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Abstract. The computer vision community has proposed 

numerous formulations for object description based on 

human perceptivity and vast knowledge of the problem 

domain. In order to reduce human intervention, deep 

learning techniques are widely used to learn features 

automatically. However, they lack the property of 

explainability; that is, a human being understands the 

meaning of all the parts that make up the calculation of a 

feature. In this paper, we empirically show how Artificial 

Intelligence can automatically discover explainable 

formulations of a topological feature for binary images 

called the Euler characteristic. The training images are 

represented by bit-quad patterns, and a single-layer artificial 

neural network automatically learns the optimal 

combination of bit-quads to provide valid formulations to 

correctly calculate the Euler characteristic. We report the 

results on binary images of different complexities and sizes 

and compare them with state-of-the-art machine learning 

algorithms. Finally, we present 14 new equations to 

calculate the Euler number never reported in literature. 
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1. Introduction 
In computer vision applications, calculating numerical features to describe and recognize objects is a primary 

step. It is well known that such features should be invariant to image transformations and discriminant among 

different object classes [1]. 

 

Commonly, features for object description are designed by human engineering based on the designer's intuition, 

perceptivity, and expertise using prior knowledge of the problem domain. These kinds of features are usually 

named hand-crafted features. Typically, these features have the property of explainability; that is, a human 

being can understand the meaning of all the parts that make up the calculation of a feature [2]. However, the 
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design of invariant and discriminant hand-crafted features can take a long time to test different operators and 

image representations to obtain a satisfactory result. 

 

In order to reduce human intervention in the manual formulation of invariant and discriminant features, deep 

learning-based methods for automatic feature extraction have become popular (e.g., deep neural networks). 

However, their lack of explainability is emerging as their critical deficiency. Notice that explainability is 

recognized nowadays as one of the leading research fields in Artificial Intelligence (AI) [3], [4]. 

 

In this study, we focus on the Euler characteristic of a binary image, which is a relevant topological feature 

defined as [1], [5] 

 

𝑒 = 𝑐 − ℎ 
(1) 

where 𝑐 is the number of connected components, and ℎ is the number of holes in the image. The Euler 

characteristic is invariant under linear and nonlinear geometric transformations of the image as long as the 

objects' topology is preserved. 

 

The Euler characteristic has been widely used for object recognition in many applications. In [6], for example, 

the Euler characteristic has been utilized to recognize industrial parts. In [7], the same topological feature has 

been employed for real-time image thresholding. It has also been applied in object number counting in [8], real-

time Malayan license plate recognition in [9], digit recognition from pressure sensor data in [10], gender 

recognition from offline handwritten signatures in [11], image description [12], gender discrimination from 

offline Hindi signature in [13]. In [14], the Euler characteristic has been used for character recognition. 

 

Several image representations have been used to calculate the Euler characteristic in 2D digital images, 

including morphological skeletons [15], vertex chain codification [16], contact perimeter [17], and bit-quad 

patterns [5]. The basic idea in these approaches is to describe the image with primitive features (e.g., edges, 

nodes, terminal points, etc.) and used them in a hand-crafted formulation to compute the Euler characteristic. 

Here, we chose the bit-quad patterns because they are easy to compute since it is only required to count the 

number of coincidences of certain bit-quads in the image. Next, equations like Gray's formulations calculate 

the Euler characteristic from bit-quads counts [18]. So far, all the formulations to compute the Euler 

characteristic have been found by human engineering, analyzing distinct solutions manually. 

 

Although the calculation of the Euler characteristic is well-established in the computer vision community (as 

surveyed in Section 2), we are interested in using AI to automatically discover formulations previously created 

by human engineering and new ones. The goal is to demonstrate the feasibility of artificially creating new 

formulations that preserve the property of explainability, which means saying formulas to compute, in this case, 

the Euler characteristic as proof of concept. 

 

In this paper, we use a single-layer artificial neural network (ANN) to learn automatically new bit-quad-based 

formulations to compute the Euler characteristic of 2D binary images. We chose this neural structure because 

the calculation of the Euler characteristic involves a linear combination of certain bit-quads. Hence, the 

hypothesis is that the learned weights reveal the relevance of some bit-quads patterns to compute this 

topological feature. The efficiency of artificially discovered formulations is tested on binary images of different 

sizes and complexities. Furthermore, we demonstrate that these formulations maintain invariance under 

different image geometric transformations. Besides, we compare the efficacy of our approach with other 

machine learning algorithms to predict the Euler characteristic, including multilayer perceptron, support vector 

regression, and convolutional neural network. Finally, it is worth mentioning that the proposed approach can 

be potentially extended to other image representations to learn explainable features. 

