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Abstract. The Vendor Managed Inventory (VMI) system 

enables vendors to manage their own and their retailers’ 

inventories to improve the performance of two-echelon 

supply chains. However, most VMI systems consider the 

demand patterns of the retailers as deterministic, which is 

uncommon in practice where variability is significant. This 

can lead to inefficient results, particularly within the 

pharmaceutical industry where an efficient supply chain 

through VMI is vital. The present work proposes a multi-

retailer VMI model to maximize the profits of a two-echelon 

supply chain in the presence of non-deterministic or 

uncertain demand. Due to the complexity of the model, a 

micro-genetic algorithm was developed to determine the lot 

size strategy considering the variability of the non-

deterministic demand within the profit function and reduce 

the stockout risk. Through computer simulation, the 

proposed VMI model was tested, showing that it is more 

efficient to reduce stockout events than those using 

deterministic demand patterns. 
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1 Introduction 
 

Vendor Managed Inventory (VMI) is an inventory management strategy developed to improve supply chain (SC) performance 

[1], [2]. With VMI, the vendor or manufacturer directly manages the inventories at its retailers’ and/or buyers’ warehouses [3]. 

This enables continuous tracking of inventories to determine the most appropriate time to produce them, distribute them and 

supply them as their levels decrease by the clients’ purchase behavior [4].  

 

For an efficient implementation of VMI, collaboration and policies are established through contracts to ensure that information 

flow and flexible production and distribution planning throughout the SC are performed accordingly to the retailers’ requirements 

and vendors’ capabilities. This leads to reduce the operational costs of the SC and distribute the benefits fairly among all its 

members [1], [5], [6]. This represents an advantage when compared to the traditional SC, where most of the agreements between 

SC members (first/second level suppliers/vendors, wholesalers or retailers, etc.) are non-cooperative with no mutual benefit, 

favoring only the interests of one member (vendor or retailer) [6].  

 

Although the vendors’ market competitiveness and cooperation between retailers and vendors are positively associated with the 

use of VMI systems, such benefits could vary depending on the implementation strategy [7], [8]. Thus, for specific industries, the 

operational models and technologies considered to support the VMI system must be carefully selected, designed and adapted to 

ensure a successful implementation. 

Within the pharmaceutical industry, vendors and retailers require high stock availability and service level as medicines are vital 

for human health and survival [9]. Traditionally, high inventory levels are maintained to guarantee the availability of these 
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products. However, this practice can increase inventory management costs and obsolescence risks when medicines have short 

expiry dates [10]. Also, stockout risk is significant as shortage is common [9].   

 

Even though these problems and risks are widely known, there is limited data regarding the application of VMI systems within 

the pharmaceutical industry. In this regard, a VMI system can improve collaboration, information exchange and cost reduction 

between hospitals, drug/medicine distributors and laboratories [11], [12]. 

 

Hence, the present work contributes with the development of a VMI system for two-echelon pharmaceutical SCs. The proposed 

VMI model considers a key aspect which has not been addressed by previous works (i.e., [13], [14]) and is associated with stockout 

and obsolescence risks in practice: demand variability (i.e., non-deterministic or uncertain demand). This aspect is integrated 

within the profit function of the two-echelon SC to determine the economic lot size required to reduce the inventory management 

costs and stockout risks. Due to the complexity of the profit function, a micro-genetic algorithm (GA) was developed to solve it 

to near optimality and determine the lot size that maximizes profits and minimizes stockout risks. Finally, through computer 

simulation, the VMI model was tested, showing that it is more efficient to reduce stockout events than those using constant (i.e., 

deterministic) demand patterns. This testing is frequently absent from other works in the field. 

 

The structure of the present work is as follows: in Section 2 the base or reference VMI model is reviewed and described. This is 

the model of Diabat (2014) [13]. Then, in Section 3, our proposed or extended VMI model is described. The details of the GA 

developed to solve the profit functions of the VMI models are presented in Section 4. The results of the GA and the proposed 

VMI model are analyzed in Section 5. Finally, our conclusions and future work are discussed in Section 6.  

 

2 Reference Model Review 
 

Diabat (2014) [13] developed a profit (P) mathematical model that integrated the price-demand and inventory control costs for a 

two-echelon SC with a VMI system. This model considers the variables and mathematical formulations described in Table 1. 

 

This model was based on the works reported in [15] and [16], and it has been extended by Seifbarghy et al. (2016) [17] and Salehi-

Amiri et al. (2020) [14]. Thus, it is an established model within the VMI literature. 

