

www.editada.org

International Journal of Combinatorial Optimization Problems and

Informatics, 12(3), Sep-Dec 2021, 32-49. ISSN: 2007-1558.

© Editorial Académica Dragón Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved.

Personal Course Timetabling for University Students based on Genetic Algorithm

Brenda Sunuami González López1; René Arnulfo García Hernández2, Yulia Ledeneva3

Universidad Autónoma del Estado de México, Unidad Académica Profesional Tianguistenco, Instituto Literario

No. 100, CP 50000, Toluca, Edo. Mex, México

 1 brenda_sunuami@hotmail.com
 2 renearnulfo@hotmail.com (corresponding author)

 3 yledeneva@yahoo.com

Abstract. This paper presents the optimization problem of

generating a Personal University Course Timetabling (PUCT) for

students from a Published Course Catalog (PCC) and an
evolutionary approach to solve it. A PPC is a result of a manual or

automatic process of a university course timetabling system to

assign classes to times and spaces, considering constraints and
preferences. However, independently of how the PPC was created,

each university student faces particular constraints to select its

timetable's courses. Due to the complexity of generating the
timetable manually, several students were currently not

considered a better option. In this paper, we present a method

based on a genetic algorithm that considers the constraints and
preferences presented by students at the Autonomous University

of the State of Mexico for generating a PUCT. According to

experimentation with a ground truth dataset, the proposed method
not only shows better quantitative results than manual generation

of the timetable but also shows good qualitative results based on

the evaluation of the students.

Keywords: personal course timetabling, multiobjective

optimization, combinatory optimization, micro genetic algorithm.

Article Info

Received Jan 19, 2021

Accepted May 11, 2021

1 Introduction

Nowadays, the covid-19 pandemic has accelerated the paradigm shift occurring in higher education institutions (referred to as

universities and colleges) because the traditional and conventional face-to-face education has abrupt change to distance education.

In traditional education, the concept of a student is considered a full-time student that must follow a fixed curriculum scheme with

a fixed course timetabling. However, now the curriculum of higher education institutions is more flexible with a modular approach

based on the student learning profile to adapt to the demands of the changing world. Now, it is expected that a university student

could course complementary courses in other campuses, universities, or countries. In the new central-student learning, it needed

to recognize that the students have time constraints and preferences to find a personal course timetabling within the limits of the

curriculum. Curriculum flexibility and distance education have generated a greater offering of courses, seminars, and workshops

increasing the complexity involved in generating the personal timetable manually for each student.

According to some Software Engineering students at the Universidad Autónoma del Estado de México (UAEMEX), finding a

good Personal University Course Timetabling (PUCT) is not a trivial task that affects their performance. For example, UAEMEX

students mentioned that they were unsure if their current PUCT was the best option or could be improved. Also, the students

mentioned the problem of selecting the best PUCT consists in finding a set of available courses that considers the current progress

of approved courses but also the failed courses, the available hours and days, the total minimum and maximum credits by period,

the overlap of schedules, and the gap in dead hours between courses.

This paper addresses the optimization problem of generating a PUCT for university students from the university courses offered

from a published catalog. It is worth mentioning that a university course catalog is a result of a human-made process of a well-

studied university-course timetabling system to assign classes to times and spaces considering institutional limitations (such as

classrooms, labs, and instructors) and, in general, students and instructors' preferences. In our review, most of the related work

about university course timetabling is related to the optimization problem of generating a university course timetabling. Müller

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

33

[24] defines it as: “a resource allocation problem with the aim of assigning classes to times and spaces in such a way that no two

classes are placed in the same room or taught by the same instructor at any given time”. Additional preferences and constraints

should be considered, such as: time, room, and distribution preferences; and student conflicts. The variety of preferences and

constraints, the diversity of the problem, and the specific requirements make the problem more complex [1]. The timetabling

problem is a so-called NP-hard and NP-complete optimization problem, depending on the constraints [2].

Therefore, the PUCT problem of this paper is different because it is a consequence of the result of the traditional university course

timetabling systems focused more on the student than on the institution. However, regardless of how the university course catalog

was created, each student faces particular limitations in selecting courses to their timetable, and due to the large search space

involved in finding an optimized schedule, some students currently did not consider a better timetable because they did not try all

the options. In specific, in this paper, we present a method based on an evolutionary algorithm that considers six constraints that

present the UAEMEX students for generating a PUCT; however, the proposed method could easily be adapted to other

universities.

To obtain not only a quantitative evaluation but also a qualitative evaluation of the proposed method, a ground truth dataset with

UAEMEX students was collected. In particular, for the qualitative evaluation, the currently manually made PUCT of the

UAEMEX students were compared to those proposed automatically.

This paper is organized as follow: a brief review of the related work about the traditional university course timetabling problem

and its solution methods are mentioned in section two, a description of the primary and second constraints of the Personal

University Course Timetabling (PUCT) problem for UAEMEX students is described in section three, a detail explanation of the

proposed method is presented in section four, a description of the dataset and the discussion of the experimentation are presented

in section five, and the conclusions are giving in section six.

2 Related work

Timetabling problems have used different optimization techniques based on swarm optimization, evolutionary and local-search

algorithms, see Fig. 1, which are considered metaheuristic algorithms. Evolutionary computing generationally produces solutions

to an optimization problem with the characteristic that in each generation, the results usually improve on the previous generation

[3], for example, Greedy Algorithm[4], Genetic Algorithms [5], Memetic Algorithms[6], and Simulated Annealing [7].

Fig. 1 Metaheuristic algorithms.

