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Abstract. Communication is an important tool for evolutionary robotics. Some important aspects 

are the emergence of signals, the environment, and manipulation of social and evolutionary 

variables. In this paper we focus on social aspects related to exploration in poisoned and food 

environments. These aspects are as follows: a) intermediate levels of heterogeneity in population 

of evolutionary robots, and b) cooperation of robots for fitness contribution to regulate the 

emergence of communication signals. The FARSA simulator and Marxbot robot are used in order 

to optimize the weights of neural networks using a steady state genetic algorithm. A basic 

communication system is developed based on color LEDs and linear cameras. 
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1. Introduction 

Evolutionary Robotics (ER) was created with the idea of developing morphological and control 

structures as a result of an artificial evolutionary process. In this field, an algorithm adjusts an artificial 

intelligent neural structure in order to control a robot. The most common representation for control 

systems in ER are Artificial Neural Networks (ANNs), and their weights are typically optimized by 

a Genetic Algorithm (Bongard [3], Montes-Gonzales et. al. [14]). 

In nature communication is an important characteristic of individuals and communities. As for robots, 

communicative skills are used for sharing information such as personal, environmental, social, 

internal, and external states. Furthermore, communication is an important part of cooperative 

behavior (Sperati et al [20]). 

Several methods allow communication to emerge in evolutionary robotics, through different 

channels, based on different sensors, e. g. color LEDs, sound, radiofrequency, and movement. The 

way a communication system is established depends on sensors and actuators with which robots are 

constituted (Marocco et al [9]). 



Palacios-Leyva et al. / The impact of population composition for cooperation emergence in evolutionary 

robotics. IJCOPI, Vol. 8, No. 3, Sep-Dec 2017, pp. 20-32. ISSN: 2007-1558. 

 

21 
 

 

In ER populations are evolved in order to solve a common task which can be accomplished using 

individual or group strategies. Additionally, populations can be either homogenous sharing the same 

chromosome information, or heterogeneous using information from different chromosomes. Then, in 

order to score their fitness, the population individuals have to be tested for some iterations in the 

simulator. Thus, in a homogenous population a population of n genetically identical individuals is 

built based in a single chromosome. In contrast, in a heterogeneous population all their individuals 

are not genetically identical. However, in this case the fitness function must have a mechanism to 

combine the score from different chromosomes within the population. 

In their work Floreano et al. (2008) show that homogenous populations use communication systems 

to benefit the overall population. In contrast in heterogeneous populations communication systems 

emerge as a mechanism to drive away different individuals from food zones. Hence, is very important 

to understand the mechanisms that allow communication systems to emerge in populations of robots 

having different configurations (Steels [21]).  

Additionally, the emergence of signal communication has an important relation with the conditions 

of the environment, control systems, and configuration of population (Montes-Gonzalez & Aldana-

Franco [13]). Signals are emitted in situations where the possibility exists of collaboratively 

exploiting a common resource by the individuals of a homogenous population sharing useful 

information. Thus, signals are highly correlated with behavior, which are prone to build up a basic 

communicative system. Environmental and social conditions both influence the emergence of signals 

(Nolfi [15], [16]). 

In order to attract individuals when homogenous robot populations are evolved, in both poisoned and 

safe environments, signals mainly emerge towards the food zones. In the case of heterogeneous 

populations, signals emerge on non-favorable zones in order to keep away robots from feeding zones. 

Therefore, signals are associated with a conflict interest level in the population and finally egotistical 

behavior (Floreano et al. [5]). 

In nature, the overall behavior of a community is regulated by those individuals with a high influence 

over the others (Mengistu, et. al [11]). This could be represented as a social advantage in the 

evolutionary population (Mitri, et. al [12]). For example, in hierarchical societies like ants (Trianni 

et. al [22]) and honeybees (Zahadat & Shcmickl [24], Ruiz [18]), individuals who have a greater 

social value, route the behavior of socially inferior individuals. 