 

3. Proposed Extended Model  

The model described in Table 1 considers deterministic demand patterns within the inventory costs for the mathematical 

formulation [14], [17]. This may compromise the estimation of the economic lot size, defined by the decision variable yj, in the 

presence of variable (non-deterministic) demand patterns. 

 

To overcome this aspect, the integration of an inventory control model with non-deterministic demand is considered. Because the 

reduction of stockout risks is imperative within the pharmaceutical industry, frequent tracking of the inventory levels is required. 

For this case, the Continuous Review or (Q, R) inventory control model for non-deterministic demand was considered [18], [19].  

In general terms, this model considers the variables and mathematical formulations described in Table 2. 

 

To integrate the extended model, a standardization of terms is performed between the mathematical formulations of inventory 

management costs and decision variables. First, the economic lot size under the (Q, R) model is standardized as follows (at this 

point, Sbj and Hbj are generalized as Sb and Hb respectively): 

 

𝑄 = ට
2𝐷ሺ𝐶𝑜+𝑝𝑛ሻ

𝐶ℎ
= ට

2𝑦ሺ𝑆𝑠+𝑆𝑏+𝑝𝑛ሻ

𝐻𝑠+𝐻𝑏
 .                                                           (1) 
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Table 1. Notation and mathematical formulation of the reference VMI two-echelon profit model [13] 

 Variable  Description 

𝑎𝑗  intercept value of the cost-demand curve of the j-th retailer 

𝑏𝑗  negative slope of the cost-demand curve of the j-th retailer 

𝑦𝑗  decision variable = annual sales quantity of the j-th retailer 

𝛿 production cost per unit 

𝜃𝑗  flow cost per unit from vendor to the j-th retailer 

𝐻𝑠  annual unit holding cost of the vendor in independent mode 

𝐻𝑏𝑗  annual unit holding cost of the j-th retailer in independent mode 

𝑆𝑠 setup cost of the vendor per order in independent mode 

𝑆𝑏𝑗  setup cost of the j-th retailer per order in independent mode 

𝑦𝑗𝑚𝑖𝑛 minimum expected sales quantity of the j-th retailer 

𝑦𝑗𝑚𝑎𝑥  maximum expected sales quantity of the j-th retailer 

C capacity of the vendor 

H total inventory management costs = 𝐻 = ට2𝑦𝑗൫𝐻𝑠 + 𝐻𝑏𝑗൯൫𝑆𝑠 + 𝑆𝑏𝑗൯ 

Profit Mathematical Formulation 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃 = ൛𝑎𝑗𝑦𝑗 − 𝑏𝑗𝑦𝑗
2 − 𝛿𝑦𝑗 − 0.5𝜃𝑗𝑦𝑗

2 − 𝐻ൟ

𝑁

𝑗=1

 

                               Subject to:  

                                             𝑦𝑗𝑚𝑖𝑛 < 𝑦𝑗 < 𝑦𝑗𝑚𝑎𝑥 , 

                                             σ 𝑦𝑗 ≤ 𝐶𝑁
𝑗=1  

                                         𝑦𝑗 ≥ 0 

 

Second, the mathematical formulation of H (total inventory management costs, see Table 1) is extended by the model described 

in (1). As reported in [13], [15], [16], H represents the total costs associated to inventory management, which under the (Q, R) 

model are defined by TC (see Table 2). As consequence, the equivalent mathematical expression for H is obtained by replacing 

the updated expressions of Q and R into TC as follows: 