Timetabling optimization is divided into several sections. For example, transport timetabling solves the route assignment problem

to drivers; sports timetabling, specifically in soccer, has the characteristic that there are different tournaments between teams such

as all-against-all that requires a specific type of programming; employee timetabling and roistering for the assignment of shifts in

the health sector; and educational timetabling for programming the related tasks to the schools and higher educational institutions

[8]. For example, exam timetabling where an assignment of defined timetabling is carried out since there are flexible timetabling

for the corresponding exams implemented in a university [2], school and higher education institutions timetabling to assists to the

distribution of times, rooms, courses and instructors preferences; and student conflicts. However, managing student preferences

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

34

and conflicts is about the overlapping course that students present in general, not for each student. The only system that is more

related to our concern is the next.

Most of the timetabling research is focused on high schools and universities due to the flexible hours (flexibility to choose the

courses to take and the most convenient hours). In [9], a complete course timetabling and student timetabling system developed

for the University of Waterloo between 1979 and 1985 is described. The system is based on a "demand-driven" philosophy, where

students first chose their courses, and the system tries to find the best timetables to maximize the number of satisfied requests.

The problem is first decomposed into small manageable subproblems. Each subproblem is solved in sequence using a greedy

heuristic to assign times to sections and a Lagrangian relaxation algorithm to assign classrooms. Representatives from each

department have interactive access to make modifications. Finally, each student is assigned individually to the combination of

sections that maximize the satisfaction of the schedule and the classroom section. The system was used successfully for 15 years.

An example of higher education timetabling of course and room assignment for the engineering faculty of the Diego Portales

University where the problem is that in each semester there is an average of 150 courses which have a variable number of sections

[10]. In this case, the courses have two types of classes: chair and auxiliary. At the beginning, the timetabling was generated by a

team made up of three professionals, who took an average of one month to obtain the final timetabling. This research is composed

of soft and hard constraints (where soft constraints are those that are a possibility of restrictions to be carried out, on the other

hand, hard constraints are those that must be complied with). Some soft constraints are: the auxiliary classes should preferably be

held on Wednesdays in any hour block, but if this assignment is not possible, it can be done on any day and time block. Avoid, as

far as possible, assigning courses to the auditorium. Some hard constraint is: each course must be assigned to a classroom with a

capacity for students for that course, an instructor cannot teach more than one class at a time, the available-schedules of the

instructors must be respected, and there should not be time limits between courses in the same semester.

In [11], the use of a simulated annealing algorithm is described to solve the problem of school timetables, and it is compared to

the basic geometric-cooling program (a scheme that uses two cooling speeds and four schemes) that allow both reheating and

cooling. Schematics are variants of the basic geometric cooling program. The found is that using multiple cooling speeds is more

effective than one. Four schemes were experimented with raising the temperature to allow the system to escape local minima. In

general, the scheme using the phase transition temperature in combination with the best quality of the solution found produced

the best results. In this work, the author only tested the schemas with the timetabling problem.

In [12], the design and implementation of a PC-based computer system to assist in the construction of a combined timetable of

college courses and exams is described. The system uses an integer programming model that assigns courses, schedules, and

rooms. The model is combined with a flexible front-end device that generates constraints corresponding to the conditions specified

by the user and report writers that facilitate the presentation of the resulting timetable. The quality of the developed timetabling

depends on the relative position of the courses assigned to the available time periods, a condition that the integer programming

model attempts to satisfy by constructing groups of courses that are assigned to groups of time periods. In addition, the objective

function is used in a way that takes advantage of the experience and knowledge of the user about the problem. The solution to the

course timetabling problem is used to build an initial solution to the exam schedule. A heuristic algorithm is generated to further

improve it until a good workable solution is reached. The whole system is flexible and allows the easy construction and testing of

alternative programs that are predefined according to user-specified requirements. The Athens University of Economics and

Business has used the system with success.

The author [13] mentions that the article has been motivated by a real-life class-teacher schedule problem, where there are several

classes, and each class follows its own fixed curriculum. A set of available working days is provided within which all class syllabi

must be completed. Each curriculum consists of a specific set of subjects. For each subject, you specify the first workday

(published date) on which it can start and the last workday (end-date) on which it must be completed. In agreement with the author

Hertz, a new approach to finding a viable course timetabling was developed. The model can handle timetabling problems with

selected courses, time windows, and pre-assignment requirements, compactness, geographic limitations, and precedence. Also, in

their initial requirements, teachers do not necessarily specify the duration of each course. In most of the approaches described in

the literature for tackling course timetabling problems, these lengths are assumed to be initially set to find a feasible course

timetable by planning taboo search. No such restrictions are imposed that can drastically reduce the size of the feasible course

program set. Finally, the method developed in this article can be easily implemented by using object-oriented programming.

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

35

3 Problem description

Usually, a university publishes the offered courses (also: seminars, lectures, and workshops) of the curriculum to be run in the

next period in a catalog where days, hours, classroom, labs, and instructors of the courses are specified. The information, rules,

and the suggestions to select the courses are specified in the curriculum, for example, at the UAEMEX for each course is specified

the number of credits, the mandatory or desirable sequence of the courses, the mandatory and elective courses, the number of

maximum and minimum credits that a student can course in a period, and the number of the desirable period completed. University

course catalog is the result of a human-made process or of a well-studied university-course timetabling system to assign classes

to times and spaces considering institutional limitations (such as classrooms, labs and instructors) and, in general, students and

instructors preferences.

Given a published catalog of available university courses that a student can select, the Personal University Course Timetabling

(PUCT) problem consists in finding the set of courses that most benefits the student according to the limits of curriculum

flexibility, the current progress within the curriculum, and the hard and soft constraints about time and curriculum suggestions.