Experimental research (Floreano, et. al [6]) shows the importance of kin structure and the level of 

selection in the evolution to develop a stable cooperative communication. Also, this study 

demonstrates that cooperative communication and signaling can be evolved in groups of robots with 

simple artificial neural networks. Besides, the authors show that the evolutionary principles, ruling 

the evolution of social life, operate in groups of robotic agents mainly shaped by selection. This 

feature demonstrates that efficient groups of cooperative robots can be designed based on the transfer 

of knowledge carried out by artificial evolution. 
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Because communication has rooted social components, its own emergence is related to social factors 

in ER. Leaders in evolutionary societies must have an evolutionary advantage over the rest of the 

population. Hence, they are able to regulate the emergence of signals in order to define its meaning 

and usefulness. 

In this paper, we revise the impact of environmental variables in the emergence of cooperation in 

evolutionary robots. Additionally, we analyze to what extent the inclusion of communication leaders, 

in the population, affects the emergence of signal communication. 

Two experiments were configured in order to prove that intermediate levels of heterogeneity produce 

intermediate level of conflict of interest, and the inclusion of robots with a high fitness contribution 

can guide the emergence of alerting signals. The purpose of the first experiment is to show that the 

level of heterogeneity is an important factor for the emergence of signal communication in robots. As 

for the second experiment we study how the emergence of signal communication is affected by the 

presence of those individuals with a large evolutionary contribution over the main population. 

This paper is organized as follows. Firstly we introduce the MarXbot and FARSA Simulator. 

Secondly, in the methodology and materials section we provide the details of our two experiments. 

Thirdly, the results section shows the outcomes of the experiments. Next, in the discussion we expand 

the description of our findings. Finally, we draw some conclusions about our work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Examples of poisoned and food environments in FARSA 

 

 



Palacios-Leyva et al. / The impact of population composition for cooperation emergence in evolutionary 

robotics. IJCOPI, Vol. 8, No. 3, Sep-Dec 2017, pp. 20-32. ISSN: 2007-1558. 

 

23 
 

 

2. The MarXbot and FARSA Simulator 

All experiments were conducted in a virtual world based in the FARSA simulator (Figure 1). Neural 

networks were used in order to control a group of MarXbot robots (Bonani et. al [1]). For evolution 

the simulator offers two versions of the Genetic Algorithm, the Elementary GA 1-1 (Davis [2]) and 

the Steady State (Shwehm [19]). In our case for the optimization of the weights on the ANNs we 

modified the steady state genetic algorithm. Additionally, FARSA is an open-source tool for 

experimental research on embodied cognitive science and adaptive behavior developed at the Institute 

of Cognitive Sciences and Technologies (ISTC-CNR) in Rome, Italy (Massera et. al, [10]).  

FARSA provides a set of integrated libraries to create several components of embodied models and 

simulate their interactions with the environment in which they are situated. The graphical interface 

Total99 allows the visualization of the experimental components and analysis of the cognitive 

processes derived from the interactions between the agent and the environment. Also, FARSA has a 

modular architecture based on three main concepts: ‘components’, ‘configuration file’, and ‘plugins’. 

The components are modules organized hierarchically which represent a process (an evolutionary 

process) or an object (neural network controller). Next, the configuration file is a text file where all 

the components, used in a particular project, and their parameter values are specified. This file can be 

modified through the graphical interface or directly from a text editor. Components facilitate the 

separation of the code in the main library from new code and provide an easy way to develop new 

experiments. Plugins can also be edited with the compiled code of existent components and new 

components developed by the users.  

Evolution in FARSA starts with a random population, which is tested in a predefined environment. 

Next, a population of children is created, which are the result of the application of the mutation 

operator. Children run in the simulator and their adaptability-scores are compared with those of their 

parents. A selection of the worst parents is replaced with their best children and a new generation is 

spanned. In this algorithm the parameters to configure are: percentage of initial mutation, final 

mutation rate, and decreased rate of mutation. Moreover, the simulator (worldsim) is a complete 

library that allows the development of robots and environments. Thus, FARSA supports several 

robotic platforms including the marXbot robot (Figure 2). 

  

 

 

 

 

 

Figure 2. The MarXbot Robotic Platform 
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The marXbot robot is a modular miniature mobile robot designed mainly for collective-robotic 

experiments (Bonani et. al, [1]). The base module has a combination of tracks and wheels (treels) that 

enables rough-terrain mobility and provides energy through a hot-swappable battery. The robot is 

equipped with a set of sensors like proximity sensors, 3D accelerometer, and a 3-axis gyroscope. This 

feature allows computing a rough estimate of the direction and distance of nearby robots. Also, the 

robot is provided with an attachment module that allows self-assembly with other similar robots. The 

marXbot is equipped with a distance scanner module and a main computer module provides an 

onboard linux-based operating system that allows the robot to build a 2D map of its surroundings.  