𝐻 =

ۉ

ۈ
ۇ 𝑦

ඨ
2𝑦൫𝑆𝑠+𝑆𝑏+𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻ൯

𝐻𝑠+𝐻𝑏
ی

ۋ
ۊ

ሺ𝑆𝑠 + 𝑆𝑏ሻ + ቀ
𝐻𝑠+𝐻𝑏

2
ቁ ට

2𝑦ሺ𝑆𝑠+𝑆𝑏+𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻሻ

𝐻𝑠+𝐻𝑏
+ ሺ𝐻𝑠 + 𝐻𝑏ሻሾ𝑧𝜎𝐿𝑇 + 𝜎𝐿𝑇𝐿ሺ𝑧ሻሿ +

𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻ

ۉ

ۈ
ۇ 𝑦

ඨ
2𝑦൫𝑆𝑠+𝑆𝑏+𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻ൯

𝐻𝑠+𝐻𝑏
ی

ۋ
ۊ

 .    (2) 
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𝐻 =

ۉ

ۈ
ۇ 𝑦

ඨ
2𝑦൫𝑆𝑠+𝑆𝑏+𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻ൯

𝐻𝑠+𝐻𝑏
ی

ۋ
ۊ

ሺ𝑆𝑠 + 𝑆𝑏 + 𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻሻ + ቀ
𝐻𝑠+𝐻𝑏

2
ቁ ට

2𝑦ሺ𝑆𝑠+𝑆𝑏+𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻሻ

𝐻𝑠+𝐻𝑏
+ ሺ𝐻𝑠 + 𝐻𝑏ሻሾ𝑧𝜎𝐿𝑇 + 𝜎𝐿𝑇𝐿ሺ𝑧ሻሿ . (3) 

 

Table 2. Notation and mathematical formulation of the (Q, R) inventory control model with non-deterministic demand [18], [19] 

Variable  Description 

D cumulative demand through a planning horizon 

p cost of a unit of product not delivered to a customer or retailer (unit stockout cost) 

n expected number of units not delivered to a customer or retailer (number of stockout 

units) and it is estimated by as 𝑛 = 𝜎𝐿𝑇𝐿ሺ𝑧ሻ, 

𝜇𝐿𝑇 average demand throughout the lead time (𝜇𝐿𝑇 = 𝑑 × 𝐿𝑇) 

𝜎𝐿𝑇 standard deviation of the demand throughout the lead time (𝜎𝐿𝑇=𝜎ξ𝐿𝑇) 

L(z) probability given by the loss function associated to stockout units 

d average daily demand 

 standard deviation of the daily demand 

Q decision variable = optimal lot size (economic lot quantity) to deliver to retailer 

𝑅 reorder point = inventory level which triggers the ordering process of a lot of size Q (𝑅 =
𝜇𝐿𝑇 + 𝑧𝜎𝐿𝑇) 

𝐶𝑜 ordering cost associated to a lot of size Q (note that Co is equivalent to SS + Sbj from the 

reference VMI model) 

𝐶ℎ holding cost associated to a stored unit of product within the inventory (note that Ch is 

equivalent to HS + Hbj from the reference VMI model) 

𝐿𝑇 lead time (delivery time to supplier) 

Lot Size Mathematical Formulation 

𝑄 = ඨ
2𝐷ሺ𝐶𝑜 + 𝑝𝑛ሻ

𝐶ℎ

 

Total Inventory Management Cost Mathematical Formulation 

𝑇𝐶 = ൬
𝐷

𝑄
൰ 𝐶𝑜 + ൬

𝑄

2
൰ 𝐶ℎ + 𝐶ℎሾ𝑅 − 𝜇𝐿𝑇 + 𝜎𝐿𝑇𝐿ሺ𝑧ሻሿ + 𝑝𝑛 ൬

𝐷

𝑄
൰ 

 

𝐻 = ൬
𝑦ඥ𝐻𝑠+𝐻𝑏

ඥ2𝑦ሺ𝑆𝑠+𝑆𝑏+𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻሻ
൰ ሺ𝑆𝑠 + 𝑆𝑏 + 𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻሻ +

ඥ𝑦ሺ𝐻𝑠+𝐻𝑏ሻሺ𝑆𝑠+𝑆𝑏+𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻሻ

ξ2
+ ሺ𝐻𝑠 + 𝐻𝑏ሻሾ𝑧𝜎𝐿𝑇 + 𝜎𝐿𝑇𝐿ሺ𝑧ሻሿ .  (4) 

𝐻 = ൬
ඥ𝑦ሺ𝐻𝑠+𝐻𝑏ሻሺ𝑆𝑠+𝑆𝑏+𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻሻ

ξ2
൰ +

ඥ𝑦ሺ𝐻𝑠+𝐻𝑏ሻሺ𝑆𝑠+𝑆𝑏+𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻሻ

ξ2
+ ሺ𝐻𝑠 + 𝐻𝑏ሻሾ𝑧𝜎𝐿𝑇 + 𝜎𝐿𝑇𝐿ሺ𝑧ሻሿ .      (5) 

𝐻 = ඥ2𝑦ሺ𝐻𝑠 + 𝐻𝑏ሻሺ𝑆𝑠 + 𝑆𝑏 + 𝑝𝜎𝐿𝑇𝐿ሺ𝑧ሻሻ + ሺ𝐻𝑠 + 𝐻𝑏ሻሺ𝑧𝜎𝐿𝑇 + 𝜎𝐿𝑇𝐿ሺ𝑧ሻሻ .                (6) 
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In contrast to the reference model (see Table 1), the updated mathematical expression for H (6) includes 𝜎𝐿𝑇 which provides 

information regarding demand variability.  For non-deterministic demand, the variability is considered larger (as measured by the 

daily standard deviation ) than a fraction h of the average daily demand (d). This is measured by the Coefficient of Variability 

