International Journal of Combinatorial Optimization Problems and
Informatics, 11(1), Jan-April 2020, 88-96. ISSN: 2007-1558.

Influence of Image Pre-processing to Improve the Accuracy in a Convolutional Neural
Network

Felipe Arias Del Campo’, Osslan Osiris Vergara Villegas®, Vianey Guadalupe Cruz Sanchez?, Lorenzo Antonio
Garcia Tena’, and Manuel Nandayapa’®

! Universidad Auténoma de Ciudad Juérez, Instituto de Ingenieria y Tecnologia, Doctorado en Ciencias en
Ingenieria (DOCIA)

2 Universidad Auténoma de Ciudad Juérez, Instituto de Ingenieria y Tecnologia, Departamento de Ingenieria
Eléctrica y Computacion

3 Universidad Auténoma de Ciudad Juérez, Instituto de Ingenieria y Tecnologia, Departamento de Ingenieria
Industrial y Manufactura

All71515@alumnos.uacj.mx, {overgara, vianey.cruz, lorenzo.garcia, mnandaya} @uacj.mx

Abstract. Convolutional neural networks (CNN) have | Article Info

been applied in different fields including image | Received Sep 26,2018
recognition. A CNN requires a set of images that will be | 4ccepted Sep 11, 2019
used to teach to classify it into specific categories.
However, the question about how image pre-processing
influences CNN accuracy has not yet been answered
bluntly. This paper proposes the application of pre-
processing methods for the images’ feed to a CNN in order
to improve the accuracy of the classification. Two methods
of pre-processing are evaluated, quantization and
sharpness enhancement. Quantization carries out at 7
levels, and sharpness works with four levels using the
discrete wavelet transform. The tests were implemented
with two CNN models, LeNet-5 and ResNet-50. In the first
part of this paper the methodology and description of the
CNN models, as well as the data set are presented. Later
the descriptions of the experiments are presented. Finally,
it is shown how the proposed method achieved an
improvement on the accuracy compared with the results
obtained with the images with no modification. The
proposed pre-processing methods had an improvement
between 1.35 and 3.1% on the validation accuracy.

Keywords: Image pre-processing, CNN, quantization,
sharpness enhancement, wavelet transform.

1 Introduction

The ability to recognize or classify objects is something that comes natural for a human being, however, for a computer this
capability is not a simple task, even with the recent advances in computer vision (CV) techniques. There are two basic elements
that are required to use a computer for the task of object recognition: the object’s digital representation, and the algorithm to carry
out detection and classification.

The digital representation can be a picture or a video, either in real time or pre-recorded. If the task is to recognize objects in a
video, the analysis is to be applied over a specific frame or set of frames. Therefore, the recognition process can always be seen
as the detection of objects in a digital image (thinking of each video frame as a simple digital image).

There are at least two ways to implement the computer recognition algorithm, with mathematical analysis of the image features,

like color and intensity histogram, or using deep learning (DL) methods. DL methods use algorithms to teach a computer how to
recognize objects. The teaching process can be done in two ways; the first one by presenting a digital image and its category to

© Editorial Académica Dragon Azteca S. de R.L. de C.V. (EDITADA.ORG), All rights reserved.

Felipe Arias et al. / International Journal of Combinatorial Optimization Problems and Informatics, 11(1) 2020, 88-96.

the algorithm, this is called supervised learning. The second type of training only requires the digital image, leaving the task of
determining the object’s category to the algorithm, this is called unsupervised learning.

Object recognition techniques using DL methods have been gaining more interest because they outperform traditional algorithms.
The increasing number of available data sets composed of images, that are used to teach computers to recognize objects, offer
researchers a variety of data to use for the learning process [1].

Convolutional neural networks (CNN) are part of the DL methods, they are an extension to the multilayer neural networks (MLN).
Since their introduction with the LeNet5 architecture, by Yan Lecun in 1998 [2], they have been used extensively for object
recognition in both, images and videos. In order to use a CNN to solve a problem it is necessary to create a model and train it. A
CNN learns how to recognize objects by presenting a set of images, that represent a sample of the universe of objects to classify,
and the expected classification value for each one of them. Then, the model learns to classify the input images, but it is also able
to classify images that have not been presented, this is known as a generalization, and this is one of the most relevant features of
the artificial neural network models nowadays.