 

The rest of the paper is organized as follows. In Section 2, a review of related works is presented. Section 3 

explains how two single-layer ANNs, for 4- and 8-connectivity cases, are learned to find optimal bit-quads sets 

for computing the Euler characteristic of binary images. Section 4 is oriented to illustrate the experimental setup 

to evaluate the proposed approach. Section 5 shows the resulting expressions found by ANNs to compute the 

Euler characteristic after learning. These expressions are also evaluated over distinct sets of binary images, and 
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a comparison with machine learning algorithms to predict the Euler characteristic is shown. Lastly, Section 6 

is focused on concluding and enumerating different trends for further research.  

 

 

2. Related work 

In the literature, several methods to compute the Euler characteristic of binary images have been reported based 

on geometric properties, graph theory, morphological operators, bit-quads, and Morse operators [16], [17], 

[26]–[35], [18], [36]–[43], [19]–[25]. Also, efficient algorithms for computing the Euler characteristic have 

been proposed [20], [25], [27], [40], [42], [44].  

 

Notably, the so-called bit-quads have been widely used to compute the Euler characteristic of 2D binary images 

[8], [18], [46], [47], [19], [23]–[25], [27], [39], [42], [45]. Table 1 depicts the 16 possible bit-quad matrices 

used to obtain different formulations to compute the Euler characteristic. 

 

The most common way to calculate the Euler characteristic of a binary image 𝐼(𝑥, 𝑦) ∈ {0,1} in terms of bit-

quads is [5], [18] 

 

4 − connected case: 𝑒4 =
1

4
(#𝑄

2
+ #𝑄

3
+ #𝑄

5
+ #𝑄

9
− #𝑄

8
− #𝑄

12
− #𝑄

14
− #𝑄

15
+ 2#𝑄

7
+ 2#𝑄

10
) 

(2) 

8 − connected case: 𝑒8 =
1

4
(#𝑄

2
+ #𝑄

3
+ #𝑄

5
+ #𝑄

9
− #𝑄

8
− #𝑄

12
− #𝑄

14
− #𝑄

15
− 2#𝑄

7
− 2#𝑄

10
) 

(3) 

where the operator # counts the number of times that the bit-quad 𝑄{•} appears in the image 𝐼(𝑥, 𝑦). Notice that 

equations 2 and 3 use ten bit-quad patterns, requiring ten comparisons on each image pixel. 

 

For reducing the number of bit-quads counts, [8] proposed two formulations for 4- and 8-connectivity that use 

three bit-quads as 
𝑒4 = #𝑄2 − #𝑄8 + #𝑄10 

(4) 

𝑒8 = #𝑄2 − #𝑄7 − #𝑄8 
(5) 

Likewise, [39] introduced another pair of expressions to compute the Euler characteristic of a 2D binary image 

as 
𝑒4 = #𝑄9 − #𝑄15 + #𝑄10 

(6) 

𝑒8 = #𝑄9 − #𝑄7 − #𝑄15 
(7) 

Some works proposed algorithmic improvements for computing the Euler characteristic based on counting 

previous bit-quads [42], [48], [49]. These methods allow reducing the run-time for counting bit-quads, but 

without proposing new equations. 

 

On the other hand, the estimation of the Euler characteristic can be addressed using machine learning 

algorithms. The goal is to learn a known equation to predict the Euler characteristic (given by equations 6 and 

4), where the inputs are the 16 bit-quad patterns shown in Table 1. Several classifiers have been trained for this 

task, including a Multilayer Perceptron (MLP) [50] that uses the 16 bit-quads and their corresponding -1, 0, and 

1 labels to train it. To obtain the Euler number of a binary image, the trained MLP was moved along the image 

outputing each time a -1, a 0 or a 1. The final Euler number was obtained by summing up these partial quantities. 