(CV) which is defined as: 

𝐶𝑉 =
𝜎

𝑑
≥ ℎ .                                                                            (7) 

In terms of demand variability: 

𝜎𝐿𝑇 = 𝜎ξ𝐿𝑇 = ℎ𝑑ξ𝐿𝑇 .                                                                  (8) 

Finally, to reduce the stockout risk, y must include the additional items associated with demand variability. This is equivalent to 

y → x+𝑧𝜎𝐿𝑇 where x is a supporting variable which leads to the following updated profit mathematical formulation for j=1, …, N 

retailers (𝑃 from Table 1):  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃 = σ ቊ𝑎𝑗൫𝑥𝑗 + 𝑧𝑗ℎ𝑑𝑗ඥ𝐿𝑇𝑗൯ − 𝑏𝑗൫𝑥𝑗 + 𝑧𝑗ℎ𝑑𝑗ඥ𝐿𝑇𝑗൯
2

− 𝛿൫𝑥𝑗 + 𝑧𝑗ℎ𝑑𝑗ඥ𝐿𝑇𝑗൯ − 0.5𝜃𝑗൫𝑥𝑗 + 𝑧𝑗ℎ𝑑𝑗ඥ𝐿𝑇𝑗൯
2

−𝑁
𝑗=1

ቈට2൫𝑥𝑗 + 𝑧𝑗ℎ𝑑𝑗ඥ𝐿𝑇𝑗൯൫𝐻𝑠 + 𝐻𝑏𝑗൯൫𝑆𝑠 + 𝑆𝑏𝑗 + 𝑝𝑗ℎ𝑑𝑗ඥ𝐿𝑇𝑗𝐿ሺ𝑧𝑗ሻ൯ + ൫𝐻𝑠 + 𝐻𝑏𝑗൯൫𝑧𝑗ℎ𝑑𝑗ඥ𝐿𝑇𝑗 + ℎ𝑑𝑗ඥ𝐿𝑇𝑗𝐿ሺ𝑧𝑗ሻ൯ቋ.    (9) 

Subject to: 

𝑦𝑗𝑚𝑖𝑛 < 𝑥𝑗 + 𝑧𝑗ℎ𝑑𝑗ඥ𝐿𝑇𝑗 < 𝑦𝑗𝑚𝑎𝑥  j                                                                                                  (10) 

σ ൫𝑥𝑗 + 𝑧𝑗ℎ𝑑𝑗ඥ𝐿𝑇𝑗൯ ≤ 𝐶𝑁
𝑗=1                                                                                                                   (11) 

𝑥𝑗 + 𝑧𝑗ℎ𝑑𝑗ඥ𝐿𝑇𝑗 ≥ 0  j                                                                                                                        (12) 

xj  0                                                                                                                                                     (13) 

 

4. Solving Method: Micro-Genetic Algorithm 

Determining the values of xj or yj which maximize the profit function P is a complex task. Because of this, the works reviewed on 

VMI systems for two-echelon SC have developed metaheuristics to determine these values and solve the P function to near 

optimality and within reasonable computational time. Among these metaheuristics the following can be mentioned: Genetic-

Algorithm / Simulated Annealing [13], Particle Swarm Optimization [14], Genetic Algorithm [15], Particle Swarm Optimization 

/ hybrid Genetic Algorithm + Artificial Immune System [16], discrete Particle Swarm Optimization / Genetic Algorithm / 

Simulated Annealing [17]. 

The present work considers the development of a metaheuristic based on Genetic Algorithms to solve the P function. In contrast 

to the reviewed works which considered Genetic Algorithms, our proposal is focused on a lean and faster version of this 

metaheuristic.  

Figure 1 presents the general structure of the micro-Genetic Algorithm (GA) developed to solve the P function. While the GA 

has the same structure than a standard GA, the difference is established within the selection of three main features: chromosome 

coding of solutions, population size of solutions, and reproduction operators for solution. These features can lead the GA to 

achieve faster convergence to near optimal solutions by considering smaller populations and thus, less storing memory [20], [21]. 

Figure 2 presents the details of the chromosome coding for the population and Figure 3 prsents the details of the reproduction 

operators used for the GA. 