One of the challenges to train a CNN is to find the right set of images (known as data set). Depending on the nature of the problem,
the set of images may be large, or small; for example, when working with medical images, it is common the use of small sets of
images [3], [4]. A large data set provides many samples, from which the CNN can extract many distinctive characteristics, this
helps to improve the network’s performance, and increase its capability to generalize. The work of [5] documented how the size
of the training set impacts the classification capability using two different neural network models, SW-Net and U-Net [5].

The difference in the achieved performance of a CNN trained with a larger data base can be inferred of the results from other
published works. For example, the work of [6] used two data sets, the MNIST (Modified National Institute of Standards and
Technology) with 60,000 images, and the RTSD (Russian Traffic Sign Dataset) with 10,400 images to train and evaluate the
same model, achieving an accuracy of 99.45% and 97.3% respectively. The differences, according to the authors, are associated
with the number of images that were used to train each model. On the other hand, in [7] , the authors used a data set with only
3,753 medical images to train a CNN model to classify RGB images in order to recognize different types of cancer, achieving an
accuracy of 94.2%, while the results of previously cited works were below 90%. The work proposed by [8] used 10,728 images
to train the marine organism classification model, reporting a 92% of accuracy, top of 91% of the best of the reference values
from other cited methods.

A method used to increase the data sets with low number if images is the data augmentation, by applying transformations like
rotation, shifting, mirroring, brightness change, etc., over the images [3], [4], these techniques are used to improve the
generalization of the trained model like in LIDAR systems [9].

A CNN is composed of several layers, being the first a convolutional filter that is applied over the input images. After this layer,
depending on the model, it is possible also to have an activation function layer and then a MaxPooling function layer, the latter
being a method to reduce the image size by picking the maximum value within a moving window. This set of layers can be found
sequentially repeated, or in parallel for some models. The purpose of those layers is to create a feature map of the input image.
Connected to the feature map extraction layers is a classification neural network, this classifier starts with a flattening function
that transforms the feature map into a vector. The feature map is commonly presented as a bidimensional or tridimensional array.
The vector is then feed-forwarded to a densely connected neural network, it will perform the classification of the feature maps,
providing the actual CNN output value [10].

A method to improve the quality of the input images, or enhance the information, consisting on the application of digital filters
(DF). The DF can be used to improve visibility of the image, or reduce noise, to facilitate the detection of defining features, a
few examples of those filters are the changes on brightness, contrast or sharpness. Another type of DF performs a transformation
of the image color space, from RGB (Red, Green and Blue) colorspace, that encodes the image intensity by the level of the red,
green and blue colors (this model is used to store images that are displayed by light emitting devices), to color spaces like YUV,
that encode the information by separating the chroma from the intensity, in different channels.

Before an image is processed with a CNN, it passes through a transformation known as pre-processing, this operation is used to
standardize the image to a required size, remove noise or enhance some features on the image. The pre-processing is done by
applying scaling algorithms and DF over the picture. However, the question about how image pre-processing influences CNN
accuracy has not yet been answered bluntly. Therefore, this work discusses how the application of different DF, in the
preprocessing phase, affects the performance of a CNN. Two different CNN architectures were used, LeNET-5 and ResNET-50,

89

Felipe Arias et al. / International Journal of Combinatorial Optimization Problems and Informatics, 11(1) 2020, 88-96.

these two models were chosen because one of them represent a low performance (LeNET-5) model and the other a high
performance (ResNET50) architecture; this difference is used to identify the influence of the pre-processing stage on the CNN
architectures with different performance inherent to its architecture.

The rest of the paper is organized as follows, section 2, explains the characteristics of the data sets and the CNNs models used
for the evaluation of the proposed preprocessing methods; section 3, explains the experiments performed over the data sets, and
the results obtained with each method; finally, section 4, presents conclusions and proposes further work.

2 Methodology

In this section, the information about the hardware used to run the experiments, a description of the images data set, the CNN
models evaluated, and the different preprocessing methods that were applied to the images are presented.