In~\cite [50] and [50] we used a morphological neural network and a support vector machine, respectively, for 

the same propuse. 
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Bit-quad number Matrix form Binary form 

𝑄1 [
0 0
0 0

] 
0000 

𝑄2 [
0 0
0 1

] 
0001 

𝑄3 [
0 0
1 0

] 
0010 

𝑄4 [
0 0
1 1

] 
0011 

𝑄5 [
0 1
0 0

] 
0100 

𝑄6 [
0 1
0 1

] 
0101 

𝑄7 [
0 1
1 0

] 
0110 

𝑄8 [
0 1
1 1

] 
0111 

𝑄9 [
1 0
0 0

] 
1000 

𝑄10 [
1 0
0 1

] 
1001 

𝑄11 [
1 0
1 0

] 
1010 

𝑄12 [
1 0
1 1

] 
1011 

𝑄13 [
1 1
0 0

] 
1100 

𝑄14 [
1 1
0 1

] 
1101 

𝑄15 [
1 1
1 0

] 
1110 

𝑄16 [
1 1
1 1

] 
1111 

Table 1. The 16 possible bit-quad patterns used to compute the Euler characteristic of a 2D image. 

 

Almost all formulations so far described have been manually derived. To the best of our knowledge, only a set 

of publications by the same authors describe a method to automatically generate image feature formulations in 

terms of suitable combinations of bit-quads. In [51], the authors propose a collection of pattern sets to compute 

bit-quad matchings in component tree structures of grayscale images. The patterns are designed to run in linear 

time by counting each pattern matching per pixel incrementally. This algorithm computes any attribute obtained 

from a combination of bit-quads such as area, perimeter, and Euler characteristic. Based on this research, in 

[52], the same group of authors discusses how to count these patterns from the shape tree. First, they show how 

counting quads in component trees can be used to count them in a tree of shapes by using the node's depth as 

the value of pixels in a larger and interpolated image representation. Next, they describe an algorithm that uses 

this image representation. This approach gives exactly the counts for the original image. In short, in [53], the 

authors review their original method. A novel theoretical background and algorithm correctness intuition are 

provided. Besides, a novel version of the algorithm shows improvements for run-time execution and precision 

analysis. 

 

On the other hand, recently, the simulated annealing algorithm to automatically create new bit-quad-based 

expressions to calculate the Euler characteristic has been proposed [54]. This approach explores combinations 

of bit-quads to minimize the error between the true Euler characteristic and the artificially calculated. Hence, 

an optimal expression must produce zero error in validation images. In the end, we found four new expressions 

that use three bit-quads. A drawback of this approach is its slow convergence to reach optimal solutions. 

Furthermore, we published a different approach to compute the Euler's number using vertex chain codification 

[55], which does not use bit-quads or remove features neither remove features. 
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3. Proposed approach 

From the review presented in Section 2, for about 50 years, only three hand-crafted formulations of bit-quads 

to compute the Euler characteristic have been proposed. The most popular is Gray's formulation that uses ten 

bit-quads [18]. The other two formulations reduced the number of bit-quad patterns from ten to three [8], [39]. 

 

In general, the bit-quad-based Euler characteristic can be expressed by the linear combination 

 
𝑒 = 𝑤1 ∙ #𝑄1 + 𝑤2 ∙ #𝑄2 + ⋯ + 𝑤16 ∙ #𝑄16 

(8) 

where 𝑤 = [𝑤1, 𝑤2, ⋯ , 𝑤16]𝑇 is an optimum combination of bit-quads in Table 1, where for the 𝑗th bit-quad, the 

coefficient 𝑤𝑗 ∈ {−1,0, +1}. For instance, Equations 6 and 7 can be expressed in terms of equation 8 using the 

following optimal solutions: 

 

𝑒4 ∶  𝑤 = [0,0,0,0,0,0,0,0, +1, +1,0,0,0,0, −1,0]
𝑇
, 

𝑒8 ∶  𝑤 = [0,0,0,0,0,0, −1,0, +1,0,0,0,0,0, −1,0]
𝑇
. 

 

Finding an optimal combination of bit-quad patterns can be obtained by testing the performance of a plethora 

of combinations on a set of images. The total number of combinations is 3𝑞 − 1, where 𝑞 is the total number of 

bit-quad patterns. For 16 bit-quads, the total number of combinations is about 43 × 106, which is 

computationally expensive to evaluate exhaustively. 

