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enables vendors to manage their own and their retailers’
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supply chains. However, most VMI systems consider the | Accepted: May 05, 2022
demand patterns of the retailers as deterministic, which is
uncommon in practice where variability is significant. This
can lead to inefficient results, particularly within the
pharmaceutical industry where an efficient supply chain
through VMI is vital. The present work proposes a multi-
retailer VMI model to maximize the profits of a two-echelon
supply chain in the presence of non-deterministic or
uncertain demand. Due to the complexity of the model, a
micro-genetic algorithm was developed to determine the lot
size strategy considering the variability of the non-
deterministic demand within the profit function and reduce
the stockout risk. Through computer simulation, the
proposed VMI model was tested, showing that it is more
efficient to reduce stockout events than those using
deterministic demand patterns.
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1 Introduction

Vendor Managed Inventory (VMI) is an inventory management strategy developed to improve supply chain (SC) performance
[11, [2]. With VMI, the vendor or manufacturer directly manages the inventories at its retailers’ and/or buyers’ warehouses [ 3].
This enables continuous tracking of inventories to determine the most appropriate time to produce them, distribute them and
supply them as their levels decrease by the clients’ purchase behavior [4].

For an efficient implementation of VMI, collaboration and policies are established through contracts to ensure that information
flow and flexible production and distribution planning throughout the SC are performed accordingly to the retailers’ requirements
and vendors’ capabilities. This leads to reduce the operational costs of the SC and distribute the benefits fairly among all its
members [1], [5], [6]. This represents an advantage when compared to the traditional SC, where most of the agreements between
SC members (first/second level suppliers/vendors, wholesalers or retailers, etc.) are non-cooperative with no mutual benefit,
favoring only the interests of one member (vendor or retailer) [6].

Although the vendors’ market competitiveness and cooperation between retailers and vendors are positively associated with the
use of VMI systems, such benefits could vary depending on the implementation strategy [7], [8]. Thus, for specific industries, the
operational models and technologies considered to support the VMI system must be carefully selected, designed and adapted to
ensure a successful implementation.

Within the pharmaceutical industry, vendors and retailers require high stock availability and service level as medicines are vital
for human health and survival [9]. Traditionally, high inventory levels are maintained to guarantee the availability of these
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products. However, this practice can increase inventory management costs and obsolescence risks when medicines have short
expiry dates [10]. Also, stockout risk is significant as shortage is common [9].

Even though these problems and risks are widely known, there is limited data regarding the application of VMI systems within
the pharmaceutical industry. In this regard, a VMI system can improve collaboration, information exchange and cost reduction
between hospitals, drug/medicine distributors and laboratories [11], [12].

Hence, the present work contributes with the development of a VMI system for two-echelon pharmaceutical SCs. The proposed
VMI model considers a key aspect which has not been addressed by previous works (i.e., [13], [14]) and is associated with stockout
and obsolescence risks in practice: demand variability (i.e., non-deterministic or uncertain demand). This aspect is integrated
within the profit function of the two-echelon SC to determine the economic lot size required to reduce the inventory management
costs and stockout risks. Due to the complexity of the profit function, a micro-genetic algorithm (uGA) was developed to solve it
to near optimality and determine the lot size that maximizes profits and minimizes stockout risks. Finally, through computer
simulation, the VMI model was tested, showing that it is more efficient to reduce stockout events than those using constant (i.e.,
deterministic) demand patterns. This testing is frequently absent from other works in the field.

The structure of the present work is as follows: in Section 2 the base or reference VMI model is reviewed and described. This is
the model of Diabat (2014) [13]. Then, in Section 3, our proposed or extended VMI model is described. The details of the uGA
developed to solve the profit functions of the VMI models are presented in Section 4. The results of the uGA and the proposed
VMI model are analyzed in Section 5. Finally, our conclusions and future work are discussed in Section 6.

2 Reference Model Review

Diabat (2014) [13] developed a profit (P) mathematical model that integrated the price-demand and inventory control costs for a
two-echelon SC with a VMI system. This model considers the variables and mathematical formulations described in Table 1.