3.1 Time

Even though the timetabling can be made in different period times, day, week, weekend, bi-week, and month; in this paper, by

the UAEMEX curriculum, the timetabling is constructed by week from Monday to Saturday from 7am to 7pm; and it is repeated

every week during a semester. The number of hours of a course by week varies from three to five hours distributed in the week

where the minimum time for a meeting is one hour, and there is no maximum. For example, a three-hour course is distributed in

one meeting (3h course) or two meetings of one and two hours (1+2h course) and vice versa (2+1h course), or two meetings of

one and a half hours (1.5+1.5h course). Usually, the courses of three and four hours are divided in two meetings and the courses

of five hours are divided in two or three meetings; with a day as a gap between meetings. Classes should generally end 10 or 15

minutes early so that students and the instructor can move from one class to another. Two courses have time overlap if and only

if some time is shared in at least one meeting on the same day. According to the UAEMEX students, they have two-time

constraints:

Overlapping Class Time (OCT) is a hard constraint because a student cannot be in two places at the same time, and it decreases

the academic performance of the student. Even though it is evident, we find some cases with one-hour overlap and half-hour

overlap.

Maximum Weekly Time at the University (MWTU) is a hard constraint because some students have other activities like jobs,

sports, and other courses. Students are mentioning that the other activities are flexible, but they need to complete a time. For this,

first, they give preference to the university time, and then they define other timetabling. The MWTU is the sum of the hours per

day from the first-hour course until the last-hour course. Therefore, all the free hours between classes in a day also are considered

per day. The MWTU constraint minimizes the number of dead hours between classes. In this sense, the compactness of the

timetabling can be maintained by the MWTU.

It is worth mentioning that a system requirement, beyond the PUCT problem, is to consider that from the moment the course

catalog is published until the student makes the registration, the published catalog may change over time since some courses are

closed because the classroom capacity is filled or new courses are opened at the last minute.

3.2 Curriculum

The information, rules, and the suggestions to select the courses are specified in the curriculum. In traditional education, the

concept of student is considered a full-time student that must follow a fixed curriculum scheme with a fixed course timetabling.

However, now the curriculum of higher education institutions is more flexible with a modular approach based on the student

learning profile to adapt to the demands of the changing world. Curricular flexibility is based on the credits of the courses, which

is a unit of measurement of academic work that makes it possible to find equivalence between different subjects. In this sense, the

credits of a course are directly related to the weekly class meeting hours. In each semester period, a set of courses are suggested;

however, each student can select later or earlier courses according to the mandatory and elective sequence of courses. Therefore,

each course has a number indicating the suggested period. According to the curriculum, there are two constraints:

Maximum-Registered Credits (MAXRC) is a hard curricular constraint to limit the maximum number of credits that a student can

register in a period.

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

36

Minimum-Registered Credits (MINRC) is a hard curricular constraint to limit the minimum number of credits that a student can

register in a period. Of course, only in the last period is it possible to get less MINRC.

Suggested Courses (SC) is a soft constraint according to the current progress of the student in the curriculum that suggests the

sequential relevance of the course for the timetabling using the suggested period of the course. The idea is that an early-period

course should be completed before a later course, but there is flexibility.

To-Advance Courses (TAC) is a soft constraint to indicate the maximum number of courses that a student desires to advance

beyond the current progress of the student.

Given that there are many possibilities of timetabling for each set of personalized conditions of the student, then this is an

optimization problem, which must be evaluated according to the conditions that adapt to the conditions of the student, how to find

the best workload that considers the student's current progress, student preferences, and curriculum restrictions.

4 Proposed genetic algorithm

In this paper, an evolutionary approach to the PUCT problem is proposed. The hypothesis is that an evolutionary approach can

find better timetables according to the student preferences and curriculum constraints. In other words, we treat this problem as an

optimization problem using an evolutionary approach.

The input of the proposed genetic algorithm is the published university course catalog, curriculum constraints, student conditions

and preferences; as is shown in Fig. 2. After the GA search, the PUCT is obtained. Genetic Algorithm (GA) is an evolutionary

approach inspired in the natural selection theory proposed by Charles Darwin (Darwin, 1859) that has proved to be an alternative

solution for global optimization problems in large search spaces [44–48]. In the first step, the GA uses a population of random

solutions (initial population step) evaluated according to the objective function to optimize (fitness function step). In evolutionary

optimization, a solution for one problem is not absolute; it means there is a set of possible solutions where some are better than

others. Mainly considering the best solutions (parents selection step), the GA proposes a new population mixing (crossover step)

some parts from a canonical codification (chromosome encoding step) from good solutions in order to get better solutions

(evolution principle). Eventually, the way of mixing some parts from the canonical codification could produce repeated solutions.

Therefore, the GA applies a small variation (mutation step) to the canonical codification in the new population in order to explore

new solutions. The new population is evaluated, and the process is repeated until a satisfactory solution is reached or until some

arbitrary stop-criteria is reached (stop condition).

Course catalog

Curriculum constraints

 Student preferences

GA’s parameters

Start

Initial population

Mutation

Crossover

New population

Parent’s selection

Fitness evaluation

Stop

End

Print PUCT

Fig. 2 Flow chart of proposed genetic algorithm.

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

37

4 .1 Proposed genetic operators

The fitness function (𝐹) evaluates the PUCT represented by the chromosome (𝑡) as a multiobjective function, see ec. (1). The

fitness function considers the curriculum constraints: minimum curricular credits (𝑌) and maximum curricular credits (𝑋); and the

student preferences: Maximum Available Weekly Hours at the University (𝑀) and student-defined maximum credits (𝐾 ≤ 𝑋).