 

Since the Euler characteristic in Equation 8 represents the linear combination of specific bit-quad patterns, we 

propose using a single-layer ANN to automatically learn bit-quad patterns weights through gradient descent to 

calculate the  Euler characteristic. The basic idea is that the higher the magnitude of the weight, the more the 

relevance of its respective bit-quad pattern. Hence, the highest weights implicitly reveal an expression in terms 

of equation 8 to compute the Euler characteristic using bit-quads. 

 

Let 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} be a training dataset, with 𝑛 observations, described by bit-quads, where the 𝑖th sample is 

a 16-dimensional vector defined by 𝑥𝑖 = [#𝑄1,𝑖, #𝑄2,𝑖, ⋯ , #𝑄16,𝑖]
𝑇
, which is associated with an actual Euler 

characteristic 𝑒𝑖 ∈ Ζ, such that the couple (𝑥𝑖, 𝑒𝑖) is formed. Figure 1 shows an example of an 8 × 8 binary image 

encoded to a vector with 16 bit-quads, whose Euler characteristic equals −1 since the binary shape is a single 

connected component with two holes. Notice that this type of image encoding enables to describe images of 

any size. 

 

 
Figure 1. Binary image encoded by 16 bit-quads to form the vector 𝑥. 

 

Since the Euler characteristic in Equation 8 can be computed by the inner product of weights and bit-quad 

counts, we propose the single-layer ANN with a linear activation function, shown in Figure 2, to find relevant 

weights using the learning process in Algorithm 1. Notice that each bit-quad pattern is associated with a 

learnable weight. 
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Figure 2. The proposed single-layer ANN with a linear activation function to find the optimal bit-quads to 

compute the Euler characteristic of 2D binary images. 

 

Algorithm 1. Training process by gradient descent. 

Input: Training set (𝑥𝑖, 𝑒𝑖), 𝑖 = 1, … , 𝑛; learning rate 𝜆 

𝑥�̃� ← [1, 𝑥𝑖
𝑇]𝑇,∀𝑖 //Augment for bias 

𝒘 ← 𝑤𝑗, 𝑗 = 0,1, … ,16 // Intialize weights 

Wile stop criterion not reached Do 

        ∆𝑤𝑗 ← 0, ∀𝑗  

        For each training sample (𝑥�̃�, 𝑒𝑖) Do 

                𝑒�̂� ← 𝑤𝑇 ∙ 𝑥�̃� // Predict Euler characteristic 

                
𝑑𝐽(𝑤)

𝑑𝑤𝑗
← −(𝑒𝑖 − 𝑒�̂�)#𝑄𝑗,𝑖 // Compute gradients 

                ∆𝑤𝑗 ← ∆𝑤𝑖 + 𝜆
𝑑𝐽(𝑤)

𝑑𝑤𝑖
 // Accumulate 

        𝑤𝑗 ← 𝑤𝑗 − ∆𝑤𝑗 // Update weights 

Output: Weight vector w 
 

We used gradient descend to learn the proposed single-layer ANN because it is numerically stable and avoids 

working with large matrices used in other methods like least squares based on the Moore-Penrose pseudoinverse 

matrix. 

 

The loss function is the mean squared error (MSE) defined as 

 

𝐽(𝑤) =
1

2
∑ (𝑒𝑖 − 𝑒�̂�)

2
𝑛

𝑖=1
 

(9) 

where 𝑒𝑖 and 𝑒�̂� are the actual and estimated Euler characteristics, respectively, of the 𝑖th training sample. 

 

 

4. Experimental setup 

Three experiments evaluate the proposed approach. In the first one, two single-layer ANNs based on the 

architecture in Figure 2 are learned for the 4-connected and 8-connected cases, respectively. The training 

algorithm uses a learning rate of~0.001 and~2500 epochs. Both ANNs are trained using 60 synthetic images 

manually generated of 10 × 10 pixels, as shown in Figure 3. The Euler characteristic of training images is in 

the range [−4,8]. From the learned single-layer ANN weights, expressions to calculate the Euler characteristic 

are inferred by rounding their values. Hence, zero weights indicate that the related bit-quad pattern is irrelevant 

and is removed from the calculation; otherwise, the bit-quad pattern is part of the final expression. 
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The second experiment evaluates the expressions found by ANNs to correctly calculate the Euler characteristic 

on 2D binary images of different sizes and complexities. A dataset with 11,500 binary images is used for this 

evaluation, considering the following sizes for each image: 24 × 24, 48 × 48, 96 × 96, and 192 × 192 pixels, 

as shown in Figure 4. The actual Euler characteristic of each image is calculated with Gray's equations for 4- 

and 8-connectivity cases [5]. The Euler characteristics of images are in the range [−35,23]. The mean 

discrepancy between the actual and the estimated Euler characteristic is measured as 

𝐷 =
1

𝑛
∑ 𝟏(𝑒𝑖 ≠ 𝑒�̂�)

𝑛

𝑖=1
 

(10) 

where 𝟏(∙) is an indicator function. Additionally, for evaluating the robustness to geometric transformations, 

images of 320 × 240 pixels with a single object subjected to different geometric transformations are used. 