2.1 Hardware

The development system was a desktop computer with a solid-state hard drive (that speedups the memory pagination operations
and the data set loading), running Windows 10 64 bits, with an Intel 17-4790K microprocessor (not overclocked) with 20Gb of
RAM, with an NVIDIA GeForce 1050 Ti GPU, with the CUDA 10.1 drivers and its requisites installed. We considered this
hardware is enough to run the CNN models.

2.2 Image Data Set

To evaluate the performance of the proposed kernels, it was decided to use two small data sets. The 102 Category Flower [11]
data set, with images of 102 categories of flowers, and the Belgium Traffic Signals [12], with traffic signals from Belgium. The
size of the data set is relevant because small data sets tend to offer poor performance for the CNN and can be used to train the
model on a computer without high-end peripherals.

The 102 Flowers data set contains 8,189 images of 12 different flowers as it is shown in Fig. 1, the images have different sizes
that vary from small (500 x 500 pixels) to big (1024 x 500 pixels). Some of these pictures have one flower and others more than
ten, with a very complex background. From the 8,189 images, 75% was used for training, and the rest was used for validation,
resulting on 6,141 to train and 1,937 to evaluate the model. Because of the architecture of the CNNs, the images were scaled to
32 x 32 pixels when they were processed with the LeNET-5, and to 64 x 64 for the ResNET-50.

Fig. 1. Example of the images in the 102 Flowers dataset.

The Belgium TS dataset contains 61 different traffic signals as it is shown in Fig. 2, cut from natural images, that means that they
have defects as focus errors, obstructions and deformation (because of the different perspectives). The data set was split in two,
with 4,638 training, and 2,583 testing images. The images in the data set are presented in color and were taken from different
angles, the background is preserved to some extent, they come in different sizes, the smallest are 36 x 34 pixels, while the biggest
are 230 x 334 pixels. The categories are not balanced, some have just 6 images and others up to 317 images.

One additional difficulty with the Belgium TS data set is that some images are grouped by its general sense, instead of its specific
content, for example, the Fig. 3.a specifies a 50 kph restrictive symbol, during Fig. 3.b a signal to restrict the speed to 70 kph,
both were taken from the set 32, they are classified as a speed limit symbol, disregarding the speed value. Also, some images
present a higher level of blurring than others, as seen in Fig. 3.

90

Felipe Arias et al. / International Journal of Combinatorial Optimization Problems and Informatics, 11(1) 2020, 88-96.

Fig. 2. Traffic symbols from the BelgiumTS data set.

| y
|
(@) (b)

Fig. 3. Two images representing a speed limit signal belonging to the same category, however each with a different meaning, a)
50 kph, and b) 70 kph value respectively.

2.3 CNN Architecture

The LeNet-5 model was proposed by [2], and was implemented with TensorFlow 1.14, the open source library developed by the
Google Brain team and extensively used for machine learning applications. The LeNet-5 model was chosen because it is simple,
well known, and used as a starting example for learning about CNN. The simplicity of the model facilitates the visualization of
the effects for the different kernels that were used in experiments. This is possible because there are fewer elements involved in
the network operation. There are three convolution layers and two pooling layers in the LeNet-5 (Fig. 4), they are organized with
one pooling layer after a convolution, the purpose of these five layers is to create a feature map of the input image. The convolution
layers are used to extract features from their inputs, and the pooling layers perform a down sampling of the results. The feature
map is a fully connected layer, acting as a classifier. The feature map passes through a flatten layer, before passing the result
vector to the classifier. The classifier is a SoftMax layer that translates the output of the classifier into a vector of probabilities,
that contains output for each possible class in the data set.

\ Conv2D (64, 64, 6) |

¥

Average pooling2D (63, 63, 6)

\ Conv2D (59, 59, 16) \

Y

\ Average pooling2D (29, 29, 16) \

Y

\ Conv2D (25, 25, 120) |

Y

‘ Flatten ‘

Y

‘ Dense (84) ‘

Y

‘ Dense (62) ‘
Fig. 4. The architecture for the LeNET-5 CNN.