3. Methodology and materials 

In relation to the environment, we configured an adaptation of the poison and food experiment by 

Floreano, et. al [4]. A group of robots was placed in an arena without walls. Robots had to find and 

spent most of their time in the food zones and avoid poisoned areas. Food zones were represented by 

a white circular target area and poisoned zones with black circular target areas. A green cylinder was 

aggregated in the center of each target area as an extra visual reference (see Figure 1). 

The steady state genetic algorithm was based on the mutation of initial individuals and the worst 

parents were replaced by their improved children. For every iteration in FARSA, the mutation rate of 

each generation was decreased from an initial value of 50% to a minimal value of 1%. The fitness 

function rewarded with a positive value for each step that a robot spent in a food zone, and punished 

with negative values when the robot was next to a poisoned area. The complete evolutionary process 

was composed by 500 generations of 20 teams of six robots with random initial positions. Next, a 

repetition consists of a run of the complete evolutionary process. The rest of the parameters were as 

follows: selection of 20 individuals for reproduction; 1% decrease mutation rate; 1 trial of 300 steps; 

and then 10 trials for a team of six robots with 12 repetitions for each experimental group (6,000 

generations in total).  

Robots used 24 infrared sensors encoded in 8 average measures of 3 group sensors (FARSA allows 

grouping and fusing a certain number of infrared sensors). As for the ground sensors, 3 are employed 

for the detection of gray, black, and white colors. Also, the linear camera detects 5 segments of 72° 

of red, green, and blue components. As for the actuators, robots controlled 2 motors using only angle 

information (orientation-based), and the ring of LEDs flashing binary-coded red and blue colors. The 

neural controller was composed by 26 neurons at the input layer, 15 for the hidden layer, and 4 

neurons at the output layer. In total 460 weights were optimized in a feed- forward structure. 

As for the signal coding, it was implemented using a binary function that outputs 0 if the value is 

below 0.5 and 1 otherwise. There are two neurons for coding color signals, respectively representing 

red and blue colors. However, two more colors can be represented using a combination of the output 

of these two neurons. Therefore, codification in pairs is as follows, OFF, OFF = BLACK; ON, OFF 

= RED; OFF, ON = BLUE; ON, ON = PURPLE (Figure 3). 
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Figure 3. The neural architecture for our experiments  

3.1 Experiment 1. Homogenous vs. heterogeneous populations 

The aim of this first experiment was to find out to what extent the level of heterogeneity affects the 

emergence of communication signals in robots. Also to probe that the production of signals is related 

to the level of heterogeneity. Additionally, we anticipated that intermediate values of heterogeneity 

produced both intermediate levels of fitness and signal production. In relation to heterogeneity a 

‘clone’ is a concept related to the way the population is integrated.  For a homogenous population 

their individuals share the same chromosome (clones); on the contrary in a heterogeneous population 

their individual chromosomes are all different. 

For the experiment we employed 4 experimental groups that represented different team 

configurations based on different variations of the heterogeneity level. The groups depending on their 

heterogeneity level were formed as follows: level 0 with identical chromosomes for each member of 

the team (control group); level 1 composed by 2 different chromosomes; level 2 composed by 3 

different clones; and level 3 composed by a team of 6 different chromosomes.  

Two dependent variables were measured: a) the fitness function level and b) the locations where 

robots emitted signals (food area, poisoned area, another robot presence, or no signals). In our 

experiments we used the fitness levels because communication emergence brings about additional 

benefits to robots by sharing food information and increasing their fitness (Marocco et al [9]). The 

average fitness score of the last two hundred best individuals of each repetition was used as the output 

variable. This in order to consider that the communication system was stable, evolutionary signals 

are considered stable when there is no change in signaling strategy after 200 generations of the 

evolutionary process. The statistical test used for finding differences between groups was a One way 

ANOVA on ranks (α=0.95) and a post-hoc Student-Newmann-Keuls with fitness level as the 

dependent variable and heterogeneity level as the independent variable. Signalization was quantified 
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with 4 locations, or situations, where commonly robots emit signals (food, poison, another robot and 

no signal). Signals were registered for 10 minutes through an instantaneous scan sampling of the best 

individuals in the last generation of all the repetitions in the experimental groups. 