 

As presented in Figure 2, a solution consists of the set of yj values for the N retailers of the two-schelon SC. The assessment of 

these values is performed through their substitution within the profit function P. Within the GA, the value of P is used to measure 
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the fitness of the solution for selection and reproduction of new solutions. Initially, a population with M solutions (or individuals) 

is randomly generated considering the limits defined by yjmin and yjmax for each yj value.  

 

 

Fig. 1. Structure of the GA developed to solve the profit model for the two-echelon VMI SC 

 

 

Fig. 2. Chromosome coding considered to generate initial solutions and populations for the proposed GA 

 

 

 

Fig. 3. Selection and reproduction operators considered to generate new solutions and populations for the proposed GA 
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Then, as presented in Figure 2, P is computed for each solution and selection of “parents” is performed to create new “offspring” 

solutions. Selection is performed by the Roulette Wheel operator, and reproduction is performed by linear crossover and mutation 

operators. Once that the “offspring” solutions are created, their respective P values are computed.  

 

Finally, the population is updated with the best M solutions (those with the highest P values) from the current population and the 

crossover and mutation offspring solutions. If a stop condition is met, the process is finished, otherwise, the selection and 

reproduction processes continue with the updated population. The proposed GA considers a stop condition given by a fixed 

number of iterations or generations (gen  G).  

The GA was coded in MATLAB 2018a and executed in a HP Workstation with Intel Xeon CPU E3-1240 at 3.40 GHz and 8GB 

RAM. The parameters of the GA were the following: crossover probability () = 0.3, total number of generations (G) = 100, 

population size (M) = 20 individuals, number of crossover and mutation offspring = 2M/3 individuals.  

 

5. Results 

5.1        Assessment of the Micro-Genetic Algorithm 

 

Assessment of the GA was performed with the data presented in Table 3. This data was considered by (Diabat, 2014) [13] to 

evaluate the reference model for P (see Table 1) and compared with three solving methods: LINGO (exact method), standard GA 

and hybrid algorithm (metaheuristics). 

Table 3. Test data of the reference VMI two-echelon profit model [13] 

Retailer Related Data 

j 1 2 3 

Hbj 7 8 9 

Sbj 10 20 30 

aj 20 19 18 

bj 0.003 0.005 0.008 

yjmin 2000 500 500 

yjmax 4000 3000 1500 

j 0.004 0.006 0.008 

Vendor Related Data 

Hs 9 

Ss 15 

C 5750 

 7 

 

Table 4 presents the results of the solving methods reported by [13]. The results of the proposed GA are included for comparison 

purposes. As presented, the GA outperformed the standard GA and the hybrid algorithm reported by [13], achieving near optimal 

results (close to LINGO).  Thus, the GA can provide near-optimal solutions for the extended model described by the 

mathematical formulation (9)-(13) for P. 
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Table 4. Results with the test data of the reference VMI two-echelon profit model [13] 

Solving Method y1 y2 y3 P 

LINGO 2000 710 500 9903.10 

GA 2002 673 500 9878.09 

Hybrid 2001 675 500 9886.52 

GA 2001 710 501 9893.87 

 

 

5.2         Solving the Extended Two-Echelon VMI Model 
 

For the assessment of the proposed model for P, Table 5 presents the set of parameters for the demand patterns of the retailers. 

Note that high demand variability (CV = h = 0.5) is considered. Table 6 presents the results of the reference model and the proposed 

model with non-deterministic demand data.  

 

Table 5. Test data for the extended VMI two-echelon profit model (own data) 

j 1 2 3 

dj 20 25 30 

h 0.5 0.5 0.5 

LTj 5 10 15 

pj 8 10 15 

zj 2.17 1.65 2.32 

L(zj) 0.005 0.021 0.003 

 

Table 6. Results of test data for the reference and extended VMI two-echelon profit model 

VMI Models y1 y2 y3 R1 R2 R3 P 

Reference 2001 675 501 149 316 585 9886.52 

Extended VMI 2021 710 555 149 316 585 7817.82 

 

As presented, P in the extended VMI model is smaller than P in the reference model. This is expected on account of the additional 

costs included in the extended VMI model which is focused on reducing the stockout risk in the presence of non-deterministic 

demand (risk not considered by the reference model). The reorder points Rj, which depend on the average demands and demand 

variabilities (independent of costs), are the same for both models.  

