

www.editada.org

International Journal of Combinatorial Optimization Problems and

Informatics, 13(3), Sep-Dec 2022, 34-42. ISSN: 2007-1558.

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved.

Wizard for creating semantic views in a natural language interface to databases

Rodolfo A. Pazos1*, José A. Martínez1, Héctor J. Fraire1, Héctor J. Puga2, Juana Gaspar1
1 Instituto Tecnológico de Cd. Madero, Mexico.

2 Instituto Tecnológico de León, Mexico.

r_pazos_r@yahoo.com.mx, jose.mtz@gmail.com, automatas2002@yahoo.com.mx,

pugahector@yahoo.com, jgasparhdz@gmail.com
*corresponding author (r_pazos_r@yahoo.com)

Abstract. When using natural language interfaces to

databases (NLIDBs) for database queries that involve many

tables, the resulting SQL query may include semantically

implicit entities. These entities are related to the semantic

meaning of a query, when upon referring to an entity (table),

another entity (or entities) is (are) semantically implied with

which the first entity is related, and the user might ignore

the relationship between the two (or more) entities. In a

previous work, this problem was addressed by using a

semantic view. However, the configuration of the NLIDB is

very complex for the database administrator for dealing

with this kind of queries. This means that the semantic view

can only be created and configured by the NLIDB

developers. This article describes a method to configure a

dictionary of semantic information to create a virtual

semantic view in a NLIDB, thus facilitating the creation of

semantic views in a NLIDB.

Keywords: Natural language interface, Relational

database, Semantic view.

Article Info

Received June 27, 2022

Accepted August 16, 2022

1 Introduction

Currently, society needs to access more information in a fast and reliable way, which requires new ways to retrieve information.

Natural language interfaces to databases (NLIDBs) allow users to formulate queries in their own language, facilitating access to

information without requiring knowledge of a query language for databases (DBs) or programming [1].

To date, there are many NLIDBs, and recently new interfaces continue to be developed [2]. Most of the NLIDBs developed so far

perform natural language (NL) query processing in the same way for any type of query. However, considering the structure of DBs

and the structure of the NL queries, the queries can be classified into simple queries and complex queries.

In the field of NLIDBs, the term complex query is mentioned in various publications, such as [3], [4], [5]. These publications mention

that there are DBs with complex schemas (i.e., DBs whose schemas have many tables and foreign keys). The translation into SQL

of some NL queries formulated by means of a NLIDB for accessing complex database results in a SQL query that involves several

joins, in some cases, nested subqueries, and may include aggregation and ambiguities.

These NL queries are considered complex by various authors because the query contains implicit information about entities in the

DB schema. The said entities have various relationships that are not specified in the NL query, and therefore it is difficult for a

NLIDB to identify the entities that are not mentioned in the NL query (implicit) and to understand the relationship(s) existing between

them.

Pazos et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(3) 2022, 34-42.

35

The prototype NLIDB [6] that we have developed has a mechanism to answer a type of complex queries, specifically queries that

involve semantically implied entities. This mechanism is called a semantic view, which is a SQL view to which semantic information

is added. A key element of the NLIDB is the Semantic Information Dictionary (SID) [6], which is used for storing the definition of

the semantic view.

The creation of semantic views in the SID can be done using the NLIDB Domain Editor. However, it is very difficult to define a

semantic view using this tool, and therefore its use is limited to the NLIDB developers.

In order to improve the usability of the NLIDB, this article describes a method that allows users that are not very familiar with the

interface to define semantic views in the SID of the NLIDB by means of a SQL statement.

This article is organized as follows. Section 2 describes the operation of the NLIDB and its configuration. In Section 3 the

implementation of the Wizard for defining semantic views is explained. Section 4 describes some functional tests performed on the

Wizard to verify its correct operation. In Section 5 the conclusions of this work are presented.

Pazos et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(3) 2022, 34-42.

36

2 State of the art

Nowadays, there are many NLIDBs. However, most of them do not have mechanisms to correctly answer complex queries.

The NLIDBs considered in this state of the art (Table 1) were chosen using the following criteria: (1) commercial NLIDBs that have

been tested with complex DBs or have mechanisms to answer complex queries, such as English Query [7] and ELF [8]; (2) prototype

NLIDBs whose software is available for testing, like C-Phrase [9]; and (3) NLIDBs that consider some mechanism to answer complex

queries, such as NaLIR [10] and DBPal [11].

English Query and ELF are commercial interfaces that work with Microsoft SQL Server 2000 and Microsoft Access database

management systems (DBMSs), respectively.