3.2 Experiment 2. The presence of communication leaders affects the emergence of signals 

This second experiment was developed to demonstrate that the emergence of signal communication 

was affected by the presence of individuals with a large evolutionary contribution over populations 

of genetic clones. The experiment was integrated by 4 groups. Two free variables were used: the 

fitness contribution associated with the number of signals emitted in 2 levels (2 colors for a pair of 

individuals with a high fitness contribution and 4 colors of an equal fitness signal contribution); and 

the number of localized food target areas in 2 channels, i.e. 1 and 3 target areas. 

The first group named ‘control-group’ was configured with 20 populations of 6 robots with an equal 

fitness contribution (+1,-1), 1 target food-area, and 1 poisoned-food area. The second group ‘group-

1’ was composed by 6 individuals with the same contribution of fitness (+1,-1), 3 food zones, and 1 

poisoned zone. The third ‘group-2’ was formed by 2 individuals with a high fitness contribution (+1,-

1), 4 individuals with a low contribution (+0.5,-1), 1 food zone, and 1 poisoned zone. Finally, the 

fourth ‘group-3’ included 2 individuals with a high fitness contribution (+1,-1), 4 individuals with a 

low contribution (+0.5,-1), and 3 food zones with 1 poisoned zone. 

The fitness function measured the last two hundred best individuals for each repetition, which 

reflected changes in behavior during evolution under experimental conditions. In order to compare 

the fitness levels of experimental groups, a two way ANOVA was used as statistical test (α=0.095). 

Next, it was complemented with a post-hoc of Student-Newmann-Keuls with p<0.001 and 

comparison of two factors: a dependent variable based on statistical tests using the individual fitness 

level; and an independent variable related to the number of food zones and to the presence or absence 

of individuals with high fitness contributions. Signals were measured for the last 10 minutes of the 

best individuals in 4 different places, or positions, where the robots emitted signals (food, poison, 

another robot, and no signal). A special case is when the robot is under a situation where the LED 

rapidly flashes one color and changes to another, e.g. the robot finds food, and emits a blue signal, 

afterwards finds a cylinder and emits a green signal.   

4. Results 

4.1 Experiment 1 

A competitive race between species decreases the performance of individuals, and has an important 

effect on signal emergence. When the competitiveness level increases, between species, the altruism 

of individuals decreases (Waibel et al [23]). The One Way ANOVA on Ranks (Figure 4) showed that 

statistical differences were evident between the four experimental groups (P=<0.001, 3df, n=12). 

Furthermore, the Student-Newmann-Keuls Pos-Hoc test showed differences between all groups 

(P<0.05) related to variations in the fitness level produced by changes in the heterogeneity level. 

Firstly, at the highest level of heterogeneity (six different individuals), signalization occurred 42.9% 

in poisoned zones, 14.2% in food zones, 28.7% in the presence of another robot, and 14.2% of the 
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repetitions did not develop a communication system. Secondly, 25% of the signals for the 3-clones 

repetitions emerged in poisoned zones, 31.25% for black zones, 31.25% in the presence of another 

robot, and 12.5% repetitions did not develop any kind of communication. Thirdly, the 2-clones 

repetitions developed 21.4% of the signals at food zones, 28.5% at black zones, 14.2% in the presence 

of another robot, and 35.9% no communication system at all. On the other hand, homogeneous 

population signals were emitted most of the time at beneficial places (80%), and to a lesser extent in 

poisoned zones (20%). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The average fitness and standard error of groups for experiment 1  

4.2 Experiment 2 

The Two Way ANOVA showed that there were statistical differences between the experimental 

groups (P<0.001, 44df residual, 47df total, a factor of interaction between factors p=<0.001 and 

n=12). The Student-Newmann-Keuls Pos-Hoc test showed differences between two factors: the 

presence of individuals with a high fitness contribution and the number of food zones (P<0.05). In 

consequence the best fitness level was scored by group-1 (see Figure 5). 

