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Abstract. In this paper, the design and simulation of a 

Fuzzy Control for a 3 Degrees Of Freedom (3-DOF) Delta 

Parallel Robot with Prismatic actuators are presented. The 

position of the moving platform and prismatic joints are 

solved the direct and inverse kinematic analysis.  The 

forces of the actuated prismatic joints are computed with 

the dynamic analysis using the Lagrangian approach and 

compared with the obtained forces in simulation; trajectory 

planning is "point-to-point", with polynomial functions. 

The proposed controller is a Fuzzy Control System, and the 

effectiveness has performance comparing the desired 

trajectory against the obtained via simulation. 
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1 Introduction 

 
Robot manipulators are an important part of the industry as they are used for different purposes such as assembling, welding, 

materials handling, painting, packing, etc. [1]. Generally, robot manipulators are divided into two types, serial robots and 

parallel robots. Parallel manipulators have many advantages against serial manipulators like high stiffness, high accuracy, low 

moving inertia, high velocities and links with very small masses. In particular parallel robots are formed by connecting serial 

kinematic chains to a fixed base and to the moving platform (end-effector) this system is difficult to model due to these 

relations.  

 

For the kinematic analysis the two problems: forward kinematics, which consists on determining the position and orientation of 

the end-effector when the joint parameters are known and the second, inverse kinematic, which involves compute the joint 

trajectories when the coordinates of the end-effector is given, both direct and inverse kinematics are computed generally by 

geometric approaches that relates the spatial location of the moving platform and the joints see [2], [3] and [4]. 

 

On the other hand, the dynamic model is an important issue to formulate strategy of control such as [Wisama, 2017] where the 

model can obtain by Newton-Euler equations or using the formalism Lagrange-Euler such as [Codourey, 1997] 

 

Control of this type of robots is complex due to the limitations of workspace and highly nonlinear dynamic model adding the 

singularities that they present. Generally, the most common control requires the dynamic model and presenting limitations for 

finding controller and access the stability of the system [Zubizarreta, 2018] leading to a complex implementation on a physical 

model. To avoid this and in order to guaranty the tracking error it is usually consider only active joins, so the movement can be 

estimated by the kinematic model and the performance can be improve by full model and parameter identification of the 
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actuator [Ruiz Hidalgo, 2019]. On the other hand (PD or PID) controllers are usually used to industrial robots due to easy 

implementation [AGUILERA, 2017], however such controllers cannot achieve this performance because parameter variations 

and disturbances are not considered. In [P. Chiacchio, 1993] the join control scheme is proposed basis on new feedback loop 

that uses acceleration information; linear feedforward compensation is used for to improve tracking performance.  

 

Intelligent control has proven solve problems of uncertainty is systems and applied to parallel robots as shown an alternative to 

classical methods such as [Jiangmin, 2018] and [Kim, 1996] where the variation of parameters and disturbances has been 

considered. Besides, control with adaptive fuzzy sliding mode is used as alternative to consider the dynamic nonlinear model 

and fuzzy neural network control theory to adjust such controller [Jiangmin, 2018]. 

 

Based on the information above the present work presents a kinematics analysis on the basis on geometry and differential 

kinematics also the dynamic model is presented by the formalism of Lagrange equations and Lagrange multipliers can be use 

due to the Jacobian is already computed. For control the proposed approach is given by fuzzy controller with three main 

components: the fuzzification that simply modifies the inputs so that they can be interpreted, the inference mechanism that 

compares the input value with the rules (in the rule-base), and defuzzification which converts the conclusions reached by the 

inference mechanism into the inputs to the plant (independent join). Additionally, simulation basis on the Matlab software is 

carrier out for the system in a simple way. 

 

The work is presented as follows: The first to third sections describes the design of parallel robot, kinematic and dynamic 

model, respectively; The fourth and fifth section presents the trajectory planning and performance of the proposed control; sixth 

section present the implementation in Matlab sofware, and finally the conclusion is presented. 