The ResNet-50 [13] is a CNN model that was introduced by a Microsoft team to win the ILSRVC 2015 competition on visual
recognition. The ResNet-50 model introduces the residual learning concept, it uses the subtraction, or residual (from there its
name), of the features obtained from the layer from its input. In its architecture, the ResNet uses a branch to connect the input of

91

Felipe Arias et al. / International Journal of Combinatorial Optimization Problems and Informatics, 11(1) 2020, 88-96.

a layer with some layers below (Fig. 5), then the input and the generated feature map are used to calculate a residual, which is
passed to several similar blocks in series. The complete implementation has 16 blocks. The feature map is feed to a classifier that
generates the output vector, using a dense layer with a SoftMax activation function. Fig. 5 shows only the first block, each
progressive block increases the number of inputs, by a power of two, the initial block has 64 inputs and ends with 256. The
number of parameters in this model required more GPU memory than the currently available in the already described hardware,
therefore, it was needed to reduce the size of the training batch to 8, and the input images were scaled down to 64 x 64 pixels.

L]

max_pooling2d 4: MaxPooling2D

—

mput: | (None, 15, 15, 64)
output: | (None, 15,15, 64)

mput: | {(None, 32, 32, 64)
output: | (None, 15, 15, 64)

res2a branch2a: Conv2lD

/

o mput: | (None, 15, 15, 64) nput: (None, 15, 15, 64)
bnza branchZa: BatchNormalization rez2a_branchl: Conv2D
output: | (None, 15, 15, 64) output: | (Noune, 15, 15, 256)
o o nput: | (None, 15, 15, 64) o mput: | (None, 15, 15, 256)
activation 149: Activation - bn2a branchl: BatchNormalization -
output: | (None, 15, 15, 64) output: | (None, 15, 15, 256)

AN

resZa_branch2b: Conv2D

mput: | (None, 15, 15, 64)
output: | (None, 15, 15, 64}

\

bnZa branch2b: BatchNormalization
input: | (None, 15, 15, 64)

output: | (None, 15, 15, 64)

\

mput: | (None, 15, 15, 64)
output: | (None, 15, 15, 256)

l

bn2a branch2c: BatchNormalization

mput: | (None, 15, 15, 64)
output: | (None, 15, 15, 64)

activation 150: Activation

res2a_branch2e: ConviD

mput: | (MNone, 15, 15,
output: | (Nomne, 15, 15, 25

~,

input: | [(None, 15, 15, 256), (None, 15, 15, 256)]
output: (None, 15, 15, 256)

I

Fig. 5. Fragment of the ResNet-50 showing the first branch where the feature map is obtained, and later the same input is used to
calculate a residual, that is passed to a similar layer, repeating the process.

add 49: Add

2.4 Pre-processing Methods

The data sets of images were loaded in RGB format. The digital images in RBG store its information in three planes, one for each
color, where the color intensity is in the range between 0 and 255 levels. Each value is normalized by dividing it by 255, producing
an intensity range from O to 1, for each color, this value is used as the input for the CNN.

An image in the RGB color space (8 bytes per pixel) can have up to 16,777,216 different colors, the quantization was used to

reduce the number of colors that an image contains, by reducing the number of colors is possible to decrease the ambiguity in the
colors, for example, different shadows of blue of the sky can be reduced to just one, simplifying the learning process. The

92

Felipe Arias et al. / International Journal of Combinatorial Optimization Problems and Informatics, 11(1) 2020, 88-96.

quantization was done by using the K-means algorithm that creates clusters from the different colors in the image, it uses the
Euclidian distance of the different colors to assign them to a single cluster. The quantization preprocessing was done by using
different quantization levels; 2, 4, 8, 16, 32, 64 and 128.

As well, the discrete wavelet transform (DWT) was used to separate the image in four frequency components, the low-pass filter
generates the scaled component (LL), which represents the original image scaled to half its original dimensions, the high-pass
filters, applied in combination with the low pass, yields the detail or local changes in brightness including three components (LH,
HL and HH). Because the high frequency components of the DWT represent the local changes of brightness, they can be used to
increase the sharpness of the image, multiplying them by a scaling factor, and then reconstructing the image using the inverse
DWT (IDWT). This method has been used previously to enhance medical images [14], and satellite images [15], among other
applications. In this work, the high frequency components (LH, HL and HH) were multiplied by a scale factor, varying in a range
between 1.02 and 1.08 in steps of 0.02, those values were found to be in the range that improved the network performance, the
LL component was left with its original value.