For this reason, it was easy to perform tests with these DBMSs. The tests consisted in trying to configure the NLIDBs to answer

three complex queries of the type that involve semantically implied entities from the ATIS query corpus: (1) List fares for all flights

leaving after 1200 from Boston to Baltimore, (2) How much does it cost to fly from Boston to Oakland one-way?, (3) Please show

the airlines which fly from Dallas to Denver.

Table 1. State of the art of NLIDBs

NLIDB Year Test DBs Complex query

English Query 2000 Pubs, Northwind 

ELF 2004 ATIS, Geoquery 

C-Phrase 2010 Geoquery 

NaLIR 2017 Geoquery 

DBPal 2018 Patients, Geoquery 

Our NLIDB 2014 ATIS, Geoquery 

When testing English Query with the ATIS corpus, like our NLIDB, English Query allows to perform an automatic initial

configuration tuning based on the DB schema. Subsequently, for English Query to be able to answer complex queries, it was

necessary to fine-tune its configuration using its Suggestion Wizard, which allows the DB Administrator (DBA) to configure the

models that contain semantic information so that the NLIDB understands NL elements and maps these elements to the DB schema.

Unfortunately, it was not possible to make a configuration through the Suggestion Wizard, which would allow answering any of the

three queries mentioned because the Suggestion Wizard only allows to relate search values to DB columns. To answer this type of

queries, it is also necessary to indicate in the configuration the joins that are involved in the query.

Additionally, ELF also has an initial automatic configuration based on the metadata of the DB in use. In this case, we used the ATIS

corpus to perform the test. When trying to fine-tune the ELF configuration with the available tools, it was not possible to make a

configuration that would allow the queries shown previously to be answered correctly. ELF, similarly to English Query, lacks a tool

to indicate the joins necessary to answer the query.

C-Phrase is a prototype interface that comes configured for use with the Geobase DB and has been tested with the Geoquery corpus.

This interface has a tool to define patterns using logical expressions in English. You can also define synonyms for various patterns.

However, using this tool for experimenting is very difficult because it is complicated to configure a pattern that allows complex

queries to be processed, such as, for example, the queries mentioned before from the ATIS corpus. Additionally, C-Phrase does not

report results on experimentation with ATIS.

NaLIR is a NLIDB that processes queries in NL by generating weighted SQL query templates [10]. The translation process is carried

out through a dialogue between the user and the interface, where the interface allows the user to choose the correct interpretation of

his query. NaLIR may allow to answer complex queries. However, it does not report results for queries of this type. This NLIDB has

been tested with the Microsoft Academic Search dataset and reported an accuracy of 89.79% (88 correct queries out of 98).

DBPal is an interface based on deep neural network models. This system was trained with a set of queries and its SQL translation.

With this information, the NLIDB can create SQL query templates to correctly answer NL queries. This interface has a tool for

authoring queries that allows the user to formulate complex queries through suggestions. This NLIDB has been tested with two

benchmark datasets: Patients and Geoquery, obtaining an accuracy of 75.93% and 48.9%, respectively. It is worth mentioning that

Patients DB only has one table, while Geobase DB has around 11 tables, and therefore the queries corresponding to the Patients

dataset are not complex, while some of the Geobase ones are.

Pazos et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(3) 2022, 34-42.

37

2.1 Conclusions

As noted in previous studies, there is a large number of approaches to process NL queries by means of NLIDBs. English Query, ELF

and C-Phrase can be configured manually by a DBA, unfortunately the configuration mechanisms are not suitable for configuring

these NLIDBs to answer complex queries.

As for NaLIR and DBPal, when trained with sets of queries, these interfaces generate query templates, which are shown to users so

that they can indicate which query they want to formulate. Therefore, it is possible to formulate complex queries using these

interfaces, but only the queries that these interfaces consider in their templates.

The task of developing a NLIDB that can be easily configured by any DBA lies outside the capabilities of the aforementioned

approaches.

3 Wizard for defining semantic views

3.1 Graphic user interface

To explain how the developed Wizard works, it is necessary to understand the SID tables involved in the definition of semantic views

(Fig. 1).

Table views. Contains the name of the semantic view as well as its SQL statement.

Table view_tables. Contains information of the tables involved in the semantic view.

Table view_columns. Contains information about the columns that belong to tables involved in the semantic view.

Fig. 1. Database schema for storing semantic views.

The main idea of the Wizard is that the DBA formulates a SQL statement that defines a view. This statement must be like Statement

1 (at the end of this list) and must have the following characteristics:

1) It must be a CREATE VIEW statement.

2) It must contain a valid view name.

3) It must be a statement of the form Select, From, Where, which defines the desired view.

4) The user must specify all the tables involved in the view with their respective aliases in the From clause of this statement.