 

5.3         Validating the Extended Two-Echelon VMI Model through Simulation 
 

It is expected that the quantities yj determined by the GA under the extended VMI model can reduce the stockout risks in 

comparison to the reference model. However, this cannot be assessed by only considering the mathematical formulation and the 

profit results. This is because the proposed model assumes variable demand, and this can only be assessed through a time-

dependent system.  
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In this context, discrete-event simulation provides the tool to represent processes as a (discrete) sequence of events in time. In the 

two-echelon VMI system, the process consists of the inventory consumption – supply cycle at the j-th retailer, where inventory is 

consumed at a variable daily demand rate. This process can be described by the pseudo-code presented in Figure 4. 

 

Fig. 4. Description and pseudocode of the inventory consumption – supply cycle at the j-th retailer 

 

The simulation pseudocode was implemented with the MATLAB/Octave programming platform based on the code described in 

[19]. Figure 5 presents an overview of the computational code. As presented, the input data consists of dj, j (=hdj), Rj, yj and LTj. 

Then, the code randomly generates daily normally-distributed demand to simulate the replenishment and consumption patterns of 

the inventory at any time t through a planning horizon (in this case, k = 270 working days). At the end, the code plots these patterns 

and determines the number of days with stockout events (where inventory < daily demand).  

 

It should be noted that simulation involves a random element to provide variable demand values. Hence, a different demand 

pattern is obtained with each execution of the simulation code.   

 

Therefore, the validation of solutions of the reference and extended VMI two-echelon profit models was performed with 10 runs 

of the simulation code. Table 7 and Table 8 presents the number of days with stockout considering the parameters of the reference 

and extended VMI two-echelon profit models respectively. 

 

As presented, stockout events can occur in the scenarios modelled by the reference and the extended VMI models. However, it is 

important to highlight that the number of events is significantly smaller with the parameters of the extended VMI model. In the 

presence of variable demand rate, the parameters of the reference model led to 2+4+2 = 8 stockout events for retailer 2, and 

1+4+20+4+2+4 = 35 stockout events for retailer 3 through all 10 simulation runs. In contrast, the parameters of the extended 

model led to 1+1+1 = 3 and 2+3 = 5 stockout events for retailer 2 and 3 respectively.    
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djt

djt = daily demand at time t for retailer j

yj

When the inventory reaches R, the lot size yj is ordered from the vendor. It takes

LTj days to arrive at the retailer’s warehouse to increase its inventory.

Input data from retailer j: dj, j, zj, LTj, Rj, yj

Planning Horizon: T days

Inventory = yj + Rj

count_LT = 0

for t=0 until t=T do

djt = |dj + random(-zj, zj)j|

if Inventory – djt > R do

Inventory = Inventory – djt

else do

Inventory = Inventory – djt

count_LT = count_LT+1

end

if count_LT = LTj+1 do

Inventory = Inventory + yj

count_LT = 0

end

end
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Fig. 5. Implementation of the simulation pseudocode code for the assessment of the reference and extended VMI two-echelon 

profit models 

 

Table 7. Number of days with stockout considering the parameters yj for the reference VMI two-echelon profit model: y1 = 2001, y2 = 675, y3 

= 501 (see Table 6) 

Retailer 

J 

Simulation Runs 

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 2 0 0 4 0 0 0 0 2 0 

3 1 4 0 20 0 0 4 0 2 4 

 

Table 8. Number of days with stockout considering the parameters yj for the extended VMI two-echelon profit model: y1 = 2021, y2 = 710, y3 

= 555 (see Table 6) 

Retailer 

j 

Simulation Runs 

1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 1 0 0 1 0 0 1 

3 0 0 0 0 2 0 3 0 0 0 

 

6. Conclusions and Future Work 

 
Traditionally, maintaining high inventory levels has been the only way to guarantee the availability of vital products in the 

pharmaceutical industry. However, this may increase inventory management costs, obsolescence and stockout risks when 

medicine has short expiry date or a highly variable demand.  
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The present research proposed a multi-retailer VMI sales model with the premise of non-deterministic demand as shortage risks 

are correlated with demand variability. The solutions and parameters (inventory lot sizes and reorder points) obtained with this 

model were dynamically evaluated through computer simulation. By integrating data regarding demand variability within the 

profit function of the VMI system, the estimated inventory lots and reorder points can reduce the periods with stockout in the two-

echelon SC. 

 

While these results are encouraging to reduce stockout risks in SC, it is important to provide short- and medium-term follow-up 

to the application of these models on the aimed industries. Also, to increase the complexity of the model to include variables such 

as the products’ shelf life for perishable products in the agro-food industry.  
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