In relation to the production of signals in the control group, robots produced them 80% of the time in 

beneficial places, 20% in poisoned zones. For group-1, signals emerged 90% of the time in food zones 

(25% at food zone 1, 40% at food zone 2, and 25% at food zone 3), 3.3% in poisoned zones, and 7.3% 

in the presence of another robot. As for group-2, 70% of the time signals emerged in food zones, 15% 

in poisoned zones, and 10% in the presence of another robot and 5% did not develop a communication 

system. Finally, in group-3 signals emerged 80% of the time in food zones, 10% in poisoned zones, 

and 10% in the presence of another robot. Robots in the control group employed an average of 2.2 

signals; 3.1 signals in group-1, 1.1 for group-2, and 1.8 signals for group-3. 
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Figure 5. The average fitness and standard error of groups for experiment 2 

 

5. Discussion 

In the first experiment, as showed by Mitri et al. [12], the use of one clone facilitated that signals 

emerged when robots were in safe places like food zones. The results from these authors were 

confirmed in our experiments for the heterogeneous groups. Hence, when a group of robots was 

composed by two, three, or six clones; signals were used for attracting robots outside of the safe zones 

and then attract them to dangerous zones. The statistical tests confirmed that the manipulation of the 

independent variable (level of heterogeneity) has an effect on the fitness due to the emergence of non-

altruistic behavior. In evolution this kind of behavior reduces the level of fitness and affects the 

emergence of communication signals. Intermediate levels of heterogeneity, confirmed a trend, which 

in turn results in a decrease of the fitness level. 

In the case of groups composed by 2 and 3 clones the tendency of decreasing performance was 

maintained for intermediate values compared to groups of 1 and 6 clones. We can safely assume that 

the level of heterogeneity is inversely proportional to the fitness and level of altruism. Overall we 

found low performance at high levels of heterogeneity in the population. The fitness function level 

showed differences between groups as a result of different levels of individual contributions over 

evolution. 

In the same experiment, after the total number of generations (6,000), high heterogeneity levels did 

not develop a stable communication system and this can be due to the complexity of the solution 

space. In contrast, for a homogenous population where competition between individuals does not 

exist, all replications produced a stable communication system. This could be related to the value of 

signals because if individuals did not produce them, a population would not solve the task and reach 

high levels of fitness. Therefore, evolved communication systems in heterogeneous populations have 

low levels of altruism amongst identical individuals or species.   
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Here we observed two strategies, one is the emission of misleading signals and the other is the absence 

in the production of signals. In the first case, particular specie may produce a communication system 

to mislead individuals, of other species, from reaching the food zones which can be interpreted as a 

race competition between species. Eventually a strategy such as this may have better results because 

it uses one of its members to send competitors away while the rest of his teammates can visit empty 

food areas. The second strategy is related to the absence in production of signals which in turn 

facilitates the development of a common color identity of the group. Thus, in this case the failure to 

establish a communication system may be favorable for the population sharing the same color code 

and misleading for the others.  

As for the second experiment we observed that robots in the control group emitted signals in food 

zones and before a collision. Furthermore, the availability of more than one food zone causes signals 

to emerge in a different way. This is the case of group-1 and group-3 where robots used different 

signals for each located food zone. Our findings demonstrated that signal emergence depends on the 

utility and the complexity of the environment.  

The use of fitness function level as a variable shows that experimental groups that have more than 

one food zone available showed better performance. Therefore, the availability of various food zones 

facilitates the emergence of complex communication system producing different signals having a 

significant associated lexical value. Furthermore, the use of fitness shows that there are statistical 

differences between experimental groups as a result of the manipulation of the independent variables, 

i.e. leaders and multiple targets. We found that there is a correlation between these variables due to 

the level of statistical significance of the test interaction between factors. Also, we observed that 

experimental groups are susceptible to manipulation of variables. For example, an increase in the 

number of food zones rises the individual fitness and produces more emergent signals. Additionally, 

the existence of communication leaders causes fitness decays in the other groups (the control-group 

and group 1 reach higher fitness levels than groups 2 and 3 that do not have a leader).   