 

 

2 Prismatic Delta Robot (PDR) description.  

 
The architecture of the PDR is shown in Figure 1. The robot is composed of a fixed base in which there are three vertical 

prismatic joints. Each prismatic joint has two links that connect it to the moving platform by spherical joints forming a serial 

kinematic chain of type P(SS). Due to the presence of parallelograms in each kinematic chain, the moving platform can only 

move along three directions and remains always with constant orientation. 

 

 

 
Fig. 1. Parallel Prismatic Delta Robot (PDR). 
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3 Kinematic and Dynamic Analysis. 

 
a.3 Forward Kinematics. 

 

For direct kinematics a geometric analysis of the mechanical model of the robot is performed, considering that the joints 1A , 2A  

and 3A , have displacement along 1d , 2d  and 3d  respectively as shown in Figure 2. The radius of the base ( )R  and the 

platform ( )r  as well as the length of the arms ( )L  are known. 

 

 

 
Fig. 2. Isometric view of the PDR and its parameters. 

 

The robot arms rotate around the spherical joints of the prismatic joint iA , forming three spheres of radius L . Figure 3 shows a 

side view of the mechanical model, in which only the carriage 1A  is taken into account (for the rest of the equations, a rotation 

of the frame O xyz−  by an angle of 120  and 240 , for the carriages 2A  and 3A  respectively is needed). 
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Fig. 3. Side view of the PDR. 

 

In order for the end of the arm L  to be tangent to the center of the platform, a distance r  is projected in the opposite direction 

to the axis X , this projection is used for the sphere constraint equations. The equation of a sphere with origin in ix , iy , iz  and 

radius L  is as follows: 

 

 
2 2 2 2 .( ) ( ) ( ) 1,2,3x i y i z iP x P y P z L i− =+ − + − =  (1) 

 

Looking at Figure 3, it is concluded that the coordinate iz  is the sum of the distance l  with the parameter id . 

To get the values of ix  and iy , a top view of both the base and the platform is required, which are shown in Figure 4. 

 

 

a) b)  

 

Fig. 4. Top view of the PDR a) Fixed base. B) Moving platform. 

 

Solving the triangle with the right angle of the Figure 4 (a): 

 

 cos , sin , 0
i i ix i y i zA R A R A = = =  . (2) 

 

Now if we consider the right angle of the triangle shown in Figure 4 (b): 
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 cos , sin ,
i i ix i y i z iP r P r P l d = = = +  . (3) 

 

With the equations (2) and (3), and the Figure 3, the ix , iy  and iz  values can be obtained, these values represent the origin of 

the spheres which are formed by the link L , 

 

 ( )cos , ( )sin ,i i i i i ix R r y R r z l d = − = − = +  , (4) 

 

where ( 1)2 / 3i i = − . 

 

Equation (1) is developed for every value of 1,2,3,i = as follows: 

 

 
2 2 2 2 2 2 2

1 1 1 1 1 12 2 2x x y y z zP P x x P P y y P P z z L− + + − + + − + =  , (5) 

 

 
2 2 2 2 2 2 2

2 2 2 2 2 22 2 2x x y y z zP P x x P P y y P P z z L− + + − + + − + =  , (6) 

 

 
2 2 2 2 2 2 2

3 3 3 3 3 32 2 2x x y y z zP P x x P P y y P P z z L− + + − + + − + =  . (7) 

 

By subtracting (6) to (5) and (7) to (5), equations (8) and (9) are obtained: 

 

 2 1
2 1 2 1 2 1( ) ( ) ( )

2
x y z

W W
P x x P y y P z z

−
− + − + − =  , (8) 

 

 3 1
3 1 3 1 3 1( ) ( ) ( )

2
x y z

W W
P x x P y y P z z

−
− + − + − =  , (9) 

 

where: 2 2 2
1 1 1 1W x y z= + + , 2 2 2

2 2 2 2W x y z= + +  and 2 2 2
3 3 3 3W x y z= + + . 