Because the RGB color images are represented in 3 color planes, it is not possible to apply the 2D DWT (bidimensional DWT),
as it operates over one plane. To solve this problem, the image is first changed to the YUV encoding format, where the luminance
is represented by the Y plane and the chroma by U and V [16]. The DWT is done over the Y plane, after the scaling factors are
applied, and the data is reconstructed with the IDWT, the result replaces the Y plane and then the image is converted back to the
RGB color space, this new image is then feed to the CNN. The pre-processing manipulation is done over each image used to train
and validate the model.

3 Experiments and Results

To evaluate the two pre-processing methods (quantization and sharpness enhancement), the CNN models, LeNet-5 and ResNet-
50 were implemented with TensorFlow. Each pre-processing algorithm was evaluated, changing the customization parameter, in
the case of the quantization method, this parameter is the number of quantization levels, with the values 2, 4, 8, 16, 32 and 128
(high values did not give better results, so, to save time, additional levels were not included).

The experiment implied the combination of the pre-processing methods and CNN models with the selected data sets. Because
different values in the hyperparameters can also change the performance of the network can change too. They were set to the
same value in an attempt to reduce the differences. Both CNN models were trained by using the SDG optimization algorithm,
with a learning rate of 0.0001; to prevent overfitting, this value yields into a slow training phase, however, it was found that with
larger values the ResNet-50 failed to converge. The training had an early stop callback configured to terminate the training when
the delta in the loss had a difference of less than 0.01 with a patience value of 5.

During each training epoch, the best weights were saved, after the training cycle was complete (either it did not show improvement
or 150 epochs were done), the best weights were loaded, and the evaluation data was used to calculate and report the accuracy
metric. The size of the training batch was set to 8, because the limitations in the GPU RAM memory made it impossible to use
larger batches in the ResNet-50 CNN. To avoid an advantage by using larger batches in the LeNet-5, it was decided to use the
same value for both CNN models, it was seen during the experiments that by using larger batches, like 128, the accuracy improved
by between a 2% to 10%.

Table 1 shows the accuracy values obtained with the validation set from the Belgium TS database after the CNN is trained and
the best weights are loaded. The values obtained with the images without any pre-processing are in the first row (Original), the
values obtained for the different pre-processing methods, are shown below. In the Belgium TS data set, the highest value in
accuracy, with both CNN models, was obtained when the image was pre-processed, getting a 92.62% with quantization to 16
levels, versus 91.27% with the original image, for the LeNet-5. The ResNET-50 obtained the best performance for the
quantization at 128 colors, with a value of 87.53% versus 84.44% with the image without pre-processing. For the case of sharpness
enhancement, the best value for the LeNet-5 was obtained with a step of 1.02. For the case of ResNET-50 the best accuracy value
was obtained with a step of 1.06.

The 102 Flowers data set accuracy obtained is shown in Table 2, when the images were used to train the LeNET-5 the highest
accuracy was obtained by pre-processing the images with sharpness enhancement, using the wavelet transform with a factor of
1.04 to scale up the high frequency components. Using the images without modification gave an accuracy of 25.04%, versus a
28.07% with the improved images. For the case of quantization, the best value was obtained with 16 levels of color. On the other
hand, when the ResNET-50 model was trained with the same data set, the best accuracy, of 30.66%, was obtained with the

93

Felipe Arias et al. / International Journal of Combinatorial Optimization Problems and Informatics, 11(1) 2020, 88-96.

quantization at 8 levels of color, while with the original images, the accuracy achieved was 27.78%. Finally, for the sharpness
enhancement, the best value was obtained with a step of 1.06.
Table 1. Accuracy values in % obtained with the Belgium TS data set.