 

 
Figure 3. Examples of synthetic images of size 10 × 10 pixels used to train the proposed single-layer ANNs. 

Below each image, the actual Euler characteristic is shown for (a) 4-connectivity and (b) 8-connectivity cases. 

 

 
Figure 4. Examples of binary images with four different sizes: 24 × 24, 48 × 48, 96 × 96, and 192 × 192 

pixels. This example overlaps images from the smallest to the largest size to visualize the proportions. 

 

The third experiment evaluates the capability of four distinct machine learning (ML) algorithms to predict the 

Euler characteristic correctly: proposed single-layer ANN, multilayer perceptron (MLP) with one hidden layer, 

support vector regression (SVR) with Gaussian kernel, and convolutional neural network (CNN). A dataset 

with 11,500 binary images of 96 × 96 pixels is used for training the models, considering 4- and 8-connectivity 

cases. The 𝑘-fold cross-validation method (with 𝑘 = 10) is used to create disjoint training and test sets. 
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For the single-layer ANN, MLP, and SVR, the input vector corresponds to the 16 bit-quad patterns calculated 

from a binary image. In MLP and SVR, a tuning process is performed to find the hyperparameters that minimize 

the mean squared error. For MLP, the number of hidden units is searched in the range [2,16], and for SVR, the 

penalization cost 𝐶 and the kernel bandwidth 𝛾 are in the ranges [25, 26, ⋯ , 29] and [2−4, 2−3, ⋯ , 24], 
respectively. 

 

For the CNN, the input is the raw binary image. Besides, five CNN configurations are used by varying the 

number of convolution layers from one to five. The filter sizes are 3 × 3, and at each convolutional layer, the 

number of filters is twice of the previous layer, starting with 32 filters. After each convolutional layer, the ReLU 

activation function followed by max-pooling with a stride of two is used. The final layer is fully-connected with 

one unit. The CNNs are trained with stochastic gradient descent, with a learning rate of 0.001, a maximum 

number of epochs of 500, with validation patience of 10 epochs. The loss function is the mean squared error. 

 

The prediction performance is measured by the mean squared error (MSE), mean absolute error (MAE), Pearson 

correlation coefficient (PCC), and discrepancy (D). The mean value over the 10-folds of cross-validation is 

calculated. Besides, the wall-clock training time of the algorithms is measured. 

 

All the ML algorithms were implemented in Matlab 2020b (The MathWorks, Natick, MA, USA) and run on a 

computer platform with an Intel i9-9900K at 3.6GHz, Nvidia GeForce RTX 2070 graphic card, and 64 GB of 

RAM. 

 

 

5. Results 

The experimental results of the proposed approach are presented in this section. For convenience, discussions 

are held in this section to interpret the obtained results. 

 

 

5.1 Single-layer ANN models 

The learned weights of the single-layer ANN models for 4- and 8-connectivity cases are shown in Table 2. For 

both ANNs, the weights were initialized using Xavier normal initializer [56], and Algorithm 1 performed the 

learning. 

 

In both cases, note that most of the weights are small values close to zero. This behavior suggests that the ANNs 

found irrelevant bit-quads for estimating the Euler characteristic of 2D images. Contrarily, note that in both 4- 

and 8-connected cases, three weights approach to +1 and −1 values, indicating that the corresponding bit-

quads are relevant to compute the Euler characteristic. 

 

For the 4-connected case, the rounded weights reveal that the bit-quads 𝑄9, 𝑄10, and 𝑄15 create the formulation 
𝑒4 = #𝑄9 + #𝑄10 − #𝑄15 

(11) 

Similarly, for the 8-connected case, the optimum set of bit-quads includes 𝑄7, 𝑄9, and 𝑄15 to build the expression 
𝑒8 = −#𝑄7 + #𝑄9 − #𝑄15 

(12) 

Hence, according to equations 11 and 12, the single-layer ANN automatically discovered the same formulations 

in equations 6 and 7 that human beings have intuitively and empirically determined. 