The constraints measure the error in a range of 0 to 1, therefore 𝐹 must be minimized. The function is formulated as the weighted

sum of the individual evaluations. The variables 𝛼, 𝛽, 𝛾, 𝜀, 𝜆, 𝜓, 𝜃, and Ω; are used to students may give a greater weight to certain

constraints, where hard constraints cannot be cero and must to receive a greater or equal weight than soft constraints. The sum of

the conditions must be 1. The fitness function for the genetic algorithm is:

 𝐹(𝑡) = 𝛼 𝑂𝐶𝑇(𝑡) + 𝛽 𝑀𝑊𝑇𝑈(𝑡) + 𝛾 𝑆𝐶(𝑡) + 𝜓 𝑀𝐴𝑋𝑅𝐶(𝑡) + 𝜙 𝑀𝐼𝑁𝑅𝐶(𝑡) + Ω 𝑇𝐴𝐶(𝑡) . (1)

The constraints are:

1. Overlapping Class Time (OCT). OCT hard constraint of the timetabling 𝑡 is evaluated considering the Number of

Overlapping Hours (NOH) in all 𝑡 divided by 𝑀 that the student specified, as ec. (2).

 𝑂𝐶𝑇(𝑡) =
𝑁𝑂𝐻(𝑡)

𝑀
 . (2)

2. Maximum Weekly Time at the University (MWTU). The MWTU constraint of 𝑡 is evaluated with the Number of Extra

Hours (𝑁𝐸𝐻) of 𝑡 that exceeds to 𝑀:

 𝑀𝑊𝑇𝑈(𝑡) = {
𝑁𝐸𝐻(𝑡)−𝑀

𝑀
, 𝑁𝐸𝐻(𝑡) > 𝑀

 0 , 𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒
 . (3)

3. Suggested Courses (SC). SC is a soft constraint that should suggests the assignment of earlier courses before the later

ones. In a flexible curriculum, a student can advance or delay courses therefore the selection of the courses of the

chromosome 𝑡 should include the courses from earlier semesters (weight to minimize the SC constraint) that the student

can take. For this, the semester period of the course suggested by the curriculum is used (see Fig. 3). Given the 𝑛 courses

of a timetabling 𝑡 and the catalog 𝑟 of the available courses for the student, the suggested courses uses the suggested-

semester period of courses (𝐶𝑜𝑢𝑟𝑠𝑒
𝑝𝑒𝑟𝑖𝑜𝑑

) as a weight of the selection. Therefore, the sum of the 𝑛 periods of the courses

from 𝑡 is calculated in 𝑆(𝑡), see ec. (5). To normalize 𝑆(𝑡), the sum of the 𝑛 periods of the earlier courses from 𝑟 is

calculated in 𝐿(𝑡) as the smallest weight, see ec. (6), and the sum of the 𝑛 periods of the later courses from 𝑟 is calculated

in 𝐻(𝑡) as the largest weight, see ec. (7). The SC ec. (4) is computed as follow:

 𝑆𝐶(𝑡) =
𝑆(𝑡)−𝐿(𝑡)

𝐻(𝑡)
 , (4)

where:

 𝑆(𝑡) = ∑ 𝐶𝑜𝑢𝑟𝑠𝑒𝑖
𝑝𝑒𝑟𝑖𝑜𝑑∈𝑡𝑛=|𝑐𝑜𝑢𝑟𝑠𝑒𝑠 ∈ 𝑡|

𝑖=1 , (5)

 𝐿(𝑡) = ∑ 𝐶𝑜𝑢𝑟𝑠𝑒𝑖
𝑒𝑎𝑟𝑙𝑖𝑒𝑟 ∈ 𝑟𝑛=|𝑐𝑜𝑢𝑟𝑠𝑒𝑠 ∈ 𝑡|

𝑖=1
 , (6)

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

38

 𝐻(𝑡) = ∑ 𝐶𝑜𝑢𝑟𝑠𝑒𝑖
𝑙𝑎𝑡𝑒𝑟∈𝑟 .

𝑛=|𝑐𝑜𝑢𝑟𝑠𝑒𝑠 ∈ 𝑡|

𝑖=1
 (7)

4. Maximum-Registered Credits (MAXRC) is a hard curricular constraint to limit the maximum number of credits that a

student can register in a period according to the maximum curricular credits (𝑋), see ec. (8).

 𝑀𝐴𝑋𝑅𝐶(𝑡) = {
𝑁𝐶(𝑡)−𝑋

𝑋
, 𝑁𝐶(𝑡) > 𝑋

 0 , 𝑁𝐶 (𝑡) ≤ 𝑋
 . (8)

5. Minimum-Registered Credits (MINRC) is a hard curricular constraint to limit the minimum number of credits that a

student can register in a period according to the maximum credits (𝑌) specified by the curriculum. Of course, only in the

last period is it possible to get less MINRC, see ec. (9).

 𝑀𝐼𝑁𝑅𝐶(𝑡) = {
 𝑌−𝑁𝐶(𝑡)

𝑌
, 𝑁𝐶(𝑡) < 𝑌

 0 , 𝑌 ≤ 𝑁𝐶(𝑡)
 . (9)

6. To-Advance Courses (TAC) is a soft curricular constraint to allow more flexibility when the student desires to increase

the load academic work, so this constraint is designed to try to complete a student-defined maximum credits (𝐾); see ec.

(10). Of course, 𝐾 cannot pass to maximum curricular credits (𝑋).