This model was based on the works reported in [15] and [16], and it has been extended by Seifbarghy et al. (2016) [17] and Salehi-
Amiri et al. (2020) [14]. Thus, it is an established model within the VMI literature.

3. Proposed Extended Model

The model described in Table 1 considers deterministic demand patterns within the inventory costs for the mathematical
formulation [14], [17]. This may compromise the estimation of the economic lot size, defined by the decision variable y;, in the
presence of variable (hon-deterministic) demand patterns.

To overcome this aspect, the integration of an inventory control model with non-deterministic demand is considered. Because the
reduction of stockout risks is imperative within the pharmaceutical industry, frequent tracking of the inventory levels is required.
For this case, the Continuous Review or (Q, R) inventory control model for non-deterministic demand was considered [18], [19].
In general terms, this model considers the variables and mathematical formulations described in Table 2.

To integrate the extended model, a standardization of terms is performed between the mathematical formulations of inventory
management costs and decision variables. First, the economic lot size under the (Q, R) model is standardized as follows (at this
point, Sy; and Hy; are generalized as Sy and Hy, respectively):

Q _ \/ZD(Cg:pn) _ \/2y(55+5b+pn) . (1)

Hs+Hp
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Table 1. Notation and mathematical formulation of the reference VMI two-echelon profit model [13]

Variable

Description

intercept value of the cost-demand curve of the j-th retailer
negative slope of the cost-demand curve of the j-th retailer
decision variable = annual sales quantity of the j-th retailer
production cost per unit

flow cost per unit from vendor to the j-th retailer

annual unit holding cost of the vendor in independent mode
annual unit holding cost of the j-th retailer in independent mode
setup cost of the vendor per order in independent mode
setup cost of the j-th retailer per order in independent mode
minimum expected sales quantity of the j-th retailer
maximum expected sales quantity of the j-th retailer

capacity of the vendor

total inventory management costs = H = \/Zyj(Hs + Hy;)(Ss + Sp;)

Profit Mathematical Formulation

N
Maximize P = Z{ajyj - bj)’jz —6y; — 0-59jyj2 - H}
j=1
Subject to:
Yimin <Yj < ¥Yjmax
ﬁy=1 y] <C
;20

Second, the mathematical formulation of H (total inventory management costs, see Table 1) is extended by the model described
in (1). As reported in [13], [15], [16], H represents the total costs associated to inventory management, which under the (Q, R)
model are defined by TC (see Table 2). As consequence, the equivalent mathematical expression for H is obtained by replacing
the updated expressions of Q and R into TC as follows:

poLrL(z) k = - @
/2}’(Ss+5b+P‘TLTL(Z))
Hs+Hp
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Hs+H ’2 (Ss+S L(2))
H = (ﬁw (SS + Sb + pULTL(Z)) + ( Z b) Y +Hb:Zob-LT @) + (HS + Hb)[ZO—LT + O—LTL(Z)] . (3)
2y(Ss+Sp+popTL(z s
\ Hgs+Hp /

Table 2. Notation and mathematical formulation of the (Q, R) inventory control model with non-deterministic demand [18], [19]

Variable Description

D cumulative demand through a planning horizon
p cost of a unit of product not delivered to a customer or retailer (unit stockout cost)
n expected number of units not delivered to a customer or retailer (number of stockout

units) and it is estimated by as n = g,+L(z),
ULt average demand throughout the lead time (u;,r = d X LT)
oLr standard deviation of the demand throughout the lead time (o, ;=0VLT)
L(2) probability given by the loss function associated to stockout units
d average daily demand
standard deviation of the daily demand

decision variable = optimal lot size (economic lot quantity) to deliver to retailer

R reorder point = inventory level which triggers the ordering process of a lot of size Q (R =
tor + ZoL7)
C, ordering cost associated to a lot of size Q (note that C, is equivalent to Ss + Sy; from the

reference VMI model)