 

It is worth mentioning that by using other weights initialization methods, Lecun [57] and He [58] , and by 

retraining ten times these architectures, the proposed single-layer ANNs figured out the following new 

equations never reported in the literature for the 4-connected case: 
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Weight 4-connectivity 8-connectivity Bit-quad 

Value Rounded Value Rounded 

𝑊1 -0.001 0 0.000 0 [
0 0
0 0

] 

𝑊2 -0.002 0 -0.003 0 [
0 0
0 1

] 

𝑊3 -0.001 0 0.004 0 [
0 0
1 0

] 

𝑊4 -0.007 0 0.001 0 [
0 0
1 1

] 

𝑊5 -0.001 0 0.005 0 [
0 1
0 0

] 

𝑊6 -0.003 0 0.000 0 [
0 1
0 1

] 

𝑾𝟕 -0.004 0 -0.991 -1 [
0 1
1 0

] 

𝑊8 -0.001 0 0.004 0 [
0 1
1 1

] 

𝑾𝟗 0.997 1 0.997 1 [
1 0
0 0

] 

𝑾𝟏𝟎 0.996 1 -0.006 0 [
1 0
0 1

] 

𝑊11 -0.002 0 0.001 0 [
1 0
1 0

] 

𝑊12 -0.006 0 -0.002 0 [
1 0
1 1

] 

𝑊13 -0.001 0 0.001 0 [
1 1
0 0

] 

𝑊14 -0.003 0 -0.003 0 [
1 1
0 1

] 

𝑾𝟏𝟓 -1.000 -1 -0.994 -1 [
1 1
1 0

] 

𝑊16 -0.002 0 0.001 0 [
1 1
1 1

] 

Table 2. Weights obtained after training the single-layer ANNs using 10 × 10 2D binary images for the 4- 

and 8-connected cases. In bold, the most relevant weights and their corresponding bit-quads. 

 

 

• #𝑄5 + #𝑄7 − #𝑄14, 

• #𝑄3 + #𝑄7 − #𝑄12, 

• #𝑄2 − #𝑄8 + #𝑄10, 

• #𝑄3 − #𝑄6 + #𝑄7 − #𝑄8 + #𝑄11 − #𝑄14 + #𝑄15, 

• #𝑄3 − #𝑄4 + #𝑄7 − #𝑄8 − 2#𝑄11 + #𝑄13 + #𝑄14 + #𝑄15, 
 

and for the 8-connected case: 

• #𝑄5 − #𝑄10 − #𝑄14, 

• #𝑄3 − #𝑄10 − #𝑄12, 

• #𝑄5 + #𝑄6 + #𝑄8 − #𝑄10 − #𝑄11 − #𝑄12 − #𝑄15, 

• −#𝑄2 + #𝑄3 + #𝑄8 + #𝑄9 − #𝑄10 − #𝑄12 − #𝑄15, 

• #𝑄2 + #𝑄5 − #𝑄8 − #𝑄9 − #𝑄10 − #𝑄14 + #𝑄15, 

• #𝑄2 + #𝑄5 + #𝑄6 − #𝑄9 − #𝑄10 − #𝑄11 − #𝑄12, 

• #𝑄3 − #𝑄5 − #𝑄6 − #𝑄7 − #𝑄8 + #𝑄9 + #𝑄11, 

• #𝑄3 − #𝑄6 − #𝑄8 − #𝑄10 + #𝑄11 − #𝑄14 + #𝑄15, 

• −#𝑄2 + 2#𝑄3 + #𝑄4 − #𝑄5 − #𝑄6 + #𝑄8 + #𝑄9 − #𝑄10 + #𝑄11 − #𝑄13 − #𝑄14 − #𝑄15. 
 

 

 

5.2 Euler characteristic estimation with artificial expressions 

The expressions found by the trained single-layer ANNs were tested on 11,500 binary images of different sizes 

and objects. The discrepancy index (D) was measured between the estimated and actual Euler characteristics. 

For all artificially created expressions, the Euler characteristic was correctly estimated for the entire dataset; 

that is, the mean discrepancy was zero. Figure 5 shows the results of the estimated Euler characteristic on some 

test images. 