 

To obtain yP  in terms of zP , it is necessary to multiply equation (8) by 3 1

2 1

x x

x x

 −
 

− 
, and then subtract (9) to the result, 

 

 11 12 13y za P a P a+ =  , (10) 

 

where: 3 1
1

2 1

,
x x

a
x x

 −
=  

− 
( )11 1 2 1 1 3a a y y y y= − + −  and 13 1 2 1 1 3

1
[ ( ) ]

2
a a W W W W= − + − . 

Solving (10) for yP : 

 

 1 2y zP b P b= +  , (11) 

 

where: 12
1

11

a
b

a
= −  and 13

2
11

a
b

a
= . 

 

To obtain xP  in zP  terms, it multiplies (9) by 2 1

3 1

y y

y y

 −
 

− 
 , and then (8) is subtracted to the result: 

 

 21 22 23x za P a P a+ =  , (12) 
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where: 2 1
2

3 1

y y
a

y y

 −
=  

− 
, 21 2 2 1 1 3( )a a x x x x= − + − , 22 2 2 1 1 3( )a a z z z z= − + −  and 23 2 2 1 1 3

1
[ ( ) ]

2
a a W W W W= − + − . 

 

Solving (12) for xP : 

 

 1 2x zP c P c= +  , (13) 

 

where: 22
1

21

a
c

a
= −  and 23

2
21

a
c

a
= . 

 

Now that the values of xP  and yP  are known in zP  terms, to get the zP  value, (11) and (13) are replaced into (5). 

 

 2 0z zAP BP C+ + =  , (14) 

 

where: 2 2
1 1 1A b c= + + , 1 2 1 1 2 1 12[ ( ) ( ) ]B b b y c c x z= − + − −  and 2 2 2 2

2 1 2 1 1( ) ( )C b y c x z L= − + − + − . 

 

a.3 Inverse Kinematics 

 

To solve the inverse kinematic problem, the same formulation as before applies, so it is explained briefly. The ix , iy  and iz  

values from (4) are used once to replace them in (1): 

 

 
22 2 2( )cos ( )sin ( )x i y i z iP R r P R r P l d L  − − − − − + =       ++  . (15) 

 

Then the carriage variables 1d , 2d  and 3d are: 

 

 2 2 2
1 [ ( )] x y zd L P R r P P l= − − − − + −  , (16) 

 

 

22
2

2

1 3
( ) ( )

2
 

2
x y zd L P R r P R r P l

  
= − + − − − − +  

    

−  , (17) 

 

 

22
2

3

1 3
( ) ( )

2 2
x y zd L P R r P R r P l

  
= − + − − + − +  

    

−  . (18) 

 

a.3 Jacobian 

 
The end-effector moves along X , Y , Z  axes, so the linear velocities can be obtained. However, the end-effector does not have 

rotation in any axes, so the angular velocities are considered equal to zero. To perform the Jacobian analysis of the parallel 

manipulator, the direct kinematics equations must be derived. The Jacobian matrix can be obtained by deriving the constraint 

equation which is the following: 

 

 
2 2 2 2( ) ( ) ( )x i y i z iP x P y P z L− + − + − =  , (19) 

 

where: ( )cos( )i ix R r = − , ( )sin( )i iy R r = − , i iz l d= + , 1,2,3i = . 
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The constraint equation is developed as:
2 2 2 2 2 2 2 22 2 2 2 2x y z x i y i z z i i i i iP P P P x P y P l P d x y l ld d L+ + − − − − + + + =+ + . Now, 

deriving with respect to time and solving for id : 

 

 ( ) ( ) ( ) ( )x i x y i y z i z z i iP x P P y P P z P P z d− + − + − = −  . (20) 

 

Solving (20) for each 1,2,3i = and writing in matrix form: 

 

 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

0 0

0 0

0 0

x y z x z

x y z y z

x y z z z

P x P x P x P P z d

P x P x P x P P z d

P x P x P x P P z d

   − − − − 
     

− − − = −      
     − − − −      

 . (21) 

 

Thus, the linear velocities for the end-effector are: 

 

 

1
1

2

2

1

11

1

2

2 2

33
3

3 3

1

1

1

yx

z z

yx

z z

yx

z

x

y

z

z

P yP x

P z P z

P yP x

P z P z

dP

P d

P d
P yP x

P z P z

−
− −

 
− −    

   −− 
 =   

− −    
     −− 
 − − 

 , (22) 

 

where: 2 2 2( ) ( )z i x i y i z iP z L P x P y P mz− =  − − − − = , for 1,2,3i = . 