 𝑇𝐴𝐶(𝑡) =
∑ 𝐶𝑟𝑒𝑑𝑖𝑡𝑜𝑠(𝐶𝑜𝑢𝑟𝑠𝑒𝑖)

𝑛=|𝐶𝑜𝑢𝑟𝑠𝑒𝑠 ∈ 𝑡|

𝑖=1

𝐾
, 𝑘 ≤ 𝑋 . (10)

Chromosome Encoding. A chromosome (𝑡) represents a PUCT for a student 𝑆. The number of genes of 𝑡 correspond to the

number of offered available courses that the only the student 𝑆 can course which is a selection of the complete published course

catalog. The genes of the chromosome 𝑡 are represented by a binary encoding where 1 means “aggregate this course to the PUCT”

and 0 means “disaggregate this course to the PUCT”.

Initial Population. All chromosomes in the initial Population (𝑃0) are created in random way.

Parent Selection. Once each chromosome has an associated fitness value, those stronger chromosomes have more probability of

being selected as parents (natural selection mechanism). Natural selection mechanism establishes that two good solutions

(chromosomes) could produce better solutions; nevertheless, in some cases the solution could be worse. In this step, the classical

𝜇-tournament selection is employed where the strongest chromosome from a small random subsample (𝜇) is selected as a parent.

The smaller the 𝜇 subsample, the higher the promising chromosome review.

Crossover. 𝑛-point crossover is used for mixing the genetic information of the parents, where 𝑛 random points between the genes

of the parent chromosomes are selected, and then two offspring chromosomes are created swapping everything between the

selected points.

Mutation. According to the evolution scheme, the mutation slightly happens in nature, with a low probability of 0.1 percentage.

However, it is one of the fundamental mechanisms to preserve evolution. Since the chromosome is binary, the classical inverse

mutation operator is used.

Elite strategy. It helps to keep the best solution from the previous generation to the new generation.

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

39

5 Experimentation

In the next section, the features of the ground truth dataset used to the experiments is shown. In particular, the curriculum

description, the complete published course catalog, the student dataset description are described. Using this dataset, the

experiments design to tuning and testing our proposed method is described.

5.1 Dataset description

Due to there is not a PUCT benchmark dataset, the dataset was collected in an interview with software engineering students at the

UAEMEX. For this dataset, the last-period students participate in this dataset because they are experts in the manually-made

PUCT process. In the next section, the curriculum description, the complete course catalog, the student conditions, and the student

timetabling are described.

Curriculum description is of the software engineering career with 55 courses distributed at nine semesters, but the number of

semesters is flexible. The courses set suggested by semester is shown in Fig. 3. For example, the six courses AU11-UA16 at the

third semester are suggested as an academic work-load of 35 credits, but each student may select its courses. For example, in the

third semester, the UA12 maintains an obligatory sequence with UA7, so it cannot be coursed if UA7 has not been approved. The

minimum number of credits by a period is 24 and the maximum number of credits by period is 64. A software engineering student

must complete 348 credits to finish the career.

Fig. 3 Distribution of the software engineering curriculum.

Student dataset description. In the dataset, 25 students participate in the experiments, which correspond to a whole last-semester

group. This sample was chosen since there were students with different academic performance: 5 students have approved all their

courses with the suggested curriculum credits with ideal performance, 5 students have failed courses with a bad performance, and

15 students have approved all their courses, but their total credits is lower than the suggested by the curriculum, so they have slow

performance. The idea of this data set is to show that the students have the experience to make PUCTs, and they have different

and particular conditions.

Published course catalog. Fig. 4 shows the available course catalog that were used for the experimentation.

Student timetable description. For the collection of data regarding the PUCT of the students, in the first instance, an examination

was applied to identify the conditions that the students take into account to carry out the PUCT; as a second instance, it was asked

to consider the published course catalog and as a third instance make the PUCT. Table 1 shows the conditions of the students and

the evaluation of the PUCT by the fitness function.

Software Engineering

UA1

UA2

UA3

UA4

UA5

UA6

UA7

UA8

UA9

UA10

UA11

UA12

UA13

UA14

UA15

UA16

UA17

UA18

UA19

UA20

UA21

UA22

UA23

UA24

UA25

UA26

UA27

UA28

UA29

UA30

UA31

UA32

UA33

UA34

UA39

UA35

UA36

UA37

UA38

UA40

UA41

UA42

UA43

UA44

UA45

UA46

UA47

UA48

UA49

UA50

UA51

UA52

UA53

UA54

UA55

1 2 3 4

5

6

7

8

9

semester

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

40

Hour/day M T W T F S

Hour/day M T W T F S

7:00 - 8:00

UA51

UA50

 7:00 - 8:00

UA45 UA46

 UA47

8:00 - 9:00 8:00 - 9:00

9:00 - 10:00

UA54

9:00 - 10:00
UA44 UA48

10:00 - 11:00
UA52

UA49
UA53

UA55

10:00 - 11:00
UA42

11:00 - 12:00 11:00 - 12:00

12:00 - 13:00

 12:00 - 13:00
UA43

13:00 - 14:00 13:00 - 14:00

Hour/day M T W T F S

Hour/day M T W T F S

7:00 - 8:00

UA55

 7:00 - 8:00
UA44

UA45

8:00 - 9:00
UA50

UA52

 8:00 - 9:00
UA42

9:00 - 10:00 9:00 - 10:00

10:00 - 11:00

UA49
UA51

UA53

 10:00 - 11:00

UA46
UA48

11:00 - 12:00

UA54

 11:00 - 12:00
UA43

12:00 - 13:00 12:00 - 13:00 UA47

13:00 - 14:00

 13:00 - 14:00

Fig. 4 Available course catalog.