 

Moreover, Figure 6 shows the robustness of artificially generated expressions to geometric transformations, an 

essential requirement when calculating the Euler characteristic. Note that the trained ANN is applied to each of 

the three sequences of images and obtained the same output. This observation can be explained as follows. 

Suppose we have a binary image 𝐼1 with 𝑐 connected components (or objects) and ℎ holes. Then, 𝐼1 is 
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transformed into another image by applying an image transformation as 𝐼2 = Γ(𝐼1). In this case, Γ can be any 

geometric transformation: translation, rotation, scale change, affine, projection, and even a combination of 

several of them. The corresponding bit-quad representations of these two images are 𝑥1 and 𝑥2, respectively. 

Of course, due to Γ , 𝑥1 ≠ 𝑥1; notwithstanding, as shown in Figure 6, the Euler characteristic is always the 

same. 

 

 
Figure 5. Estimated Euler characteristics for 2D binary images obtained by the expressions in equations 11 

and 12. 

 

 
Figure 6. Binary images of 320 × 240 pixels with a single object subjected to different geometric 

transformations. Both the estimated and the actual Euler characteristics are shown in the upper-left corner. 
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When we feed 𝑥1 and 𝑥2 to the trained single-layer ANN, we obtain the outcomes 𝑦1 = 𝑤0 + 𝑤𝑇𝑥1 and 𝑦2 =
𝑤0 + 𝑤𝑇𝑥2. If we remove the elements that do not contribute to the computation of the Euler characteristic (i.e., 

zero weights after rounding as shown in Table 2, for the 4-connected case, we have 𝑦1 = #𝑄9,1 + #𝑄10,1 −

#𝑄15,1 and 𝑦2 = #𝑄9,2 + #𝑄10,2 − #𝑄15,2. It is clear that for obtaining the same output of the trained single-

layer ANN, it is necessary that 𝑦1 = 𝑦2. 

 

For example, let us take the sequence of four images shown in the first row of Figure 6, with the three most 

representative bit-quads (i.e., #𝑄9, #𝑄10, and #𝑄15). We have that 𝑥1 = [69, 0, 68]𝑇, 𝑥2 = [8,0,7]𝑇, 𝑥3 =
[140,0,139]𝑇, and 𝑥4 = [66,0,65]𝑇 for these four images, where for the 𝑖-th image, 𝑥𝑖 =
[#𝑄9,𝑖 , #𝑄10,𝑖 , #𝑄15,𝑖]

𝑇. This discussion can be formally stated as follows: 

 

Proposition 1. The Euler characteristic 𝑒 of any binary image is the same after applying any geometric 

transformation by counting the most relevant bit-quads found by the single-layer ANN. 

 

Proof. Basis: Let us consider first and fourth images in the first row of Figure 6, with a single connected object 

𝑐 = 1 and no holes ℎ = 0, the most representative bit-quads from each of these two images are 𝑥1 =
[69, 0, 68]𝑇 and 𝑥4 = [66,0,65]𝑇, respectively. Using the expression found by the single-layer ANN to 

calculate the Euler characteristic, we obtain that 𝑦1 = 69 + 0 − 68 = 1 and 𝑦2 = 66 + 0 − 65 = 1, which is 

true because both images have the same Euler characteristic 𝑒 = 𝑐 − ℎ = 1 − 0 = 1. 

 

 

5.3 Euler characteristic prediction with machine learning algorithms 

Table 3 shows the results of the proposed single-layer ANNs and three ML algorithms to predict the Euler 

characteristic for the 4- and 8-connectivity cases. Notably, the single-layer ANN, MLP, and SVR methods 

outperformed the CNNs. This finding points out that encoding the input binary image to a bit-quad 

representation allows describing the image's topology such that a single-layer ANN, MLP, and SVR methods 

can build a mapping function to predict the Euler characteristic accurately. 

 

Besides, considering the discrepancy (D) index, it is notable that both the proposed single-layer ANN and SVR 

attained precisely zero, which means that the Euler characteristic was correctly predicted for all test images. 

However, training a single-layer ANN requires 99.999% less computing time than SVR, which is estimated 

from the training times in the last column of Table 3. 