 

From the equation above, the Jacobian that contributes to the end-effector linear velocities is obtained: 

 

 

1

11

1 1

21 2

2 2

33

3 3

1

1

1

yx

yx
p d

yx

P yP x

Pzmz Pzmz

P yP x
J J J

Pzmz Pzmz

P yP x

Pzmz Pzmz

−

−

− −
 
 
 −−
 = =
 
 

−− 
 
 

 . (23) 

 

a.3 Dynamic model 

 
To simplify the dynamic analysis, the rotational inertias of the links L  have been ignored because of its light weight. The mass 

of the link was distributed between the carriage and the moving platform. This dynamic model is a representation of the model 

developed in [3] and [12]. 

 

a) Lagrange formulation: Lagrange formulation describes the equations of motion (using a set of generalized coordinates), 

because of its use simplifies the dynamics analysis as a direct function of the Lagrange function which is composed of the 

contribution of kinetic and potential energies of the mechanism. To perform the dynamic analysis of the PDR, the Lagrange 

equations of the first kind [13] with Lagrange multipliers are used. 

 

The Lagrange function is a state function and is defined as the subtracting between kinetic and potential energies of a system: 

 

 K P= −  . 
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The Lagrange formulation of the first kind can be written as follows: 

 

 

3

1

, 1, ,6.i
j i

j j ji

hd
Q j

dt q q q


=

     
− = + =   

        
  (24) 

 

Where jq  are the generalized coordinates. jQ  are the generalized forces, assuming that on the platform are zero: 

 1 2 3 0 0 0Q Q Q Q= . ih  are the constraint functions, and i  are the Lagrange multipliers. 

 

2) Generalized Coordinates: Generally, enough position and orientation variables of the moving platform corresponding to the 

number of degrees of freedom of the system should be considered for defining the generalized coordinates. The set of 

generalized coordinates includes independent and dependent variables (so it is a redundant set of coordinates). The number of 

independent generalized coordinates is equal to the number of degrees of freedom of the system, while the rest of variables 

(dependent variables) indicates the position of the moving platform by the restriction equations previously obtained in 

kinematics. 

 

 1 2 3

T

j x y zq z z z P P P =  
 . (25) 

 

3) Parallel manipulator components: Consider that in the whole system are: 

 

• 3 Prismatic joints cm (see Figure 5 a). 

• 6 Links Lm (see Figure 5 b). 

• Moving Platform MPm (see Figure 5 b). 

 

 

a) b) c)  

Fig. 5. Parallel manipulator components. A) Prismatic joint. B) Link L . C) Moving platform. 

 

4) Kinetic energy: The kinetic energy of the system K  is a non-negative scalar function of the joint coordinates and their 

derivatives. The kinetic energy is an additive function so it should be computed for every component of the parallel robot. The 

total kinetic energy is defined by: 

 

 

3 6

1 1
i jMP c L

i j

K K K K

= =

= + +   . (26) 

 

Adding the contributions and simplifying (26): 

 

 2 2 2 2 2 2
1 2 3

1 1
(3 )( ) (3 )( )

2 2
L MP x y z L cK m m P P P m m d d d= + + + + + + +  . (27) 

 

5) Potential energy: The only thing that generates potential energy is gravity. Like kinetic energy, it is an additive function and 

is given by: 

 



Pacheco-Escamilla et al.  / International Journal of Combinatorial Optimization Problems and Informatics, 13(3) 2022, 17-33. 

25 

 

 

3 6

1 1
i jMP c L

i j

P P P P

= =

= + +   . (28) 

 

Adding the contributions and simplifying (28): 

 

 1 2 3(3 )( ) ( )( )L MP z L MPP g m m P g m m z z z= − + − + + +  . (29) 

 

6) Lagrange Function: Once the kinetic and potential energy equations were obtained, the Lagrange function can be expressed 

in generalized coordinates terms. 