Table. 1. Student conditions to generate manual and automatic PUCT for 25 students evaluated with the

proposed fitness function

Student
Student conditions Fitness Evaluation

OCT MWTU SC MAXRC MINRC TAC Manually-made PUCT

E1 20 0 6 42 17 0 0

E2 15 0 5 42 17 1 0

E3 14 1 6 35 17 0 0

E4 15 2 5 41 17 1 0

E5 16 1 6 42 17 1 0

E6 18 0 6 36 17 0 0.07

E7 20 0 6 42 17 0 0.08

E8 17 1 6 41 17 0 0.02

E9 16 1 6 38 17 0 0.08

E10 20 0 6 42 17 0 0.02

E11 16 1 6 42 17 0 0.08

E12 14 0 6 35 17 0 0.06

E13 20 0 6 34 17 1 0.06

E14 25 0 5 42 17 0 0.08

E15 24 1 5 37 17 0 0.07

E16 22 0 6 42 17 0 0.8

E17 17 1 6 36 17 0 0.02

E18 14 0 5 38 17 1 0.08

E19 20 0 6 42 17 0 0.03

E20 15 0 6 42 17 1 0.06

E21 18 1 6 42 17 0 0.08

E22 20 0 6 38 17 0 0.07

E23 17 1 5 38 17 0 0.08

E24 18 1 5 42 17 0 0.08

E25 20 0 6 38 17 0 0.07

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

41

5.2 Parameter Tuning

The following experiments have the objective of showing the evolutionary performance of the proposed genetic algorithm to see

if it is possible to obtain good performance with a set of predefined parameters. In all experiments, the next AG parameters are

used: 2-tournament selection, 2-point crossover, the population size of 100, and maximum generation number of 100. For the

following experiments, the preferences and PUCT of students E1, E2, and E3 were used. In all the experiments, the variables 𝛼,

𝛽, 𝛾, 𝜀, 𝜆, 𝜓, 𝜃, and Ω receive the same weight (0.125).

The first parameter to determine was the crossover probability, which was tested as 0.3, 0.6, and 0.9; with a fixed mutation

probability of 0.3, see Fig 5. As can be seen, in all cases, the proposed method can generate an adequate PUCT for the student E1,

thus the crossover probability 0.3 seems adequate to obtain the better result before the other options. In problems with several

local optimum, this may not be desirable because it leads to premature convergence in the search, but in this experiment it does

not appear to be the case.

Fig. 5 Varying the crossover probability for student E1.

The second parameter to determine was the mutation probability, which was tested as 0.03, 0.06, and 0.09; with a fixed crossover

probability of 0.3, see fig. 6. As can be seen, in all cases, the proposed method can generate an adequate PUCT for student E1,

however, the mutation probability of 0.03 seems more appropriate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

fi
tn
es
s

generations

Varying the crossover probability for student E1

crossover of 0.3 crossover of 0.6 crossover of 0.9

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

42

Fig. 6 Varying the mutation probability for student E1.

Fig. 7 shows the performance of the proposed GA using the crossover probability of 0.3 and the mutation probability 0.03. In

order to observe if this behavior does not depend on the conditions of the student E1, the same scheme parameters were repeated

on students E2 and E3.

Fig. 7 Evolution performance for student E1.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

fi
tn
es
s

generations

Evolution performance for student E1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

fi
tn
es
s

generations

Varying the mutation probability for student E1

mutation of 0.03 mutation of 0.06 mutation of 0.09

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

43

In Fig 8, the crossover probability ranged from 0.3, until 0.9; with a fixed mutation probability of 0.3. As can be seen in Fig 8, in

all three cases, the proposed method can generate an adequate PUCT for the E2 student; but the crossover probability of 0.3 seems

adequate to obtain a better result.

Fig. 7 Varying the crossover probability for student E2.

The second parameter to experiment was the mutation probability, which was tested as 0.03, 0.06, and 0.09; with a fixed crossover

probability of 0.03, see Fig 9. As can be seen, in all cases, the proposed method can generate an adequate PUCT for student E2.

Fig. 8 Varying the mutation probability for student E2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

fi
tn
es
s

generations

Varying the crossover probability for student E2

crossover of 0.3 crossover of 0.6 crossover of 0.9

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

fi
tn
es
s

generations

Varying the mutation probability for student E2

mutation of 0.03 mutation of 0.06 mutation of 0.09

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

44

Fig. 10 shows the performance of the proposed GA using the crossover probability of 0.3 and the mutation probability 0.03. In

order to observe if this behavior does not depend on the conditions of the student E2, the same scheme parameters were repeated

on E3 student. Graphics 11 and 12 show the performance of the proposed GA using the crossover probability of 0.3 and the

mutation probability of 0.03.

Fig. 10 Evolution performance for student E2.

Fig. 9 Crossover probability for student E3.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

fi
tn
es
s

generations

Evolution performance for student E2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

fi
tn
es
s

generations

Varying the crossover probability for student E3

Crossover of 0.3 Crossover of 0.6 Crossover of 0.9

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

45

 Fig. 10 Mutation probability for student E3.

Fig. 13 shows the performance of the proposed GA using the crossover probability of 0.3 and the mutation probability 0.03 for

student E3. With the experimentation of this section, the crossover probability of 0.3 and the mutation probability 0.03 were used

for all the experiments in the next section.