 

It is worth mentioning that ML algorithms address the Euler characteristic prediction as a regression problem; 

hence, the outcomes were rounded to obtain an integer value that can be compared with the actual Euler 

characteristic using the discrepancy index. From a practical viewpoint, obtaining the exact Euler characteristic 

is crucial since an erroneous prediction implies that the input image has different topology. For instance, if the 

image has a single object with two holes, the actual Euler characteristic is −1, but if the ML algorithm predicts 

an Euler characteristic of zero, it means that the object may have a single hole. Hence, the discrepancy is a hard 

index that measures the ML algorithm's capability to predict the correct Euler characteristic, whereas the MSE, 

MAE, and CPP measure the approximation degree of the ML algorithm output to the target. 

 
Methods 4-connectivity 8-connectivity Time(m) 

MSE MAE PCC C MSE MAE PCC C 

ANN 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.004 

MLP 0.002 0.030 1.000 0.002 0.003 0.033 1.000 0.002 2.104 
SVR 0.001 0.012 1.000 0.000 0.000 0.012 1.000 0.000 76.156 

CNN1 3.471 1.850 0.543 0.773 3.415 1.848 0.544 0.771 0.383 

CNN2 0.190 0.403 0.980 0.275 0.201 0.409 0.979 0.278 8.500 
CNN3 0.072 0.240 0.992 0.109 0.085 0.251 0.991 0.118 9.298 

CNN4 0.065 0.244 0.993 0.115 0.086 0.247 0.991 0.111 5.127 

CNN5 0.000 0.230 0.993 0.097 0.081 0.245 0.992 0.109 5.522 

Table 3. Comparison of ML algorithms to predict the Euler characteristic. The mean value of 10-fold cross 

validation experiments is shown. The last column is the wall-clock time in minutes to train the models. In 

bold are highlighted the best results. 
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Concerning CNNs, as expected, the deeper CNN, the higher prediction performance.  However, they cannot 

predict the Euler characteristic correctly in any case. This result is because the convolution layers and max-

pooling damage the image topology such that object holes may disappear, and different objects may become 

merged after these operations. Hence, the learned features cannot describe the actual image topology. Besides, 

the image representation based on bit-quads allows estimating the Euler characteristic of images of any size, 

whereas, for CNNs, the input image size should be adjusted to the input layer's size. 

 

 

6. Conclusions 

One of the current research directions in computer vision is automatic feature learning through AI techniques, 

such as convolutional neural networks. This learning paradigm has reduced human intervention, impacting the 

time required to design invariant and discriminant features manually. However,  learned features lack 

explainability, which is the property of explaining what is happening such that a human can understand it. 

Therefore, the automatic design of explainable features is an open research field. In this paper, we demonstrated 

for the first time that an AI, defined by a single-layer ANN, can be used to automatically learn optimal 

combinations of bit-quads to estimate the Euler characteristic of 2D binary images.  

 

The proposed solution is explainable, a desirable property of any artificial intelligence-based solution. We found 

14 new equations, never reported in the literature, to compute the Euler characteristic by training a single-layer 

ANN. The learned weights implicitly define the relevance of the certain bit-quad patterns, and we used this 

information to infer expressions to calculate the Euler characteristic in both 4- and 8-connectivity cases. The 

experimental results have shown that the estimated Euler characteristics obtained by the trained machines are 

accurate, regardless of the number of connected components and holes in the image.  

 

Moreover, bit-quads are adequate image features capable of describing the objects' topology such that the Euler 

characteristic can be calculated exactly, whereas learned features by CNN are inadequate to describe the image 

topology. Indeed, notably, the single-ANN just required a small dataset with 60  synthetic images of 10 × 10 

pixels to find general formulations to compute the Euler characteristic for images of any size. Contrarily, 

although the CNNs were trained with thousands of images, they could not learn an adequate representation to 

compute the Euler characteristic correctly. Besides, the CNNs always require input images of the same size, 

unlike bit-quad-based representation that can be used for images of arbitrary sizes. 

 

In short, the proposed single-layer ANN is the best model to predict the Euler characteristic correctly in 4- and 

8-connectivity cases since gradient descent efficiently finds the optimal solution to the linear combination of 

bit-quads in a reduced computing time. Additionally, it could be extended to find linear combinations of other 

image representations to create new features automatically. 

 

Since the obtained results are promising, future work considers training an artificial neural network to estimate 

the Euler characteristic of binary 3D images. In this case, instead of bit-quads, we should use bit-octos, which 

are matrices of size 2 × 2 × 2. 
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