Cy, holding cost associated to a stored unit of product within the inventory (note that Cy is
equivalent to Hs + Hy; from the reference VMI model)

LT lead time (delivery time to supplier)

_[2D(C, + pn)
Q= ’—Ch

Total Inventory Management Cost Mathematical Formulation

Lot Size Mathematical Formulation

rC = (%) ¢+ (g) Co + CulR — tup + 0urL(2)] + pn (g)

_ ( Yy Hs+Hp

(Hs+Hp)(Ss+S, L(z))
\/ZY(Ss+5b+p0'LTL(Z))) (Ss + Sy + porL(2)) + JY@s+Hp) S5t Sp+posrL(z) + (Hs + Hy)[zoyr + 017L(2)] . (4)

NP

H= (\/y(Hs+Hb)(ss+Sb+pULTL(Z))) 4 YYHsHHY) S5t Sp+poLrl(@) | (H, + Hy)[z0,7 + 0,7 L(2)] . (5)

V2 V2

H = \[2y(H; + H,)(Ss + Sp + poyrL(2)) + (Hs + Hy) 2oy + 0,7L(2)) . (6)
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In contrast to the reference model (see Table 1), the updated mathematical expression for H (6) includes o, which provides
information regarding demand variability. For non-deterministic demand, the variability is considered larger (as measured by the
daily standard deviation o) than a fraction h of the average daily demand (d). This is measured by the Coefficient of Variability
(CV) which is defined as:

CV==>2h. W
In terms of demand variability:
ULT=UVLT=thLT. (8)

Finally, to reduce the stockout risk, y must include the additional items associated with demand variability. This is equivalent to
y = x+za,; where x is a supporting variable which leads to the following updated profit mathematical formulation for j=1, ..., N
retailers (P from Table 1):

[\/Z(xi + 2hd;\[LT; ) (Hs + Hp;)(Ss + Spj + pjhd;[LT;L(2)) + (Hs + Hy;)(2;hd; [LT; + hdj\/L_TjL(Zj))]}- 9)

Subject to:
Yimin < X + Zhdi [LT; < Yimax Vi (10)
Ni(xj + zhd; [IT)) < C (1)
x; + z;hd JIT; =2 0 Vj (12)
x>0 (13)

4. Solving Method: Micro-Genetic Algorithm

Determining the values of x; or y; which maximize the profit function P is a complex task. Because of this, the works reviewed on
VMI systems for two-echelon SC have developed metaheuristics to determine these values and solve the P function to near
optimality and within reasonable computational time. Among these metaheuristics the following can be mentioned: Genetic-
Algorithm / Simulated Annealing [13], Particle Swarm Optimization [14], Genetic Algorithm [15], Particle Swarm Optimization
/ hybrid Genetic Algorithm + Artificial Immune System [16], discrete Particle Swarm Optimization / Genetic Algorithm /
Simulated Annealing [17].

The present work considers the development of a metaheuristic based on Genetic Algorithms to solve the P function. In contrast
to the reviewed works which considered Genetic Algorithms, our proposal is focused on a lean and faster version of this
metaheuristic.

Figure 1 presents the general structure of the micro-Genetic Algorithm (uGA) developed to solve the P function. While the uGA
has the same structure than a standard GA, the difference is established within the selection of three main features: chromosome
coding of solutions, population size of solutions, and reproduction operators for solution. These features can lead the GA to
achieve faster convergence to near optimal solutions by considering smaller populations and thus, less storing memory [20], [21].
Figure 2 presents the details of the chromosome coding for the population and Figure 3 prsents the details of the reproduction
operators used for the uGA.

As presented in Figure 2, a solution consists of the set of y; values for the N retailers of the two-schelon SC. The assessment of
these values is performed through their substitution within the profit function P. Within the yGA, the value of P is used to measure
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the fitness of the solution for selection and reproduction of new solutions. Initially, a population with M solutions (or individuals)
is randomly generated considering the limits defined by yjmin and Yjmax for each y; value.