5) All columns in the Select clause of the statement must have the alias of their respective table as specified in the From clause.

6) The Select clause must contain all the columns of each table specified in the From clause.

7) The Where clause should only contain the joins between the tables specified in the From clause.

Pazos et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(3) 2022, 34-42.

38

Statement 1:

CREATE VIEW octflightsdct AS

(SELECT OC.city_code AS OC_city_code,

 OC.city_name AS OC_city_name,

 …

FLIGHT.flight_code AS FLIGHT_flight_code,

FLIGHT.arrival_time AS FLIGHT_arrival_time,

FROM city AS OC,

 airport_service AS OAS,

 airport AS OA,

 flight AS FLIGHT,

 airport AS DA,

 airport_service AS DAS,

 city AS DC

WHERE OC.city_code = OAS.city_code AND

 OAS.airport_code = OA.airport_code AND

 OA.airport_code = FLIGHT.from_airport AND

 FLIGHT.to_airport = DA.airport_code AND

 DA.airport_code = DAS.airport_code AND

 DAS.city_code = DC.city_code)

The creation of semantic views in the SID is easier to do using the Wizard than using the Domain Editor, since it only requires the

DBA to have knowledge about SQL and to be able to define a view using a SQL expression. However, when using the Domain

Editor for fine-tuning the SID, the DBA must specify a large amount of information using various controls and might insert erroneous

information in the SID.

Fig. 2. Wizard’s main window.

The DBA just has to enter Statement 1 in the Wizard (Fig. 2) to define a new semantic view in the SID. In addition, the NLIDB will

ask the user to specify some descriptors whether nominal, verbal, adjectival, or prepositional in NL to associate them to the

corresponding columns of the semantic view (Fig. 3).

After entering Statement 1 in the Wizard, the NLIDB will show the DBA all the columns detected in the Select clause of that

statement. Later, the DBA may assign up to two types of descriptors (nominal, verbal, prepositional or adjectival), which can be

added by means of a list for selecting the type and by writing the descriptor in a text box to define it (Fig. 3).

Finally, the NLIDB will take the information entered by the user (CREATE VIEW instruction and descriptors) to configure the

sections of the SID corresponding to the definition of semantic views (views, view_tables, and view_columns tables).

Pazos et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(3) 2022, 34-42.

39

Fig. 3. Window for defining natural language descriptors.

3.2 Wizard Processing

This section describes the internal processing of the Wizard to define a semantic view in the SID.

The Wizard defines a semantic view in the SID by entering information in three tables: views, view_tables, and view_columns. The

filling of these tables is carried out by 4 algorithms.

Algorithm 1 describes the process of filling the views table, where the name of the view is obtained from the Select clause of

Statement 1. Subsequently, it verifies if the view does not exist in the SID to be able to record it in the views table (line 4).

Fig. 4. Pseudocode for populating the views table.

Upon executing Algorithm 2, the NLIDB populates the view_tables table. To this end, it first gets the tables and their aliases from

the From clause of Statement 1. For each table found in the view, it verifies if the tables exist in the SID (lines 3 to 5) to insert them

in the view_tables table.

Fig. 5. Pseudocode for populating the view_tables table.

It is worth mentioning that populating the view_tables table is performed in two steps. Algorithm 3 describes the process to insert

the relationships (joins) between the tables of the view defined in Statement 1. Initially, the relationships of the Where clause (line

Pazos et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(3) 2022, 34-42.

40

2) are obtained. For each relationship, its existence is verified in the SID (lines 3 and 4), if it exists, the relationship is inserted in the

view_tables.join column (line 5).

Fig. 6. Pseudocode for inserting the relationships in the view_tables table.

Finally, the view_columns table is populated (Algorithm 4). For this purpose, the columns of the view are obtained from the Select

clause of Statement 1 (line 2). For each identified column, its aliases are obtained (line 4), its existence in the SID is verified, the

name of the base table to which it corresponds is obtained (line 6), and finally all the information mentioned in the view_columns

table is inserted. The information regarding the descriptors is inserted through the window shown in Fig. 3.

Fig. 7. Pseudocode for populating the view_columns table.

4 Experimental tests

Functional tests were carried out to ensure the correct operation of the tool implemented in the NLIDB. The tests consisted in defining

a semantic view through the Wizard so that the NLIDB had information to be able to answer queries that involved information about

flights from one city to another. The instruction entered in the Wizard was Statement 1, found in Section 3 of this article.