 

 2 2 2 2 2 2
1 2 3 1 2 3

1 1
(3 )( ) (3 )( ) (3 )( ) ( )( )

2
 

2
L MP x y z L c L MP z L MPm m P P P m m d d d g m m P g m m z z z= + + + + + + + + + + + + +  . (30) 

 

7) Constraint Equations: The constraint equations are used to link the prismatic joints with the moving platform. The constraint 

equations were obtained in the kinematic analysis: 

 

 
2 2 2 2( ) ( ) ( ) 0i x i y i z ih P x P y P z L= − + − + − − =  . (31) 

 

This constraint equation ih  ( 1,2,3i = ) links all generalized coordinates both dependents and independents. 

 

8) First kind equations of Lagrange:  

 

• Lagrange equation for the generalized coordinate xP : 

 

3

.
1

i
i

x xi
x

hd

dt P P
P


=

 
   − = 

     

  . (32) 

Considering that ( )1 3 L MPm m m= + . Obtaining and adding the contributions: 

 

 1 1 1 2 2 3 3( ) 2 ( )cos 2 ( )cos 2 ( )cosx x x xm P P R r P R r P R r     = − − + − − + − −            . (33) 

 

• Lagrange equation for the generalized coordinate yP : 

 

 

3

.
1

i
i

y yi
y

hd

dt P P
P


=

 
  

− =      

  , (34) 

 

 1 1 1 2 2 3 3( ) 2 ( )sin 2 ( )sin 2 ( )siny y y ym P P R r P R r P R r          = − − + − − + − −       . (35) 

 

• Lagrange equation for the generalized coordinate zP : 

 

 

3

.
1

i
i

z zi
z

hd

dt P P
P


=

 
   − = 

     

  , (36) 

 

 ( ) ( ) ( )1 1 1 2 2 3 3( )( ) 2 2 2z z z zm P g P z P z P z  − = − + − + −  . (37) 
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9) Lagrange multipliers: The Lagrange multipliers can be obtained by simplifying (33), (35), and (37). Rewritten those 

equations in matrix form the Lagrange multipliers are: 

 

 

1
1

2 1

3

0
1

( )( ) 0
2

1

x

y
T

p

z

P

m P

P

J g







−

     
     

= −     
           

 . (38) 

 

10) Dynamic equations: The dynamic equations can be obtained solving (24), then using the Lagrange function (30) with 

respect to the generalized coordinates: 

 

 

3

.
1

i
i i

i ii
i

hd
Q

dt z z
z


=

 
     − = +        

  . (39) 

 

Getting the contributions from above equation (3 )L c i
i

d
m

z
m z

dt

 
= + 

  
, ( )L c

i

g m m
z

 
= + 

 
, 2( )i

z i
i

h
P z

z


= − −


, then the 

dynamic equations are: 

 

 1 1 1 2 1 1( ) ( ) 2 ( )zQ m z m g P z= − + −  , (40) 

 

 2 1 2 2 1 2( ) ( ) 2 ( )zQ m z m g P z= − + −  , (41) 

 

 3 1 3 2 1 3( ) ( ) 2 ( )zQ m z m g P z= − + −  , (42) 

 

where: 2 L cm m m= + . 

 

4 Trajectory Planning 
 

Trajectory planning with a fifth-order polynomial allow to know the position, velocity and acceleration of the prismatic actuated 

joints by adding two more conditions ( 0  and f ), so it has two more coefficients to compute. 

 

The equations for the position, velocity and acceleration are: 

 

 5 4 3 2
5 4 3 2 1 0( )q t a t a t a t a t a t a= + + + + +  , (43) 

 

 4 3 2
5 4 3 2 1( ) 5 4 3 2q t a t a t a t a t a= + + + +  , (44) 

 

 3 2
5 4 3 2( ) 20 12 6 2q t a t a t a t a= + + +  . (45) 

 

From the above equations, six coefficients are obtained that can be calculated by evaluating the equations with the initial and 

final conditions of time, position, velocity and acceleration, so six equations can be obtained for the initial conditions: 

 

 

5 4 3 2
5 4 3 2 1 0

4 3 2
5 4 3 2 1

3 2
5 4 3 2

,

,

.