Cultural learning in a communication system helps to understand the usefulness in preserving or not 

a signal with its initial content. Furthermore, after some generations a signal can be developed and its 

original content be changed or even more can be suppressed. Leaders help to produce initial signals 

that can be imitated by others, which can be interpreted as a cultural learning that occurs during 

evolution. In our second experiment we observed that evolution guided from the team leaders helped 

to establish a stable communication system with an economy in the production of signals. Here, 

individuals with high fitness contributions produced a social benefit for the rest of the population 

which in turn tended to imitate signal behavior from the leaders. As many as 4 robots were able to 

produce blue and red signals in contrast to 2 robots which were able to produce only red signals. 

Despite the fact that leaders with two signals can be used to code 4 different signals, evolution 

optimized the selection of leaders that emitted only one color signal. Hence, after the evolutionary 

processes is finished, all robots emitted red signals in the food zones. We can summarize this behavior 

as an example of social learning (Heinerman et al [7]). 

In relation to the number of available food zones, this has a major impact on the number of robots 

that are able to identify them. The group that develops stable identification signals related to food 

areas will have more individuals reaching them and in turn scoring high levels of fitness. However, 

the presence of leaders regulates the number of emergent signals because signals are mainly 
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developed to point to the food zones and the rest of the population tends to mimic the behavior of the 

leaders. The population follows the leader even though the population has the possibility to produce 

additional communication signals. 

In summary, in the first experiment we showed the importance of heterogeneity in a population and 

demonstrated that intermediate levels of heterogeneity produced intermediate levels of altruism. On 

the other hand in the second experiment we showed that fitness can be increased over evolution by 

combining social information with fitness information. This was observed in this experiment with 

group-2 where more fitted individuals acted as leaders even though they were not the strongest in the 

group. An increase in the availability of food zones makes robots to choose zones accordingly to 

signal information from the leaders of the group. As a consequence, the rest of robots in the population 

associated different signals to the remaining the food zones. Also, in the second experiment we 

demonstrated that is possible to share a common communication signal set, during evolution, by the 

influence of the communication leaders.  

6. Conclusions 

For evolutionary robotics the heterogeneity level has an important effect on the emergence of 

communication systems. Evidence from our results confirms that intermediate levels of heterogeneity 

produce intermediate fitness values. The availability of reachable places is an important factor for 

developing communication systems. Furthermore, environmental manipulation favors the production 

of emergent signals with associated lexical values. Hence, the existence of communication leaders in 

the group, as a form of manipulation, accelerates the emergence of effective signal communication 

towards the final steps of evolution.  

The utility of leaders for developing a stable communication system can be explained because the 

social composition of the group is a decisive factor for individual evolutionary development. At an 

initial stage gene modification is a secondary effect from behavior related to the sensory-motor 

systems. Later on, a more adapted sensory motor system produces more fitted individuals, which in 

turn are preserved and their genes are transmitted over the next generations. Hence, our results 

confirmed that social information has a great influence in gene expression, i.e. epigenetic changes, 

because sensorial systems induce neural transduction and next they are preserved by adaptation and 

natural selection (Robinson et al [17]).  

Finally, as in nature where individuals with a particular advantage over the others regulate social and 

cultural processes; in our second experiment we observed that leaders in the groups are capable of 

producing signals with a clear lexical meaning.  

 

 

References 

[1] Bonani M., Longchamp V., Magnenat S., Retornaz P., Burnier D., Roulet G., et al. (2010). The marXbot a 

miniature mobile robot opening new perspectives for the collective-robotic research, IROS. 

[2] Davis, L., Ed. (1991), Handbook of Genetic Algorithms, New York, NY: Van Nostrand Reinhold. 



Palacios-Leyva et al. / The impact of population composition for cooperation emergence in evolutionary 

robotics. IJCOPI, Vol. 8, No. 3, Sep-Dec 2017, pp. 20-32. ISSN: 2007-1558. 

 

31 
 

[3] Bongard J. (2013). Evolutionary robotics. Communications of the ACM 56(8). Pp. 74-85.  

[4] Floreano D., Mitri S., Magnenat S. and Keller L. (2007). Evolutionary Conditions for the Emergence of 

Communication in Robots. Current Biology 17. Pp. 514-519. 