Start: Chromosome Coding +
en —.0 i> Population with M randomly :>
gen = generated individuals

Fitness asessment of all
M individuals (P.)

~ =

Selection of “parent”
solutions for reproduction
< =

Reproduction of selected
“parents” = generation i>

< gen=gen+1

Fitness asessments of all

of “offspring” solutions “offspring” individuals (P,)

through “crossover” and
“mutation” operators =

Population update with the M ~JES
fittest individuals (previous i>
population + crossover
offspring+ mutation offspring) no
End
Fig. 1. Structure of the uGA developed to solve the profit model for the two-echelon VMI SC
Chromosome Coding
Representation of solutions (individuals) and random generation of initial population.
Yimin Yomin Y3min yjmin YNmin
Y1max Yomax Y3max yjmax YNmax
| round(random (Y, Yamsd) | TOUNG(raNdOM(Yarin, Yonad) | rOUNA(randomYamie, Yares) | - | rouNd(random(ysmin, Yumas) |
[ Vi | Yok | Yk [ Vi ] Yk |
yj = order quantity of retailer j within the solution k (in the uGA, the population is
integrated by M individuals or solutions, hence, k=1, ..., M)
Fig. 2. Chromosome coding considered to generate initial solutions and populations for the proposed uGA
Fitness value (Profit) .
" for individual k Crossover Offspring
E ! <7 Offspringl
S 2 v ynaty-0) [ yuatys(1-a) [ yaetys-a) | - [yaetyel-o) [ P |
= 5 Parentl{ Vi1 Yo1 Va1 VN1 PC_l_ B 11 13 21 23 31 33 N1 N3! C_OFF1
s é arents Y12 Y22 Ya2 | - | Yne Ecz . Offspring?
£ i U
22 12 Yo Jas Jug N _){ Y11(1'05)+Y1301‘ Vz1(1'a)+y230“ y31(1'05)+Y33a‘ ‘YN1(1'0‘)+VN30“ Pc_orr2 ‘
g § L I . _...—— ;._ _..._ | 'o.. . . o
B 5 | Parent3|| Yim Yom Yau | — | Yam | Pew | Mutation Offspring
3 - Offspring3
o
* Roulette Wheel selection of “parent” individuals for > Yim Yau rEJun.d(rando)r)n Yam Pe_orrs
reproduction through “crossover” and “mutation” Yamin: Yamax

operators

Fig. 3. Selection and reproduction operators considered to generate new solutions and populations for the proposed uGA
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Then, as presented in Figure 2, P is computed for each solution and selection of “parents” is performed to create new “offspring”
solutions. Selection is performed by the Roulette Wheel operator, and reproduction is performed by linear crossover and mutation
operators. Once that the “offspring” solutions are created, their respective P values are computed.

Finally, the population is updated with the best M solutions (those with the highest P values) from the current population and the
crossover and mutation offspring solutions. If a stop condition is met, the process is finished, otherwise, the selection and
reproduction processes continue with the updated population. The proposed nGA considers a stop condition given by a fixed
number of iterations or generations (gen <G).

The uGA was coded in MATLAB 2018a and executed in a HP Workstation with Intel Xeon CPU E3-1240 at 3.40 GHz and 8GB
RAM. The parameters of the uGA were the following: crossover probability (o)) = 0.3, total number of generations (G) = 100,
population size (M) = 20 individuals, number of crossover and mutation offspring = 2M/3 individuals.

5. Results

51 Assessment of the Micro-Genetic Algorithm

Assessment of the uGA was performed with the data presented in Table 3. This data was considered by (Diabat, 2014) [13] to
evaluate the reference model for P (see Table 1) and compared with three solving methods: LINGO (exact method), standard GA
and hybrid algorithm (metaheuristics).