Fig. 11 Evolution performance for E3 student.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

fi
tn
es
s

generations

Evolution performance for student E3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

fi
tn
es
s

generations

Varying the mutation probability for student E3

mutation of 0.03 mutation of 0.06 mutation of 0.09

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

46

5.3 Results

Using the timetable constraints and preferences of students of Table 1, the genetic proposed method with the previously adjusted

parameters obtains the fitness results shown in the middle column of automatic PUCT of Table 2. In Table 2, according to these

results, our proposed method obtained equal or better results than the current manually-made PUCT. These results support our

hypothesis about an evolutionary approach —as the well-known genetic algorithm is enough to find good PUCT based on the

student preferences and curriculum constraints. In all the results, the variables 𝛼, 𝛽, 𝛾, 𝜀, 𝜆, 𝜓, 𝜃, and Ω of the fitness function

receive the same weight (0.125).

Table. 2. Comparison of the manual and automatic PUCT with the fitness function for the 25 students of Table 1.

Furthermore, the comparison shows, in the right column, the student point-of-view of the automatic PUCT with respect to

their manual PUCT into four categories: worse, equal, equivalent and better

Student

Fitness Evaluation Qualitative

Manual PUCT
Automatic

PUCT
Evaluation

E1 0 0 Equal

E2 0 0 Equal

E3 0 0 Equal

E4 0 0 Equivalent

E5 0 0 Equivalent

E6 0.07 0.05 Better

E7 0.08 0.06 Better

E8 0.02 0 Better

E9 0.08 0.04 Better

E10 0.02 0.01 Better

E11 0.08 0.03 Better

E12 0.06 0.02 Better

E13 0.06 0.04 Better

E14 0.08 0.06 Better

E15 0.07 0 Better

E16 0.8 0 Better

E17 0.02 0 Better

E18 0.08 0 Better

E19 0.03 0 Better

E20 0.06 0 Better

E21 0.08 0 Better

E22 0.07 0 Better

E23 0.08 0 Better

E24 0.08 0 Better

E25 0.07 0 Better

However, the quantitative values of Table 2 do not show the point-of-view assessment of the student about automatic PUCT. In

the last column of Table 2, the student qualified the automatic PUCT with respect to the manually-made within four categories

worse, equal, alternative and better. Although the qualitative evaluation is implicit in the quantitative evaluation, the qualitative

evaluation shows that for students E4 and E5 (with the same fitness evaluation) the automatic PUCT was equivalent; and for

students E6, E7, E8, E10, E13, E14, and E17 the difference between the fitness evaluation is too close (less than or equal to 0.02)

the students note the difference since it could be labeled as “equivalent”. Fig. 14 shows the qualitative evaluation approved by the

students of the PUCT generated by the proposed method. In 12% of the results, the automatic PUCTs were the same as those

made by the student. In 8% of the results, the automatic PUCTs were equivalent to those carried out by the student and are a

feasible alternative. In 80% of the results, better PUCTs were created than those generated manually by the student; it should be

noted that in no case were PUCTs worse than those generated manually or with overlapping timetables. These results approve our

hypothesis about the fitness function is formulated in relation with the point of view of the students.

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

47

Fig. 12 Qualitative results.

Further experimentation with the Simulated-Annealing Algorithm (SAA) was performed to this problem. We selected the meta-

SAA heuristic because it could be a feasible alternative for the implementation on the mobile devices of the students. In this case,

the initial parameters for simulated annealing are: initial temperature of 2, minimum temperature of 1/10000, and maximum

number of iterations of 100, with the geometric cooling function. In Fig 15, the performance of the SAA for the students E1, E2

and E3 is shown. In all three cases, the SAA performed well with the advantage of using only a single solution, therefore the SAA

algorithm required fewer evaluations than the genetic algorithm.

Fig. 15 Performance with simulated annealing algorithm for the students E1, E2 and E3.

Better PUCT

Equal PUCT

Equivalent PUCT

Student-approved qualitative results

1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

fi
tn
es
s

iterations

Performance with the simulated annealing algorithm

SA E1 SA E2 SA E3

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

48

6 Conclusions

It is worth mentioning that the educational performance of an institution depends on the educational performance of the student,

which in turn depends on the construction of a good personal timetable, which is a time-consuming task. The first contribution of

this work is to address a new educational timetabling problem that consists of generating a personal university course timetabling

for students from a published course catalog. The second contribution is that we present the formulation of the fitness function

that considers the constraints and preferences presented by UAEMEX students in relation with the student point-of-view. The

third contribution relies on the use the well-known genetic-based method for generating a personal university course timetabling.

With the formulation of our fitness function and the use of a well-known evolutionary algorithm, the proposed method can be

easily adapted to other higher education institutions.

According to experimentation with the ground truth dataset, the proposed method shows good qualitative results based on the

evaluation of the students. In all the cases, our method presents a high-quality PUCT that, compared to the students it generates

the same, equivalent, or better PUCTs, but it was never worse. The creation of a test data set is a time-consuming task, so in the

future, it is expected to automate this task to perform a greater number of tests. Further experimentation with the simulated

annealing algorithm suggests that it could be a viable alternative to be implemented on mobile devices. In the future, it will be

useful to make comparisons with other meta-heuristic algorithms.

References

1. A. Hertz, “Finding a feasible course schedule using Tabu search,” Discret. Appl. Math., vol. 35, no. 3, pp. 255–270, 1992, doi:

10.1016/0166-218X (92)90248-9.

2. A. Hertz, “Tabu search for large scale timetabling problems,” Eur. J. Oper. Res., vol. 54, no. 1, pp. 39–47, Accessed: Jan. 11, 2021.

https://www.academia.edu/20101985/Tabu_search_for_large_scale_timetabling_problems.