[5] Floreano D., Mitri S., Pérez-Uribe A. and Keller L. (2008). Evolution of Altruistic Robots. Computational 

Intelligence: Research Frontiers. Pp. 232-248. 

[6] Floreano D., Mitri S., Magnenat S., and Keller L. (2007). Evolutionary conditions for the Emergence of 

Communication in Robots, Current Biology 17. Pp. 1-6. 

[7] Heinerman, J., Rango, M., & Eiben, A. E. (2015). Evolution, individual learning, and social learning in a 

swarm of real robots. In Computational Intelligence, 2015 IEEE Symposium Series on IEEE. Pp. 1055-1062 

[8] Kernbach S. (2013). Handbook of Collective Robotics Fundamentals and Challenges. Pan Standford 

Publishing.  

[9] Marocco D., Cangelosi A., and Nolfi S. (2003). The emergence f communication in evolutionary robots. 

Philosophical transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 

361 (1811). Pp. 397-421. 

[10] Massera M., Ferrauto T., Gigliotta O., and Nolfi S. (2013). Farsa: An open software tool for embodied 

cognitive science. In advances in Artificial Life, ECAL, volume 12, Pp. 538-545, 2013. 

[11] Mengistu, H., Huizinga, J., Mouret, J. B., & Clune, J. (2016). The evolutionary origins of hierarchy. PLOS 

Comput Biol, 12(6). 

[12] Mitri S., Floreano D. and Keller L. (2009). The evolution of information suppression in communicating 

robots with conflict of interests. Proceedings of the National Academy of Sciences 106(37). Pp. 15786-15790. 

[13] Montes-Gonzalez F. and Aldana-Franco F.  (2011). The evolution of signal communication for the e-puck 

robot. In Proceedings of the 10th Mexican international conference on Advances in Artificial Intelligence. 

Springer Berlin Heidelberg. Pp. 466-477. 

[14] Montes-Gonzalez F., Ochoa-Ortiz-Zezzatti C.A., Marin-Urias L. and Sánchez-Aguilar J. (2010). A hybrid 

approach in the development of behavior based robotics. Computación y Sistemas 13(4). Pp. 385-397. 

[15] Nolfi S.  (1998). Evolutionary Robotics: Exploiting the full power of self-organization. Connection Science 

10 (3-4). Pp. 167-184. 1998. 

[16] Nolfi S. (2013). Emergence of communication and language in evolving robots. New perspectives on the 

origins of language. Pp. 533-554. 

[17] Robinson, G. E., Fernald, R. D., & Clayton, D. F. (2008). Genes and social behavior. Science 322(5903), 

Pp. 896-900. 

[18] Ruiz-Vanoye J., Díaz-Parra O. (2011). Similarities between Meta-heuristics Algorithms and the Science 

of Life. Central European Journal of Operations Research. Springer 19(4) Pp. 445-466.  

[19] Schwehm, M. (1996). Parallel population models for genetic algorithms. Universität Erlangen-Nürnberg, 

Pp. 2-8. 

[20] Sperati, V., Trianni, V., & Nolfi, S. (2011). Self-organised path formation in a swarm of robots. Swarm 

Intelligence 5(2). Pp. 97-119. 

[21] Steels L. (2003). Evolving grounded communication for robots. Trends in cognitive sciences 7 (7). Pp. 

308-312. 



Palacios-Leyva et al. / The impact of population composition for cooperation emergence in evolutionary 

robotics. IJCOPI, Vol. 8, No. 3, Sep-Dec 2017, pp. 20-32. ISSN: 2007-1558. 

 

32 
 

[22] Trianni V., Labella T., y Dorigo M. (2004).  Evolution of direct communication for a swarm-bot performing 

hole advance. Ant Colony Optimization and Swarm Intelligence. Springer Berlin Heidelberg. Pp. 131-140. 

[23] Waibel, M., Keller, L., & Floreano, D. (2009). Genetic team composition and level of selection in the 

evolution of cooperation. IEEE Transactions on Evolutionary Computation 13(3). Pp. 648-660. 

[24] Zahadat, P., & Schmickl, T. (2016). Division of labor in a swarm of autonomous underwater robots by 

improved partitioning social inhibition. Adaptive Behavior 24(2). Pp. 87-101. 