Table 3. Test data of the reference VMI two-echelon profit model [13]

Retailer Related Data

j 1 2 3
Hy; 7 8 9
Shj 10 20 30
3 20 19 18
bj 0.003 0.005 0.008

Yimin 2000 500 500
Yimax 4000 3000 1500
6 0.004 0.006 0.008

Vendor Related Data

Hs 9
Ss 15
C 5750
o 7

Table 4 presents the results of the solving methods reported by [13]. The results of the proposed nGA are included for comparison
purposes. As presented, the nGA outperformed the standard GA and the hybrid algorithm reported by [13], achieving near optimal
results (close to LINGO). Thus, the nGA can provide near-optimal solutions for the extended model described by the
mathematical formulation (9)-(13) for P.
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Table 4. Results with the test data of the reference VMI two-echelon profit model [13]

Solving Method Y1 Y2 Y3 P

LINGO 2000 710 500 9903.10
GA 2002 673 500 9878.09
Hybrid 2001 675 500 9886.52
uGA 2001 710 501 9893.87

5.2 Solving the Extended Two-Echelon VMI Model

For the assessment of the proposed model for P, Table 5 presents the set of parameters for the demand patterns of the retailers.
Note that high demand variability (CV =h =0.5) is considered. Table 6 presents the results of the reference model and the proposed
model with non-deterministic demand data.

Table 5. Test data for the extended VMI two-echelon profit model (own data)

i 1 2 3
d; 20 25 30
h 05 05 05

LT, 5 10 15
Pi 8 10 15
Zi 2.17 1.65 2.32

L(@z) 0.005 0.021 0.003

Table 6. Results of test data for the reference and extended VMI two-echelon profit model

VMI Models V1 Y2 Y3 R: R2 Rs P
Reference 2001 675 501 149 316 585 9886.52
Extended VMI 2021 710 555 149 316 585 7817.82

As presented, P in the extended VMI model is smaller than P in the reference model. This is expected on account of the additional
costs included in the extended VMI model which is focused on reducing the stockout risk in the presence of non-deterministic
demand (risk not considered by the reference model). The reorder points R;, which depend on the average demands and demand
variabilities (independent of costs), are the same for both models.

53 Validating the Extended Two-Echelon VMI Model through Simulation

It is expected that the quantities y; determined by the nGA under the extended VMI model can reduce the stockout risks in
comparison to the reference model. However, this cannot be assessed by only considering the mathematical formulation and the
profit results. This is because the proposed model assumes variable demand, and this can only be assessed through a time-
dependent system.
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In this context, discrete-event simulation provides the tool to represent processes as a (discrete) sequence of events in time. In the
two-echelon VMI system, the process consists of the inventory consumption — supply cycle at the j-th retailer, where inventory is
consumed at a variable daily demand rate. This process can be described by the pseudo-code presented in Figure 4.

]

S
>

Inventory Level at
Retailer

(" N
d;; = daily demand at time t for retailer j Input data from retailer j: d;, o;, z;, LT}, Ry, y;
Planning Horizon: T days
Inventory =y; + R;
count_LT=0
for t=0 until t=T do
d;; = |d; + random(-z;, z;)x g
if Inventory — d;; > R do
Inventory = Inventory — d;,
else do
Inventory = Inventory — d;,
count LT =count_LT+1

Reorder Point

—> end
Planning Horizon Time t if count_LT = LTJ.+1 do
) ) ) Inventory = Inventory + Y
When the inventory reaches R, the lot size y; is ordered from the vendor. It takes count LT =0
LT; days to arrive at the retailer’s warehouse to increase its inventory. -7
end
end
- J

Fig. 4. Description and pseudocode of the inventory consumption — supply cycle at the j-th retailer

The simulation pseudocode was implemented with the MATLAB/Octave programming platform based on the code described in
[19]. Figure 5 presents an overview of the computational code. As presented, the input data consists of d;j, oj (=hd;), R;, yj and LT;.
Then, the code randomly generates daily normally-distributed demand to simulate the replenishment and consumption patterns of
the inventory at any time t through a planning horizon (in this case, k = 270 working days). At the end, the code plots these patterns
and determines the number of days with stockout events (where inventory < daily demand).