3. A. T. Ubando, A. B. Culaba, K. B. Aviso, D. K. S. Ng, and R. R. Tan, “Fuzzy multi-objective approach for designing of biomass supply

chain for polygeneration with triple footprint constraints,” in ASME International Mechanical Engineering Congress and Exposition,

Proceedings (IMECE), Apr. 2013, vol. 12, doi: 10.1115/IMECE2013-66236.

4. C. Cotta and A. J. Fernández, “Memetic algorithms in planning, scheduling, and timetabling,” Stud. Comput. Intell., vol. 49, pp. 1–30,

2007, doi: 10.1007/978-3-540-48584-1_1.

5. D. Abramson and J. Abela, “A parallel genetic algorithm for solving the school timetabling problems,” Proc. First Int. Work. Parallel

Process. AI, pp. 6–11, 1991.

6. D. Abramson, M. Krishnamoorthy, and H. Dang, “Simulated annealing cooling schedules for the school timetabling problem,” Asia-

Pacific J. Oper. Res., vol. 16, no. 1, pp. 1–22, 1999.

7. E. Burke, “Examination timetabling in British universities: A survey,” Lect. Notes Comput. Sci., vol. 1153, pp. 76–90, 1996, doi:

10.1007/3-540-61794-9_52.

8. E. Jansen, “Practices in timetabling in higher education institutions: A systematic review,” PATAT 2016 - Proc. 11th Int. Conf. Pract.

Theory Autom. Timetabling, pp. 295–316, 2016.

9. E. K. Burke and S. Petrovic, “Recent research directions in automated timetabling,” Eur. J. Oper. Res., vol. 140, no. 2, pp. 266–280, 2002,

doi: 10.1016/S0377-2217(02)00069-3.

10. E. K. Burke, J. R. Newall, and R. E. Weare, “A memetic algorithm for university exam timetabling,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 1153, pp. 241–250, 1996, doi: 10.1007/3-540-61794-9_63.

11. F. Vericat, C. O. Stoico, C. M. Carlevaro, and D. G. Renzi, “Genetic algorithm for the distribution function of the electron gas,” Interdiscip.

Sci. Comput. Life Sci., vol. 3, no. 4, pp. 283–289, 2011, doi: 10.1007/s12539-011-0108-3.

12. G. Cubillos, “Timetabling School problem and genetic algorithms:” Vínculos, vol. 10, no. 2, pp. 259–276, 2013.

13. Henderson, D., Jacobson, S. H., & Johnson, A. W. (2006). The Theory and Practice of Simulated Annealing. In Handbook of

Metaheuristics (Issue April). https://doi.org/10.1007/0-306-48056-5_10

14. J. A. Ferland and A. Lavoie, “Exchanges procedures for timetabling problems,” Discret. Appl. Math., vol. 35, no. 3, pp. 237–253, 1992,

doi: 10.1016/0166-218X (92)90247-8.

15. J. Gómez, “Application of Genetic Algorithms Technique in the Generation of Academic Schedules,” KnE Eng., vol. 2020, pp. 150–165,

2020, doi: 10.18502/keg.v5i1.5927.

16. Jansen, E. (2016). Practices in timetabling in higher education institutions: A systematic review. PATAT 2016 - Proceedings of the 11th

International Conference on the Practice and Theory of Automated Timetabling, 295–316.

17. L. De Sardi, “Evolutionary Multi-objective Optimization by a model of nonlinear,” 2011.

18. M. W. Carter, “A comprehensive course timetabling and student scheduling system at the University of Waterloo,” Lect. Notes Comput.

Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2079 LNCS, pp. 64–82, 2001, doi: 10.1007/3-540-

44629-x_5.

19. P. Alvarado-moya, “Multiobjective optimization with expensive functions. Survey on the state of the art,” pp. 16–24, 2016.

20. P. B. Myszkowski and M. E. Skowroński, “Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling

problem,” Soft Comput., vol. 19, no. 12, pp. 3599–3619, Dec. 2015, doi: 10.1007/s00500-014-1455-x.

González López et al. / International Journal of Combinatorial Optimization Problems and Informatics, 12(3) 2021, 32-49.

49

21. P. Boizumault, “Constraint logic programming for examination timetabling,” J. Log. Program., vol. 26, no. 2 SPEC. ISS., pp. 217–233,

1996, doi: 10.1016/0743-1066(95)00100-x.

22. R. Weare, E. Burke, and D. Elliman, “A Hybrid Genetic Algorithm for Highly Constrained Timetabling Problems School of Computer

Science and Information Technology University of Nottingham Computer Science Technical Report No. NOTTCS-TR-1995-8 A Hybrid

Genetic Algorithm for Highly Constrain,” no. January 1995, 2017.

23. S. Daskalaki, T. Birbas, and E. Housos, “An integer programming formulation for a case study in university timetabling,” Eur. J. Oper.

Res., vol. 153, no. 1, pp. 117–135, 2004, doi: 10.1016/S0377-2217(03)00103-6.

24. S. Petrovic and E. Burke, “University timetabling,” Handb. Sched. Algorithms, Model. Perform. Anal., no. December, pp. 45-1-45–24,

2004.

25. T. Frühwirth and S. Abdennadher, “University Course Timetabling,” pp. 117–122, 2003, doi: 10.1007/978-3-662-05138-2_17.

26. X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan, “A multi-Facet survey on memetic computation,” IEEE Trans. Evol. Comput., vol. 15,

no. 5, p. 591, 2011, doi: 10.1109/TEVC.2011.2132725.

27. Z. Lü and J. K. Hao, “Adaptive Tabu Search for course timetabling,” Eur. J. Oper. Res., vol. 200, no. 1, pp. 235–244, 2010, doi:

10.1016/j.ejor.2008.12.007.

