese, U., Ulbrich, S., Vasquez Tieck, J., Hinkel, G., Kaiser, J., Peric,

I., Denninger, O., Cauli, N., Kirtay, M., Roennau, A., Klinker, G., Von Arnim, A., Guyot, L., Peppicelli, D., Martínez-

Cañada, P., Ros, E., Maier, P., Weber, S., Huber, M., Plecher, D., Röhrbein, F., Deser, S., Roitberg, A., Smagt, P.,

Dillman, R., Levi, P., Laschi, C., Knoll, A., & Gewaltig, M.O. (2017). Connecting Artificial Brains to Robots in a

Comprehensive Simulation Framework: The Neurorobotics Platform. Frontiers in Neurorobotics, 11, 2.

7. Voelker A.R., Eliasmith C. (2021) Programming Neuromorphics Using the Neural Engineering Framework. In: Thakor

N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_115-1

8. Daniel Rasmussen. (2019). NengoDL: Combining deep learning and neuromorphic modelling methods.

9. (2019). The Nengo neural simulator — Nengo. Available at https://www.nengo.ai/.

10. DeWolf, T., Stewart, T., Slotine, J.J., & Eliasmith, C. (2016). A spiking neural model of adaptive arm control.

Proceedings of the Royal Society B: Biological Sciences, 283(1843), 20162134.

11. C. C. Cheah, C. Liu, & J. J. E. Slotine (2006). Adaptive Tracking Control for Robots with Unknown Kinematic and

Dynamic Properties. The International Journal of Robotics Research, 25(3), 283-296.

12. Tieck, J., Steffen, L., Kaiser, J., Roennau, A., & Dillmann, R. (2018). Controlling a Robot Arm for Target Reaching

without Planning Using Spiking Neurons. In 2018 IEEE 17th International Conference on Cognitive Informatics

Cognitive Computing (ICCI*CC) (pp. 111-116).

13. Tieck, J., Secker, K., Kaiser, J., Roennau, A., & Dillmann, R. (2021). Soft-Grasping With an Anthropomorphic Robotic

Hand Using Spiking Neurons. IEEE Robotics and Automation Letters, 6(2), 2894-2901.

14. DeWolf, T., Jaworski, P., & Eliasmith, C. (2020). Nengo and Low-Power AI Hardware for Robust, Embedded

Neurorobotics. Frontiers in Neurorobotics, 14, 73.

15. Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G., Joshi, P., Plank, P., & Risbud, S. (2021). Advancing

Neuromorphic Computing With Loihi: A Survey of Results and Outlook. Proceedings of the IEEE, 109(5), 911-934.

16. Sira-Ramírez Hebertt (2017). Active disturbance rejection control of dynamic systems: a flatness-based approach.

Oxford: Butterworth-Heinemann.

17. Li, K., Ri, S., Huang, J., Wang, Y., Kim, M., & An, S. (2014). Terminal Sliding Mode Control of Mobile Wheeled

Inverted Pendulum System with Nonlinear Disturbance Observer. Mathematical Problems in Engineering, 2014,

284216.

18. Krafes, S., Chalh, Z., & Saka, A. (2018). A Review on the Control of Second Order Underactuated Mechanical

Systems. Complexity, 2018, 9573514.

19. Steven L. Brunton, J. (2019). Linear Control Theory. Cambridge University Press.

20. Peter Benner Jing-Rebecca Li, & Thilo Penzl (2008). Numerical solution of large-scale Lyapunov equations, Riccati

equations, and linear-quadratic optimal control problems.. Numerical Linear Algebra with Applications, 15(9), 755-

777.

21. William F. Arnold, A. (1984). Generalized Eigenproblems Algorithms and software for algebraic Riccati Equations.

Proceedings of the IEEE, 72(12), 1746-1754.

https://github.com/AlejandroJuarezLora/IJCOPI.git
https://doi.org/10.1016/j.neunet.2019.09.004

Juárez-Lora et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(4) 2022, 36-46.

46

22. Rasmussen, D. NengoDL: Combining Deep Learning and Neuromorphic Modelling Methods. Neuroinform 17, 611–

628 (2019). https://doi.org/10.1007/s12021-019-09424-z

23. Izhikevich, E., & Desai, N. (2003). Relating stdp to bcm. Neural computation, 15, 1511-23.

24. Blais B. Shouval H., & Cooper L. N ((1999)). The role of presynaptic activity in monocular deprivation: Comparison

of homosynaptic and heterosynaptic mechanisms. Proc. Natl. Acad. Sci, 96, 1083–1087.

25. Wulfram Gerstner, R., & Liam Paninski (2006). Neuronal Dynamics (online book): From single neurons to networks

and models of cognition. Cambridge University Press.

26. Brette, R. (2015). Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of the Brain. Frontiers in Systems

Neuroscience, 9, 151.

27. Eliasmith C, A. (2004). Neural engineering: computation, representation, and dynamics in neurobiological systems.

Cambridge, MA: MIT Press.

28. Eliasmith C (2013). How to Build a Brain: A Neural Architecture for Biological Cognition. Oxford University Press.

29. Carlos Aguilar-Ibanez, Hebertt Sira-Ramirez, José Ángel Acosta, & Miguel S. Suarez-Castanon (2021). An algebraic

version of the active disturbance rejection control for second-order flat systems. International Journal of Control, 94(1),

215-222.

30. A. Hazan and E. E. Tsur, "Neuromorphic Spike Timing Dependent Plasticity with adaptive OZ Spiking Neurons," 2021

IEEE Biomedical Circuits and Systems Conference (BioCAS), 2021, pp. 01-04, doi:

10.1109/BioCAS49922.2021.9644944.

31. Zamarreño-Ramos, C., Camuñas-Mesa, L. A., Pérez-Carrasco, J. A., Masquelier, T., Serrano-Gotarredona, T., &

Linares-Barranco, B. (2011). On Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building a Self-

Learning Visual Cortex. In Frontiers in Neuroscience (Vol. 5). Frontiers Media SA.

https://doi.org/10.3389/fnins.2011.00026

32. Kim, H., Mahmoodi, M. R., Nili, H., and Strukov, D. B. (2021). 4k-memristor analog-grade passive crossbar circuit.

Nature Communications 12. doi:10.1038/s41467-021-25455-0

33. Eshraghian, Jason K., Max, Ward, Emre, Neftci, Xinxin, Wang, Gregor, Lenz, Girish, Dwivedi, Mohammed,

Bennamoun, Doo Seok, Jeong, and Wei D., Lu. "Training Spiking Neural Networks Using Lessons From Deep

Learning." (2021).

https://doi.org/10.3389/fnins.2011.00026