Pre-processing LeNET-5 ResNET-50
Original 91.2698413 84.4444444
Quantization 2 80.9126984 79.0079365
Quantization 4 90.3968254 84.1269841
Quantization 8 91.8650794 85.0396825
Quantization 16 92.6190476 85.3571429
Quantization 32 91.7460317 86.1904762
Quantization 64 91.5873016 83.9682540
Quantization 128 91.2301587 87.5396825
Wavelet HL, LH and HH x 1.02 92.3412698 83.8095238
Wavelet HL, LH and HH x 1.04 90.7539683 85.0793651
Wavelet HL, LH and HH x 1.06 90.7539683 85.5555556
Wavelet HL, LH and HH x 1.08 92.1825397 84.7619048

Table 2. Accuracy values in % obtained with the 102 Flowers data set.

Pre-processing LeNET-5 ResNET-50
Original 25.0488281 27.7832031
Quantization 2 19.7753906 20.2148438
Quantization 4 20.8007813 25.0488281
Quantization 8 22.8027344 30.6640625
Quantization 16 23.9746094 27.3437500
Quantization 32 25.9765625 26.1718750
Quantization 64 25.4882812 26.7578125
Quantization 128 26.8066406 28.1738281
Wavelet HL, LH and HH x 1.02 23.8281250 26.4648437
Wavelet HL, LH and HH x 1.04 28.0761718 26.8554687
Wavelet HL, LH and HH x 1.06 26.9042968 29.5898437
Wavelet HL, LH and HH x 1.08 25.4394531 26.8066406

3.1 Discussion

As can be observed from Tables 1 and 2, the pre-processing of the images that are feed to a CNN affected the accuracy; the
quantization provided better results than the Wavelet transform optimization, in three experiments, only with the 102 Flowers
data set, and the ResNET-50 architecture, the improvement in the sharpness gave the higher accuracy value.

The quantization reduces the number of colors, and this affects how the feature map is generated, it was observed that for the
Belgium TS data set, the best results were obtained with the quantization at 16 and 32 levels, that seems to indicate that the
diversity in color is required to obtain good accuracy, with the low quantization levels (2 and 4), the accuracy had the lowest
values, for both CNN models and data sets. Because the accuracy started to decrease when more colors were generated with the
quantization (with levels 64 and 128), the conclusion is that higher number of colors will decrease further the accuracy.

94

Felipe Arias et al. / International Journal of Combinatorial Optimization Problems and Informatics, 11(1) 2020, 88-96.

However, for the 102 Flowers data set, the best performance was obtained with an enhancement in the sharpness for the LeNET -
5 model, while with the ResNET-50 the best result was obtained using the quantization to 8 colors. The best results using the
wavelet transform optimization algorithm are attributed to the fact that this data set has more complex images than the Belgium
TS, the flowers have much more detail in the images, and some have complex backgrounds.

The results seem to indicate that for complex images, like the flowers, an increase in the relative difference between the element’s
boundaries help to improve the CNN performance. However, if the images have more elements with homogeneous areas (color),
the quantization provides better results. This makes sense considering that the quantization will increase the homogeneity of the
images.

4 Conclusions

In this paper, the influence of image pre-processing to increase accuracy in a CNN was discussed. The methods of quantization
and sharpness enhancement were tested with LeNET-5 and ResNET-50 models, showing that their accuracy is increased when
image pre-processing was carried out. For the case of quantization 7 steps ranging from 2 to 128 color levels were tested. On the
other hand, sharpness enhancement was implemented by using the DWT with four different steps.

The 102 Category Flower and the Belgium Traffic Signals small data sets were used for experimentation. The best accuracy
obtained was 92.61% using LeNET-5, which is superior compared with any value obtained without pre-processing. In the end,
the proposed pre-processing methods gave an improvement between 1.35 and 3.1% on the validation accuracy.

In the future, the evaluation of quantization levels between 16 and 32 will be evaluated, to try to reduce the range of the best
quantization levels. Also, it will be interesting to test other CNN models.

References

1. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E.: Deep Learning for Computer Vision: A Brief Review. Computational
Intelligence and Neuroscience, vol. 2018 (2018), pp. 1-13. doi: https://doi.org/10.1155/2018/7068349.

2. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.: Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, vol.
86, no. 11 (1998), pp. 2278-2324.

3. Kayalibay, B.; Jensen, G.; Smagt, P. V. D.: CNN-Based Segmentation of Medical Imaging Data. Arxiv Preprint Arxiv:1701.03056 (2017).

4. Yamashita, R.; Nishio, M.; Do, R. K. G.; Togashi, K.: Convolutional Neural Networks: An Overview and Application in Radiology.
Insights into Imaging, vol. 9, no. 4 (2018), pp. 611-629. doi: 10.1007/s13244-018-0639-9.

5. Vigueras-Guillén, J. P.; Sari, B.; Goes, S. F.; Lemij, H. G.; Van R. J.; Vermeer, K. A.; Van V. L. J.: Fully Convolutional Architecture vs
Sliding-Window CNN for Corneal Endothelium Cell Segmentation. Bmc Biomedical Engineering, vol. 1, no. 1 (2019), pp. 1-16. doi:
10.1186/s42490-019-0003-2.

6. Alexeev, A.; Matveev, Y.; Kukharev, G.: Using a Fully Connected Convolutional Network to Detect Objects in Images. in 2018 Fifth
International Conference on Social Networks Analysis, Management and Security (snams), 2018, pp. 141-146, doi:
10.1109/SNAMS.2018.8554685.

7. Dorj, U.; Lee, K.; Choi, J.; Lee, M.: The Skin Cancer Classification Using Deep Convolutional Neural Network. Multimedia Tools and
Applications, vol. 77, no. 8 (2018), pp. 9909-9924, doi: 10.1007/s11042-018-5714-1.

8. Lu, H; Li, Y.; Uemura, T.; Ge, Z.; Xu, X.; He, L.; Serikawa, S.; Kim, H.: Fdcnet: Filtering Deep Convolutional Network for Marine
Organism Classification. Multimedia Tools and Applications (2017), pp. 1-14. doi: 10.1007/s11042-017-4585-1.

9. Caltagirone, L.; Bellone, M.; Svensson, L.; Wahde, M.: Lidar—Camera Fusion for Road Detection Using Fully Convolutional Neural
Networks. Robotics and Autonomous Systems, vol. 111 (2019), pp. 125-131, doi: https://doi.org/10.1016/j.robot.2018.11.002.

10. Baldominos, A.; Saez, Y.; Isasi, P.: Evolutionary Convolutional Neural Networks: An Application to Handwriting Recognition.
Neurocomputing, vol. 283 (2018), pp. 38-52. doi: https://doi.org/10.1016/j.neucom.2017.12.049

11. Nilsback, M.; Zisserman, A.: Automated Flower Classification over a Large Number of Classes. in 2008 Sixth Indian Conference on
Computer Vision, Graphics & Image Processing, 2008, pp. 722—729

12. Timofte, R.; Zimmermann, K.; Van G. L.: Multi-View Traffic Sign Detection, Recognition, and 3d Localization. Machine Vision and
Applications, vol. 25, no. 3 (2014), pp. 633—647

13. He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep Residual Learning for Image Recognition. in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (cvpr), 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.

14. Rasti, P.; Daneshmand, M.; Alisinanoglu, F.; Ozcinar, C.; Anbarjafari, G.: Medical Image Illumination Enhancement and Sharpening by
Using Stationary Wavelet Transform. in 2016 24th Signal Processing and Communication Application Conference (siu), 2016, pp. 153—
156

15. Witwit, W.; Zhao, Y.; Jenkins, K. W.; Zhao, Y.: Satellite Image Resolution Enhancement Using Discrete Wavelet Transform and New
Edge-Directed Interpolation. Journal of Electronic Imaging, vol. 26, no. 2 (2017), pp. 023014

95

Felipe Arias et al. / International Journal of Combinatorial Optimization Problems and Informatics, 11(1) 2020, 88-96.

16. Ibraheem, N. A.; Hasan, M. M.; Khan, R. Z.; Mishra, P. K.: Understanding Color Models: A Review. Arpn Journal of Science and
Technology, vol. 2, no. 3 (2012), pp. 265—275.

96