( )

( ) 5 4 3 2

( ) 20 12 6 2

o o o o o o

o o o o o

o o o o

q t a t a t a t a t a t a

q t a t a t a t a t a

q t a t a t a t a

= + + + + +

= + + + +

= + + +

 (46) 
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For the final conditions: 

 

 

5 4 3 2
5 4 3 2 1 0

4 3 2
5 4 3 2 1

3 2
5 4 3 2

,

,

) .

( )

( ) 5 4 3 2

( 20 12 6 2

f f f f f f

f f f f f

f f f f

q t a t a t a t a t a t a

q t a t a t a t a t a

q t a t a t a t a

= + + + + +

= + + + +

= + + +

 (47) 

 

Equations (46) and (47) can be written in matrix form as follows: 

 

 

0 0 0 0

0 0 0 00

0 0

5 4 3 2
00

5
4 3 2

4
3 2

0 3
5 4 3 2

2

4 3 2
1

03 2

0

1

5 4 3 2 1 0

20 12 6 2 0 0

1

5 4 3 2 1 0

20 12 6 2 0 0

f f f f ff

f f f f f

f
f f f

t t t t tq
a

t t t tq a

t t tq a

t t t t t aq

aq t t t t
aq t t t

  
   
   
   
    =    
   
   
   
         

 . (48) 

 

The above equation has the form Ax B=  and can be rewritten as 
1x A B−=  to get the coefficients values. In Table 1 is depicted 

the transformation to operational space to joint space by kinematics method and the points that robot has to reach. 

 
Table 1. Via points and joint space motions 

 Operational space (cm) Joint space (cm) 

Point  x  y  z  1d  2d  3d  

0 0 0 -35.57 0 0 0 

1 0 0 -38.97 -3.39 -3.39 -3.39 

2 13.64 0 -38.96 0 -12.06 -12.06 

3 0 13.64 -38.96 -7.29 -0.87 -16.66 

4 -13.64 0 -38.96 -18.39 -3.39 -3.39 

5 0 -13.64 -38.96 -7.29 -16.66 -0.87 

6 13.64 0 -67 -28.04 -40.11 -40.11 

7 0 13.64 -67 -35.33 -28.91 -44.71 

8 -13.64 0 -67 -46.89 -31.43 -31.43 

9 0 -13.64 -67 -35.33 -44.71 -28.91 

10 0 0 -35.57 0 0 0 

 

 

5 Fuzzy Control for the PDR 
 

a.3 Fuzzification 
 

The universe of discourse of the controller input in this case the position error is defined by the rank  47 47 cm− . The input 

variable will be evaluated with five fuzzy sets and their membership functions for each joint. The linguistic terms for this fuzzy 

control design are: Negative Large Input (NLI), Negative Small Input (NSI), Positive Small Input (PSI), Input Zero (IZ), 

Positive Small Input (PSI), Positive Large Input (PLI), Negative Large Output (NLO), Negative Small Output (NSO), Output 

Zero (OZ), Positive Small Output (PSO) and Positive Large Output (PLO). 

 

A) Input membership functions for the first and second joints: 
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• NLI, trapezoidal function:  47 47 2 1− − − . 

• NSI, triangular function:  2 1 0− − . 

• IZ, triangular function:  0.2 0 0.2−  

• PSI, triangular function:  0 1 2 . 

• PLI, trapezoidal function:  1 2 47 47 . 

 

b) Input membership functions for the third joint: 

 

• NLI, trapezoidal function:  47 47 2 1− − − . 

• NSI, triangular function:  2 1 0− − . 

• IZ, triangular function:  0.3 0 0.3− . 

• PSI, triangular function:  0 1 2 . 

• PLI, trapezoidal function:  1 2 47 47 . 

 

The Figures 6 and 7 show the membership functions of the prismatic joints. The rank of the Figures has been minimized for a 

better interpretation of the membership functions, but the real rank is, as mentioned previously,  47 47 cm− . 