It should be noted that simulation involves a random element to provide variable demand values. Hence, a different demand
pattern is obtained with each execution of the simulation code.

Therefore, the validation of solutions of the reference and extended VMI two-echelon profit models was performed with 10 runs
of the simulation code. Table 7 and Table 8 presents the number of days with stockout considering the parameters of the reference
and extended VMI two-echelon profit models respectively.

As presented, stockout events can occur in the scenarios modelled by the reference and the extended VMI models. However, it is
important to highlight that the number of events is significantly smaller with the parameters of the extended VMI model. In the
presence of variable demand rate, the parameters of the reference model led to 2+4+2 = 8 stockout events for retailer 2, and
1+4+20+4+2+4 = 35 stockout events for retailer 3 through all 10 simulation runs. In contrast, the parameters of the extended
model led to 1+1+1 = 3 and 2+3 = 5 stockout events for retailer 2 and 3 respectively.
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Editor C Figure 1 — o x B x
File Edit Tools
L Oz eeod . temaa 4om
CONTINUQUSREVIEW.m B e
1 clear all; clc; pkg load statistics E 5
2 data [ g
<
4
5 :
6 IE E: .
7! retailer
8 d=data(l, retailer); std=data (2, retailer);
9 ! |
10 k ; T A .
11 D=k*d;
12 R=data(3,retailer); y=data(4,retailer); LT=data(5,retailer);
13 count_LT=0; Inventory=y+R; in';_\:wn:—:umpl.iurr”; (232.18, 413.75)
l4gfor i=1:k
15 inv consumption=[inv consumption; Inventory]; dt=ceil ((d+norminv(rand) *std));
16 if dt- dt = 0; end
17 if Inventory-dt > R, Inventory Inventory-dt; else Inventory Inventory-dt; count_LT=count_ LT+1; endif
18| if count LT==LT+1, Inventory-Inventory+y; count LT=0; endif
19 tend
20 vect R-ones (length(inv consumption),l)*R; plot(inv consumption); hold on;
21 plot (vect_R, ): axis( k y+R]); a Ii—:nc}:h(fw‘milinv_\:mmllmpt ion<0));
22 label=({ }: titule=strrep(label, ;hum2str(a)); title(titulo);
23
Linea: 9 Columna: 1 Codificarién: SYSTEM (CP1252) Fin de linea: CRLF

Fig. 5. Implementation of the simulation pseudocode code for the assessment of the reference and extended VMI two-echelon
profit models

Table 7. Number of days with stockout considering the parameters y; for the reference VMI two-echelon profit model: y1 = 2001, y2 = 675, y3

=501 (see Table 6)
Retailer Simulation Runs
) 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 2 0 0 4 0 0 0 0 2 0
3 1 4 0 20 0 0 4 0 2 4

Table 8. Number of days with stockout considering the parameters y; for the extended VMI two-echelon profit model: y1 = 2021, y» = 710, y3
=555 (see Table 6)

Retgiler Simulation Runs
J 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 1 0 0 1
3 0 0 0 0 2 0 3 0 0 0
6. Conclusions and Future Work

Traditionally, maintaining high inventory levels has been the only way to guarantee the availability of vital products in the
pharmaceutical industry. However, this may increase inventory management costs, obsolescence and stockout risks when
medicine has short expiry date or a highly variable demand.
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The present research proposed a multi-retailer VMI sales model with the premise of non-deterministic demand as shortage risks
are correlated with demand variability. The solutions and parameters (inventory lot sizes and reorder points) obtained with this
model were dynamically evaluated through computer simulation. By integrating data regarding demand variability within the
profit function of the VMI system, the estimated inventory lots and reorder points can reduce the periods with stockout in the two-
echelon SC.

While these results are encouraging to reduce stockout risks in SC, it is important to provide short- and medium-term follow-up
to the application of these models on the aimed industries. Also, to increase the complexity of the model to include variables such
as the products’ shelf life for perishable products in the agro-food industry.
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