To test that the semantic view defined by the Wizard was configured correctly, from a corpus of 70 queries from the ATIS DB corpus

described in [12], 41 queries involving information about flights from one city to another were taken (Fig. 8). These queries were

introduced one by one to the NLIDB, and their results and the SQL statements obtained were verified. It is important to make clear

that our NLIDB only answers queries in Spanish, however, because of the similarities among European languages, the process of

our NLIDB can be applied also to English. Therefore, for the sake of clarity the examples presented in Fig. 8 are in English.

The result obtained was 37 out of 41 questions answered correctly. The four queries that were not answered correctly by the NLIDB

were due to various problems found in the structure of the query or processing problems of the NLIDB. For example, queries 24 and

25 request information about flights departing from more than two cities at the same time. The problem posed by this type of queries

is not considered in the implementation of the NLIDB. In query 6, due to the structure of the query, and because the NLIDB parser

only performs a shallow parsing, it is not possible for the NLIDB to correctly process the columns involved in the Select phrase.

Query 29 has the same problem as query 6.

Pazos et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(3) 2022, 34-42.

41

Fig. 8. Corpus of queries that involve a semantic view.

5 Conclusions

The configuration of the SID, except for the NLIDB developers, using the Domain Editor for defining semantic views, has proven

to be very complicated, and therefore, its use is very limited. A Wizard that allows defining semantic views from a SQL statement

that defines a view was implemented in our NLIDB. This facilitates the definition of semantic views in the SID by DBAs who are

only required to be skillful in SQL.

Functional tests were performed on the new version of our NLIDB. It is worth mentioning that our NLIDB answered 37 out of 41

queries correctly. Queries that were not answered correctly were due to query processing problems and not due to the Wizard.

Therefore, it has been shown that the semantic view created by the Wizard and used to answer the test queries is correct and the

Wizard works correctly (Fig. 8).

This Wizard does not require the DBA to have knowledge about the SID structure, which allows any DBA to define semantic views

in the SID more easily. In summary, generating semantic views through the Wizard is easier than defining them using the Domain

Editor.

References

1. Androutsopoulos, I., Ritchie, G. D., Thanisch, P.: Natural language interface to database: An introduction. Natural Language

Engineering 1(1), 29-81 (1995)

2. Pazos, R. A., Aguirre, M. A., González, J. J., Martinez, J. A., Pérez, J., Verástegui, A. A.: Comparative study on the customization of natural

language interfaces to databases, SpringerPlus 5(553), 1-30 (2016) doi:10.118640064-016-2164-y

3. Li, F., Jagadish, H. V.: Constructing an interactive natural language interface for relational databases. Proc. of the VLDB Endowment 8(1), 73-

84 (2014)

4. Pazos, R. A., Rivera, G., Martínez, J. A., Gaspar, J., Florencia, R.: Natural language interfaces to databases: A survey on recent advances. In:

Pazos, R. A., Florencia, R., Paredes, M. A. (eds.) Handbook of Research on Natural Language Processing and Smart Service Systems, 1-30. IGI

Global, PA, USA (2021) doi:10.4018/978-1-7998-4730-4.ch001

5. Yu, C., Jagadish, H. V.: Querying complex structured databases. Proc. of the 33rd International Conference on Very Large Databases, 1010-

1021 (2007)

6. Pazos, R. A., González, J.J., Aguirre, M.A.: Semantic model for improving the performance of natural language interfaces to databases. Proc.

Advances in Artificial Intelligence – 10th Mexican International Conference on Artificial Intelligence, 227-290 (2011)

7. Microsoft Corporation: Microsoft SQL Server 2000 Resource Kit. Microsoft Press, WA, USA (2001)

Pazos et al. / International Journal of Combinatorial Optimization Problems and Informatics, 13(3) 2022, 34-42.

42

8. ELF Software, ELF Software Documentation Series: Overview. http://www.elfsoft.com/help/accelf/Overview.htm (2009). Accessed 22 May

(2022)

9. Minock, M., Olofsson, P., Näslund, A.: Towards building robust natural language interfaces to databases. Proc. 13th International Conference

on Applications of Natural Language to Information Systems, 187-198 (2010)

10. Li, F.: Querying RDBMS using natural language. Ph. D. dissertation, University of Michigan, MI, USA (2017).

11. Utama, P., Weir, N., Basık, F., Binnig, C., Cetintemel, U., Hättasch, B. et al.: DBPal: An end-to-end neural natural language interface for

databases. https://arxiv.org/pdf/1804.00401 (2018). Accessed 22 May (2022)

12. Aguirre, M. A.: Modelo semánticamente enriquecido de bases de datos para su explotación por interfaces de lenguaje natural. Ph.D.

dissertation, Instituto Tecnológico de Tijuana, Tijuana, Mexico (2014)