 

 

 
Fig. 6. Fuzzy sets for the error position, first and second joints. 
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Fig. 7. Fuzzy sets for the error position, third joint. 

 

a.3 Inference mechanism 
 

The inference mechanism must evaluate the input value (position error) once fuzzified in order to move the joint to the desired 

position. The inference mechanism uses the following rule-base to perform its task. 

 

a) Rule-base: 

 

• IF Negative Large Input, THEN Negative Large Output 

• IF Negative Small Input, THEN Negative Small Output 

• IF Input Zero THEN Output Zero 

• IF Positive Small Input, THEN Positive Small Output 

• IF Positive Large Input, THEN Positive Large Output 

 

a.3 Defuzzification 
 

The output variable will be evaluated with five fuzzy sets and their membership functions for each joint. The universe of 

discourse of the controller output is defined by the rank  47 47 cm− . The Figure 8 shows the membership functions for the 

three controller outputs of the prismatic joints. 

 

a) Output membership functions for the three joints: 

 

• NLO, triangular function:  47 47 46− − − . 

• NSO, triangular function:  24.5 23.5 22.5− − − . 

• OZ, triangular function:  0.5 0 0.5− . 

• PSO, triangular function:  22.5 23.5 24.5 . 

• PLO, triangular function:  46 47 47 . 
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Fig. 8. Fuzzy sets of the controller outputs. 

 

6 Results 
 

This section presents the performance of the proposed controller to a plant (joint) under following control scheme depicted in 

Figure 9. The simulation was carried out in Matlab and Simulik 2018b. The Figure 10 shows the tracking signal for the 

prismatic joint 1 and Figures 11 and 12 for the two extra joins. One can observe the proposed controller is adequate. 

On the other hand, the tracking error for the joints are depicted in Figure 13 the performance of error can be modifying by adjust 

membership functions. 

 

 

Fig. 9. Comparison between the desired trajectory and the trajectory obtained via simulation for the prismatic joint 1. 
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Fig. 10. Comparison between the desired trajectory and the trajectory obtained via simulation for the prismatic joint 1. 

 

 
Fig. 11. Comparison between the desired trajectory and the trajectory obtained via simulation for the prismatic joint 2. 

 
Fig. 12. Comparison between the desired trajectory and the trajectory obtained via simulation for the prismatic joint 3. 
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Fig. 13. Error tracking of prismatic joints ( )1 2 3, , andd d d  implementing the fuzzy controller.  

 

In order to show the trajectory in the operational space, Figure 13 shows the trajectory of the final effector in the proposed robot. 

 

 
Fig. 13. Final effector path trajectory in operational space, according to Table 1. 

 

7 Conclusions 
 

Generally, a manipulator can perform tasks that requires smooth, accurate and fast movements. Prismatic Delta robot is a good 

option to perform these tasks because it can be able to reach high operation speeds and high accelerations. However, a controller 

is required to allow smooth movements in the robot joints. In the first part of this work the kinematics of the parallel 

manipulator were analyzed, and although the way in which the calculations were obtained was not by conventional methods (as 

is the case with serial robots), in general, it is not difficult to analyze the robotic model by making use of its geometric 

properties. However, for simulation purposes, it is necessary to know the exact measurements and positions of the components 

of the manipulator to avoid offset errors in the trajectory. 

 

The dynamic analysis was carried out through the Lagrange formalism and the use of the Lagrange multipliers, because the 

Jacobian calculation is available. In the second part of the work the trajectory was designed for the Delta Robot through the 

most convenient method for the trajectory interpolation for this manipulator, and later the corresponding calculations were made 

that would allow simulating the trajectory. 

 

Finally, the design of the fuzzy control was made that allows to control the smoothness of the trajectory maintaining a very 

small margin of error (position error). Although it is not necessary to know the system plant to design and implement a fuzzy 
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control. However, it is a complicated task tuning this type of controller. With this work we hoped to encourage the development 

of experimental platforms that include this type of controller. 
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